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Abstract: We study the second-order scalar and density perturbations generated by Gaussian cur-
vature perturbations and primordial gravitational waves in the radiation-dominated era. After
presenting all the possible second-order source terms, we obtain the explicit expressions of the kernel
functions and the power spectra of the second-order scalar perturbations. We show that the primor-
dial gravitational waves might affect second-order energy density perturbation 6(2) = §p(2) /()
significantly. The effects of primordial gravitational waves are studied in terms of different kinds of
primordial power spectra.

Keywords: primordial gravitational waves; cosmological perturbation theory; primordial power spectra

1. Introduction

The cosmological perturbations which are originated from the quantum fluctuations
during inflation will inevitably induce higher-order perturbations. These induced higher-
order perturbations can also affect the evolution of the universe [1].

Cosmological perturbations can be decomposed as scalar, vector, and tensor pertur-
bations on account of the SO(3) symmetry of the Friedmann—Robertson-Walker (FRW)
spacetime [2—4]. Recently, the higher-order perturbations induced by the primordial
perturbations have been attracting a lot of interest because of their rich phenomenol-
ogy [5]. Among tensor perturbations, higher-order induced tensor perturbations are known
as induced gravitational waves (GWs) [6-31]. Regarding higher-order induced scalar
perturbations [32-34], a higher-order energy density perturbation 6(") = p(") /(%) can be
calculated in terms of these scalar perturbations. And 6(*) can affect primordial black
hole (PBH) formation [35,36] and the large-scale structure (LSS) of the universe [37,38].
Higher-order induced vector perturbations can also affect many cosmological observa-
tions [5,39-48], such as redshift-space distortions [42] and weak lensing [45-47].

The source terms of high-order induced perturbations originate from the primordial
perturbations generated during inflation. Since vector perturbations decay as 1/a% [39],
we typically neglect primordial vector perturbations. At large scales (>1 Mpc), the ampli-
tude of a primordial scalar perturbation A; is constrained by observations of the cosmic
microwave background (CMB) and large-scale structures to be about A; ~ 279, For primor-
dial tensor perturbations at large scales (>1 Mpc), the tensor-to-scalar ratio (r = A,/ A¢) is
constrained to be less than 0.06 [49], where A}, is the amplitude of the primordial tensor
perturbation. Therefore, when studying higher-order induced perturbations at large scales
(>1 Mpc), primordial tensor perturbations can be neglected compared with primordial
scalar perturbations.

At small scales (<1 Mpc), the constraints of primordial scalar and tensor perturbations
are significantly weaker than those at large scales [50]. Over the past few years, primordial
scalar perturbations with large amplitude at small scales have been attracting a lot of
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interest. They are closely related to primordial black holes and scalar induced GWs [51-56].
In primordial tensor perturbations at small scales, their amplitude could also be much
larger than it is at large scales. Large primordial tensor perturbations at small scales
can be realized using many models of early universe, such as G2-inflation [57], spectator
field [58], and so on [35]. Recently, the power spectra of second-order tensor perturbations
induced by primordial scalar and tensor perturbations with large amplitudes were studied
in Refs. [17,59-61]. They considered the log-normal primordial scalar and tensor power
spectra at small scales and found that primordial tensor perturbations have a very important
effect on second-order induced tensor perturbations.

Second-order induced scalar and energy density perturbations have been studied
for many years [32-38,62]. However, a complete study of second-order induced scalar
perturbations has not been presented. The importance of scalar-tensor coupling source
term S; ~ ¢h has been neglected in previous studies. In this paper, we consider the
second-order energy density perturbation induced by primordial curvature and tensor
perturbations during the RD era systematically. Second-order scalar perturbations can be
generated by scalar—scalar, scalar—tensor, and tensor—tensor coupling source terms &1 ~ ¢¢@,

Sy ~ ¢h, and S3 ~ hh. A second-order energy density perturbation P(gz) can be calculated
in terms of these second-order induced scalar perturbations. The explicit expressions of
second-order scalar and energy density perturbations are presented in this work.

This paper is organized as follows: In Section 2, second-order scalar perturbations
are studied. The explicit expressions of the second-order power spectra are presented.
In Section 3, we investigate the second-order power spectrum in terms of monochromatic
primordial power spectra. 775(2) induced by log-normal primordial power spectra are stud-
ied in Section 4. The conclusions and discussions are summarized in Section 5.

