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Abstract: A viable radiation-dominated era in the early universe is best described by the standard
(FLRW) model of cosmology. In this short review, we demonstrate reconstruction of the forms of
F(R) in the modified theory of gravity and the metric compatible F(T) together with the symmetric
F(Q) in alternative teleparallel theories of gravity, from different perspectives, primarily rendering
emphasis on a viable FLRW radiation era. Inflation has also been studied for a particular choice of
the scalar potential. The inflationary parameters are found to agree appreciably with the recently
released observational data.
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1. Introduction

Luminosity versus red-shift data curve associated with SN1a standard candles requires
a modification of the FLRW universe at the late stage of cosmic evolution. On the other hand,
the early vacuum-dominated era requires to incorporate a stage of very rapid growth of the
universe (Inflation) in order to alleviate the flatness, the horizon and the structure formation
problems associated with the standard model of cosmology. However, the radiation-
dominated era and the early matter-dominated era are best described by the standard
model of cosmology. In this connection, let us mention that the FLRW universe, or the
FLRW model, stands for the standard model of cosmology and must not be confused
with the ‘FLRW metric’. In fact, based on the cosmological principle (homogeneity and
isotropy), Friedman in 1922 and Lemaître in 1927 independently showed that a universe
filled with perfect barotropic fluid undergoes decelerated expansion (a ∝

√
t in the radiation

era and a ∝ t(2/3) in the matter-dominated era, where a(t) is the scale factor). Later,
Robertson (1935, 1936) and Walker (1936) independently demonstrated that the metric used
by Friedmann and Lemaître provides the most general Riemannian geometry compatible
with homogeneity and isotropy. After Hubble’s discovery in 1930 along with Eddington’s
proof (1931) that the static universe with a positive cosmological constant (Λ) is unstable,
Einstein withdrew Λ and agreed that the universe is expanding. Since then, it is dubbed
as the standard model of cosmology or the FLRW model. However, for the reason stated
above, the metric which was commonly known as Robertson–Walker metric, currently
called as FLRW metric. Note that the metric and the model are different. In the background
of the FLRW metric, if the energy momentum tensor is modified by considering any other
type of fluid (dissipative, scalar field or even a cosmological constant), it is different from
the FLRW model.

Since on the one hand, the theoretical estimation of the cosmological constant (the
sum of zero point energy of all quantum fields existed in the early universe) is 10120 orders
of magnitude larger than the value required to solve the cosmic puzzle (late-stage of accel-
erated expansion), and on the other, no trace of dark energy is observed after performing
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precession experiments [1], the bulk of recent research is therefore oriented in search of
alternatives. Consequently, a host of modified theories of gravity have been proposed in
recent years as alternatives to the dark energy. However, considering the fact that, apart
from the violation of superposition principle, the modified F(R) theories, being associated
with higher derivative terms, sometimes run from Ostrogradsky’s instability [2]; alternative
theories of gravity, commonly known as teleparallel theories, are currently in the limelight.

Curvature is the trait of (and attributed to) the ‘general theory of relativity’ (GTR),
where the torsion-less Levi-Civita connection is used. The minimal modified version of
GTR is the so called F(R) theory of gravity. Alternatively, it is possible to ascribe gravity to
torsion, by using the curvature-less (Rα

βµν = 0) Weitzenböck connection. Since ∇µgαβ = 0,
where ∇ is the covariant derivative with respect to the affine connection instead of the
Levi-Civita connection, it is often referred to as metric (compatible) teleparallel gravity.
Its extended version is the F(T) theory of gravity, where T is the quadratic torsion scalar
constructed from the torsion tensor. Yet another class of gravity theory exists, by the name
symmetric teleparallel gravity. It is constructed from the curvature-less (Rα

βµν = 0) and
torsion-less (Tλ

µν = 0) general affine connection, which is symmetric in lower indices. It
is a generalized version of the F(Q) gravity theory, where Q stands for the quadratic non-
metricity scalar constructed from the non-metricity tensor (Qλµν = ∇λgµν). Clearly, in these
so-called teleparallel theories of gravity, the affine connection is independent of the metric
tensor, and so these are essentially the metric-affine theories, where both the metric and the
connection act as dynamical variables. In the first order, both the teleparallel theories end
up with GTR apart from a total derivative term and are dubbed as ‘Teleparallel Equivalent
of General Relativity’ (TEGR) and ‘Symmetric Teleparallel Equivalent of General Relativity’
(STEGR), respectively. However, their extended versions deviate considerably from GTR
and its modified versions F(R) or else, particularly giving second-order differential field
equations, thus avoiding Ostrogradsky’s instability. However, the F(T) gravity theory is
endured with a serious pathology of non-invariance under local Lorentz transformations
of the tetrad field. It may be stated that Lorentz symmetry is the only known fundamental
physical symmetry. A lack of Lorentz invariance requires preferred frames to parallelize
the spacetime, implying the existence of extra degrees of freedom (dof) compared to GTR.
The canonical formulation of the singular action of F(T) gravity theory requires constraint
analysis. The extra dof appear due to the six first-class constraints associated with the
theory [3,4]. Recent investigation suggests that the number of extra dofs is one [5–7]. Next,
is the problem endured with strong coupling issue. This appears due to the fact that some of
the genuine physical degrees of freedom lose their kinetic term at the quadratic order and,
consequently, the standard perturbation theory breaks down on these backgrounds [8,9].
Under these circumstances, the extended version of symmetric teleparallel F(Q) gravity
theory, apparently being free from such problems [10], attracted lot of attention in the recent
years. Nonetheless, it is to be mentioned that, as long as the cosmic puzzle is not being
resolved unambiguously, focus on different modified and alternative theories of gravity
will persist.

Whatever the theory might be, whenever an arbitrary functional form like F(R), F(T)
or F(Q) is retained in the action, it becomes mandatory to expatiate such functional forms
in view of some additional physically viable conditions. Two possibilities have largely
been explored so far. One is to invoke the presence of dynamical (Noether) symmetry,
while the other is to follow the reconstruction program. Both have come out with certain
specific functional forms in all the cases. Additionally, some forms are also chosen by hand
(on some physical ground). Most of these claim to associate early inflation in the vacuum
era together with late-time accelerated expansion in the current matter-dominated era.
The important point to be noted is that the cosmic evolution in the radiation-dominated
era is not studied in general, as if the universe jumped from the early inflationary stage to
the late stage of the matter-dominated era. On the contrary, a viable radiation-dominated
era which can explain the standard Big-Bang Nucleosynthesis (BBN), accounts for the
observed structure formation and