2. Second-Order Scalar Perturbations

In this section, we study the equations of motion and the kernel functions of the second-
order scalar perturbations induced by primordial curvature and tensor perturbations in the
RD era.

2.1. Equation of Motion
The perturbed metric in the flat FRW spacetime with Newtonian gauge is given by

ds? = 22 [ _ (1 + 24)(1) + 4)(2))(;1;72 4 ((1 — 21/1(1) — 1/;(2)>(5ij + hl(jl))dxidxj‘| , (1)

ny
the first-order tensor perturbation. Here, we neglect the first-order vector perturbation,
since the vector modes decay as 1/4? after they leave the Hubble horizon during infla-
tion. We use the xPand package to study the perturbations of the Einstein equation, as
xPand package can help us to obtain and simplify the equations of motion of cosmologi-
cal perturbations [63]. The equations of motion of second-order scalar perturbations are
given by

where ¢(") and ¥(") (n = 1,2) are first-order and second-order scalar perturbations, is

1 nin1ai L
v2 _ @ = a1 <a AT — ZTJ)Sij(x,q) , 2)
5 1 1
¥ +3Hay¥® — cAY® 130, 0@ + JA0® = — TS (x 1), 3)

where T = §' — 9'A~19/ is the transverse operator. During the RD era, the conformal
Hubble parameter can be expressed as H = 1/#. For convenience, we use the symbols

¢V = ¢ and hl(jl) = h;j. As shown in Figure 1, source term S;j(x, 17) is composed of three
parts: Sl']' (X, 77) = 81']',1 + Sj]',Z + S,‘j,g.



Universe 2024, 10, 39

30f16

1 (1 /\ 1
o0, o0, @

k2 k2 /
PP - PP -, P& -
-« % \
. »

A1) A ,(1)

@ (b) (0)

Figure 1. Source term §;;; is composed of the first-order scalar perturbation; source term S;;; is
composed of the product of the first-order scalar perturbation and the first-order tensor perturbation;
and source term S;; 3 is composed of the first-order tensor perturbation. (a) Sjj1 ~ qb(l) gb(l) ; (b) Sija ~

WM ); (o) Sija ~ O pA )
The explicit expressions of the source terms are given in Appendix A. By substituting

Equation (2) into Equation (3), we obtain the equation of motion of second-order scalar
perturbation ¥ in the RD era:

2 (2 4 2 1 2
2¥> 4 53,7‘14 T

1, _ i —1ni 1
= —5T7s;j— 24 1<E)]A ol — 7'”)( A+178 )Sij(x,n)

1 .. . 1 . . (4)
_ (_27'1] _ (a]Alal _ 27'1]> —2A! (aJAlal Tf> ) Sij(x, 1)
- <af'Alai +2A71 (aJA 19— >;7 > Z Sija(x,77)

2.2. Kernel Functions

In order to solve the equation of motion of second-order scalar perturbations, we
rewrite Equation (4) in momentum space as

K2

3
(2)"” 9@ (1 ) (k
¥ (k,ﬂ)+17‘1’ (k,77) + 3‘{’ ; (5)

where

. .. Kiki 3kik AW
Sa(k' 77) = ,Dll;)gij,u(k/ ’7) ’ IDZ = _< k2 - (k4 — k2) xax) . (6)

Here, we have defined x = k1. The explicit expressions of Sj;,(k,7)(a = 1,2,3) are given
in Appendix A. By substituting Equations (A4)-(A6) into Equation (6), we obtain the
expressions of S;(k, 77):

By, 4

S = D Sl], /Wk f](urvrx)ggk—pgp/ (7)
’ 2

S = DiSis= | ——b k1 (u,0,%) 50 php! (8)
¥ (27 )3/2 3

S3 = Diljfsifﬁ:/(Z )’Z/zk2 AlM(”’U’ﬂhﬁl—l)h%z’ ©)

where A1 and A; are the polarization indices and the spatial indices of S;j,(a = 1,2,3) are
contracted. By substituting Equations (7)—(9) into Equation (5), we solve Equation (5) using
the Green’s function method:
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¥ =Y v?, (a=1,23), (10)
a=1
where
3
@) d°p 4
‘Y1 - /(27_[)3/2 Il(urvrx)ggk—pgp/ (11)
3
@ _ p 2 2 A
‘YZ — /W121<u,v,x)§gk,phpl 7 (12)
@ Bp A A
¥ = / gy R b (13)

In Equations (11)—(13), the kernel functions I,(u, v, x)(a = 1,2,3) are defined as
N N2
h=| dx@) {
g :/Ox df(i)z{ f[ (x/\f)y1(x/f)fjl(x/\f)m(X/f)]} Y(u,0,%), (14)
0 = [ as(2) L [ AV e V)] LA

16/ VB 2/ VB) = 5/ e/ V3] L0,

Rl %‘ =i

At the end of this section, we calculate the kernel functions in Equation (14). We present
these three kinds of kernel functions (I,(# = 1,0 =1,x))*(a = 1,2,3) as functions of
x = ky in Figure 2.

100 i
1072
1074
a_10°°
=
10-8
107101 4
It
2
107121 I+t
3
T X X
1071 3
100 10! 102

i
Figure 2. Kernel functions I; (i = 1,2,3) in Equation (14). We have set u = v = 1.
As shown in Figure 2, kernel function I; is much larger than other kernel functions.

2.3. Initial Second-Order Perturbation

As we mentioned in Refs. [2,32], the contributions from the initial second-order per-
turbation also need to be considered. More precisely, second-order scalar perturbations
are composed of two parts, the second-order scalar perturbations induced by the primor-
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dial perturbations and the initial second-order perturbation. The second-order curvature
perturbation in the Newtonian gauge is given by [2]

H sp0 1 1, oy
{0 = lép@ - Ff(o),ép“)] — b+ 387V (15)

where

— H 5P(1)2 59(1)/ 1 2 1 1
Xijep = —2—y; [27'[( o1 | T o sp" 9ij — p(oﬁaiép( )aj‘SP( )

0
P a (16)
op (W, 4 L0y MWyg, o L0
+4 -2 K—‘I’ S+ 5hy" )+ 2m (=¥ We; + Sh )

H sp)2 sp 2

ko P P 1 ks (1 1

Xopk = —6—557 [Z%< O] ) 0y o~ 02° opMoyspt
P P P P a7
(0 2k 2k '

In the superhorizon limit (ky < 1), the second-order curvature perturbation can be approx-
imated as

) 9@ o) L2 040
4 (k,iy)_{ Y (k,17)—|—45 85 A 4
sOpE 50y -25..K Vil (18)
—k - : Ty (ki)
4 4 ’
where
—6H (HoD MW L2ApM
s 90 _ ( Y ) v _op) — _dr) (19)
0 3H2 3

We assume local-type non-Gaussianity here, which is parametrized as {(?) = 2ayy (V)

in the superhorizon limit, and any, = 1 for Gaussian perturbations [64-66]. By substituting
the condition of local-type non-Gaussianity into Equation (18), we obtain the contributions
from the initial second-order perturbation:

@)y L(3KK 6T\ d*p 4 28
Fin (k)_3<k4_k2 Sit [ G ((~3mat 37 ) Bt

2 i 2p'p/
2N (p)liph) 9’;’§eg<p>ckphg) .

(20)

After considering the effects of the initial second-order perturbation, second-order scalar
perturbation ¥(2) can be written as

2 3 2
¥ ) =¥ (k) + Y ¥, (a=1,23). (21)

a=1

We study the second-order scalar and density perturbations generated by the Gaussian
curvature and tensor perturbations. Therefore, we set any, = 1 in this paper.

2.4. Power Spectra

In this section, the power spectra of second-order scalar and density perturbations
are investigated. We assume that the two-point function (Jy, hﬁ2> =0 for arbitrary k; and
k; [17]. Therefore, we only need to consider three kinds of four-point functions. The explicit
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expressions of these four-point functions are given in Appendix C. The power spectra of
second-order scalar perturbation is defined as

(T )Y@ () = 5(k + K %2735,2) : (22)

By substituting Equations (11)—(13) into Equation (22), we obtain

3
2 2
(¥ v () = v 107 (1), 3)
i=1
where
5 2 dSP d3p/
(%Y (1)) = /W(m)m Lk = plp )k (K =9/l )
x ﬁ<€k7p§PCk’7p’Cp’> ’ (24)
2 2 d3p d3p X
(¥ (¥ (k) = /WW Yk =plpm)L (K —p',pn)
4
X 5 (G php Gy} 25)
2 2 a3 a3 /\ A AAL
¥ ¥ (k) = /ﬁﬁ B (k= pl,p ) (K~ 'L, p' )
Mo A2 Ay
x (b hp h ph) (26)
The corresponding Feynman diagrams of these three kinds of two-point functions are given
in Figure 3.
e B A
-P -P -P
1/)1((2)””{ :\r*” vie! wﬂz)*?@ﬂ%‘ Ve ’lbf)*ii:é* Ve
¢ o h
-P -pP -P
@ (b) (0)

Figure 3. The Feynman diagrams of three kinds of two-point functions. (a) 731(2> ~ <‘I’§2) (k)‘f'%2> (K'));
®) P ~ (¥ (1) ¥ (K)); () P ~ (5 (k) ¥ (1))

By substituting Equations (A15)—(A17) into Equations (24)—-(26), we obtain the explicit
expressions of the power spectra:

PR — P 4P 1 PP, @
where
@ [1+0] du
P = / / . vzuz (u, v, x)Pr(uk)Pg(vk)
% 871[11(“(/ P'l.p')l ’:*p+Il(|k/_p/"P/’”Hp’:pfk} K-k @8)
[1+o] gy ,
2 _ A MA
Pto= E/o / o omal wox)et 1Py (uk) Py (vk)
4 A
(K~ L) [P (29)
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[142| du A
= e [ 0, 0Py k) o)
A Al
[5)\1/\15)\2/\11 2(|k' . P/‘,P//U) |p/__
)\ AL
MMM (1K = p!), ) |p/:p—k] . (30)

5@ —

In Equations (28)—(30), the substitutions of k' and p’ come from the three-dimensional delta
functions in the Wick’s expansions of four-point functions. Since we have assumed that
the two-point function (j, h{(\2> = 0, three kinds of source terms in Equations (A1)—(A3)

are decoupled. More precisely, the two-point functions (‘I’Ez) (k)‘f}z)(k’ )) = 0ifi #j.
As shown in Equations (28)—(30), the power spectra of second-order scalar perturbations
are composed of three parts, which come from source terms Sy ~ ¢¢, So ~ ¢h, and Sz ~ hh,
respectively.

The energy density perturbation can be calculated as

sp? 1 200 (1l i 4 2 52 By (2) 1
PO Hh (W4 8HIT) + 67 (—4¢? + @) + 6HF D) + 4HDP
. , 1 ..
+20;0'9'¢’ + H? (—2 (3<p’2 + 8pAp + AY?) +29,00'¢p + Sh' (—0:0,¢ + Ahij)> (31)
1 1,1l
+ (20115 — 30;hi)

(2)

The power spectrum of second-order energy density perturbation P;™ is defined by

(6@ (1)5? (1)) = 6 (k + k’) ddl 5( ), (32)

where the energy density (6 (2)y can be calculated in terms of Equation (21) and Equation (31).

3. Monochromatic Primordial Power Spectra

As mentioned, the constraints of primordial curvature and tensor perturbations at
small scales are significantly weaker than those at large scales; the tensor-to-scalar ratio (r)
can be very large at small scales. Therefore, we start with a toy model of a é-peak. In this
case, the primordial scalar and tensor perturbations are very large at small scale. Since
we consider the second-order scalar and density perturbations generated by the Gaussian
curvature and tensor perturbations, we have set an;, = 1 in Equation (20).

3.1. Monochromatic Primordial Power Spectra with the Same k.

We consider monochromatic primordial power spectra, namely,
Pr = Agkzd(k—kg) , Py = Apknid(k — ki) , kg = kpue = ki, (33)

where k, is the wavenumber at which the power spectrum has a J-function peak. In Figure 4,
we plot the three kinds of power spectra for second-order perturbations ®2), ¥(2), and 6(2).

Here, we use the symbols 731(2), 73(2), and 73352) to represent the contributions of source terms
S1 ~ ¢¢p, So ~ ¢h, and Sz ~ hh, respectively. As shown in Figure 4, for tensor-to-scalar
ratior = A,/ A; = 1, the second-order perturbations sourced by S; ~ ¢¢ dominate the
total power spectra of ®2) ¥(2) and 52,

In order to study the effects of the large tensor-to-scalar ratio (r = Aj /A7) at small
scales, we calculate the total power spectra of @2, ¥(2) and 6@ for different r = A/ Ag.
In Figure 5, the total power spectra of second-order scalar perturbations for different r are
presented. For tensor-to-scalar ratio r < 1, the effects of primordial tensor perturbations
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become negligible, and the total power spectra 77(2), 7715,2), and P{gz) reduce to the results in
Ref. [32]. For r > 1 at small scales, the effects of primordial tensor perturbations become
obvious, and the total power spectra reduce to the results in Refs. [35,37,38].

o PR PR

10°!

1073

0%

1077

PO /A2

1079

101

101

Figure 4. The three kinds of power spectra 73052) (a = 1,2,3) for second-order perturbations d>(2), ‘I’(z),
and 5. Power spectra 731(2), 732(2), and Péz) come from source terms S; ~ ¢, Sp ~ ¢h, and S3 ~ hh,
respectively. We have set tensor-to-scalar ratio r = Ay, /A; = 1 and x. = k, = 100.

P PR P

1077

k/k* k/k* k/k*

Figure 5. The total power spectra of second-order perturbations ®2), ¥(2), and 6(2) for different
tensor-to-scalar ratios r = A,/ A;. We have set x. = k. = 100.

3.2. Monochromatic Primordial Power Spectra with Different k.
The monochromatic primordial power spectra with different k, can be written as

Pr = Ackrd(k— k) , Py = Apkpa6(k — ki), kg = ki # Ky - (34)

In Figure 6, we plot the three kinds of power spectra 73,1(2) (a =1,2,3) in Equations (28)-(30)
for second-order energy density perturbation ¢ @) = 602 /p(0) with different ky,.

As shown in Figure 6, for ky, # k., the behaviors of power spectrum 732(2> sourced by
&> ~ ¢h are different from the case of k. /kz, = 1. More precisely, for kj,./kz. =n > 1,

the domain of definition of 772(2) is [(n — 1)k/k+, (n + 1)k/k.]. For ky, /kz,. = n > 1, power
spectrum Pz(z) becomes a small peak near n x k/k,. In this case, the contributions of power

spectrum 732(2) can be neglected. And for k. /k;, = n < 1, the domain of definition of
732(2) is [(1 —n)k/ky, (14 n)k/k,]. For kpi/ kg = n < 1, power spectrum 732(2) sourced by

Sy ~ ¢h becomes a large peak near k/ki.
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ke /kee = 0.1

knefhey = 1 Fne/ke. = 10

10°

10*

w107

/A2

(2)
5

10°

10° 4 10° 4

=
—_— Pf)

104

1024

10°4

10724

10744

10-64

109

k/k*

r=0.1

1072 107! 10" 10
Bk k/k*

Figure 6. The power spectra 7?;2) (a = 1,2,3) for second-order energy density perturbation ¢(2)
with ky,, / ké* = 0.1, kp./ ké* =1,and ky,./ kg* = 10, respectively. We have set tensor-to-scalar ratio
r=Ap/A; =10, kz = ks, and x, = k.y = 100.

As shown in Figure 7, for kj,, /kz. = 0.1, power spectrum 732(2) can be larger than 771(2)
sourced by &1 ~ ¢¢, even in the case of r = 0.1. Note that the contributions of source
term Sy ~ ¢h in Equation (A2) are completely neglected in previous studies [32,35,37].
Here, we point out that the contributions of source term S, ~ ¢h are very important for
the monochromatic primordial power spectra with k., /kz, < 1.

r=1 r =10

10°
P

JR— P(,',)
10* p2
— P

10*

1072

100 100
7—"‘('” sz)
P_!'” 77._52)

(2)
10t Py

10-%

/K

10 0% 102 e 10" 10° 10-* 102 Wi 107!
Figure 7. The power spectra 7752) (a = 1,2,3) for second-order energy density perturbation 6(2) with
r=0.1,r =1,and r = 10, respectively. We have setn = kh*/kg* =01, kg* = ky, and x, = k. = 100.

4. Log-Normal Primordial Power Spectra

Since monochromatic primordial power spectra have infinitesimal width, it is neces-
sary to consider a more realistic model, such as log-normal primordial power spectra. We
consider the log-normal power spectra for primordial scalar and tensor perturbations. Here,
we concentrated on the effects of source term S, ~ ¢h and the corresponding second-order

power spectra, 732(2). The log-normal primordial power spectra are given by

(R (R

Pr = ex — p = ——eX —
¢ \/2mo? P 202 ! /2102 P 207

Here, we concentrate on the large peak of 732(2) with k. /kz, < 1. As mentioned in

Section 3.2, for ky, /kz, = n < 1, power spectrum 772(2) sourced by S ~ ¢h has a large

peak near k/k.. For the log-normal primordial power spectra, we calculate the power
spectra of second-order density perturbation & (2) with kp«/kz« = 0.1. As shown in Figure 8,
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PR /A2

106

10!

10?

100

102

104

(2)

for log-normal primordial power spectra, the peak of P,” becomes larger during the
process of ;. — 0.

106
— 0. —0
o, =0.1
1024 —— o0, =0.5

104 .

10[) .

10—2 -

Py A2

10—4 .

10—6 -

10—8 -

10-10 - T T T
1073 1072 101 100 10!

k/k*

Figure 8. Power spectra 732(2) sourced by S, ~ ¢h for second-order energy density perturbation §(2)

with r = 0.1. We have set n = ky,. /kz, = 0.1 and x. = k.77 = 100.

For comparison, we plot 731(2) and 732(2) for second-order density perturbation 6() with
tensor-to-scalar ratio » = 0.1 in Figure 9. The figure shows that the contributions of 772(2)
become smaller when o, increases. Namely, the effects of source term S, ~ ¢h become

more obvious when o, and n become smaller.

o, = 0.1 0. = 0.5

106

— pP?

1 (2
10— p
10?

100

0%

104

10°¢

108

107"

I
10-*

o
10! 10 10! 10-* 10°% 10! 100 10!
k/k* k/k

Figure 9. Power spectra 731(2) and ’Pz(z) for second-order energy density perturbation 6(2) with r = 0.1

for different o... We have set n = kj,./kz, = 0.1 and x, = ks = 100.

5. Conclusions and Discussion

In this paper, we systematically studied second-order density perturbations induced by
primordial gravitational waves and primordial scalar perturbations. Since the constraints
of primordial curvature and tensor perturbations at small scales are significantly weaker
than those at large scales, we considered large tensor-to-scalar ratios (r) at small scales.
As shown in Figure 5, the effects of primordial tensor perturbations become obvious for
r > 1. For tensor-to-scalar ratios r < 1, the effects of primordial tensor perturbations

become negligible, and our results of power spectra P2 , 15)2), and P{gz) reduce to the
previous results in Ref. [32].

We give the explicit expressions for the power spectra of primordial scalar and tensor
induced scalar and density perturbations in Equations (28)—(32). Specifically, for a given
primordial scalar and tensor power spectra, the power spectra of second-order induced
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scalar and density perturbations can be calculated using these equations. In this paper, we
considered the primordial power spectra following delta and log-normal at small scales. It
is essential to explore more general forms of primordial power spectra, such as log-normal
primordial scalar power spectra and power-law primordial tensor power spectra [67].
Moreover, the second-order induced density perturbations offer a window to under-
stand small-scale primordial gravitational waves and primordial curvature perturbations.
More precisely, primordial scalar and tensor power spectra can be calculated in terms of
a given inflation model. Using Equations (28)—(32), we can calculate the power spectra
of second-order induced scalar and energy density perturbations. The induced density
perturbations will affect many physical processes at small scales, such as the formation
of PBH [68] and high-order GW background [59]. By observing PBHs or higher-order
GWs, we can constrain the power spectra of second-order induced density perturbations,
thereby constraining inflationary models and the physical properties of primordial scalar
and gravitational waves at small scales. Related research might be given in future work.
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Appendix A. Source Terms

9i¢'djp  9ipd;p’  0i¢'0;9’

Sija(x,17) = 499;0;¢ + 0ipdjp — — 7 TR (—24Hgg’ AD
_ Y "o 1£ _ E b i /3 L Y
2(¢")" = 4p¢" — Z 9D — 090" + 370090 ¢ + 70,9/ |,
5
Si]',z(x, 17) = —h;;()b — 27‘”1;/47 + 10Hhi]‘47/ + 3]’11']‘4)// — (PAh,'j — ghi]‘A(l) + hj’aha@ A2

2
+ 19,0 — 20ph;;0"¢ + 3 pd;hjy + 0" POy, — 5ij§h”cacab¢ ,

1,y 1 1 1 1
Sija(x,1) = —Eh? My + Ehhcacabh,j — Ehbcz%a,‘h]-b - Ehbcacajhw - Eabhjca%f?
5

1 1 1 1
+ 5 0chpdhy + L il + Sh*Od by + 5 (12 "+ SH NG (A3)

+%h’”h{,c - %thAhbc + %achbdadhbc - ;adhbcadhb“> ,

where in Equations (A1)-(A3), we have defined d,¢ = ¢'. The source terms in momentum
space are given by
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3
Siji(k, 1) = — / (2[;);;/2 <4pip]-T¢(ux)T¢(vx) + ((k— p)ip]-) <T¢(ux)T¢(vx) — uxd(;lx)T(p(ux)T(P(vx)

d d d 24vk? ,
—vxT¢(ux)d(vx> Ty (vx) — vuxzd(ux) Tq,(ux)[MTq,(vx)) - (5ij<—zT¢(ux)T¢(vx)
- 2uvk2Tq§,(ux)Té,(vx) - 4vzk2T¢(ux)Té,’(vx) + L60’k” Ty (ux) Ty (vx) (A4)
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- Ty () Ty(03) ) ) 5o

K2(1 —u? — vz)uxT,
3 ¢

(ux)Tp(vx)

Ty (ux)Ty(vx) —

3
Siallon) = [ (zfr)’;/z (= (k= p)pi) e (p) T (w) Ti(0x) = (e = p)"py ) b (P) Ty (ux) Ty (o)

—((k = p)o(k = p))e” (P) Ty (wx) Ty (vx) = ((k = p)o(k — p);) € () Ty (ux) Ty (v)
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d 512k2 (A5)
+3u2k2d(ux)2 Ty (ux) Ty, (0x) + 0K Ty (ux) Ty, (vx) + Ty (ux) Ty, (vx)

+k? (1 . — uz) Ty (ux)Ty(vx) + mfcllgtjl(ic)T(P(ux)Th(vx))
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. 3
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2

+ eMbe(k — p)s;.\bz(p) pepiTy(ux) Ty (vx) + M (k — p)el? (p) pep; Ty (ux) Ty, (vx)
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ek ) (p) (k — p)op Ty (ux) T (03)
2 212
20 (e p)e () (401 ) i o2) + 0 T3 ) T 03)
2 2.2 201 _ 2 o2
+2U—I;Th(ux)T,;(vx) + %Th(ux)”[h(vx) + k(lzv)Th(ux)Th(vx)>

1 a A
— 38 (k —p)e*"(p) (k- p)cPdTh(ux)Th(vx)) ) by php”
In Equations (A4)-(A6), we have defined |k — p| = ulk| = uk and p = |p| = vk. The

explicit expressions of polarization tensor e'1// (p) are given in Appendix B. The first-order
scalar and tensor perturbations in Equations (A4)—(A6) have been written as

YO1K) = 91,1 = S0Ty(kn) , 1 (1,1) = BTy (k) (A7)

where (i and hy are the primordial curvature and tensor perturbations, respectively.
The transfer functions Ty (kr) and Tj,(k77) in the RD era are given by [32]
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Appendix B. Polarization Tensor
The polarization tensor is defined as
1 _ _
€i§<k) = \ﬁ(ei(k)ej(k) +ei(k)ej(k)) , (A9)
1 _ _
el (k) = \ﬁ(@(k)ej(k) —ei(k)ej(k)) (A10)

where (k;/|k|, e;(k),é;(k)) is the normalized bases in three-dimensional momentum space.
We study the polarization tensor for a given coordinate system, namely,

k = (0,0,k), e;(k) = (1,0,0), & (k) = (0,1,0) . (A11)

Then, polarization tensors E;\]-(k —p) and sg\j(p) can be written as

ek —p) = 5
1
2
1

e (k—p) = —=(ei(k —p)ej(k—p) —¢(k —p)gj(k —p)) ,
(A12)
£} (p) = —= (e (P (p) +&i(P)es(p)
e} (1) = = (ex(p)ej(p) ~ x(p)ei(p)

where

1 1
k—p= k<\/v2 - 4(u2+v2+1)2,o,2(u2v2+1)> )

w2 —024+1  V=ut+2u202 +2u2 — v+ 202 -1 (A13)
ei(k - P) = rOr 7
2u 2u

ei(k—p) = (0,1,0),
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ei(p) = | - 20 0, 20 !

&(p) = (0,1,0).

Appendix C. Four-Point Function

(G plplie-p o ) = (G plio—p ) (Cplp ) + (T plp ) (Tplie—pr)

(2 2)2 (A15)
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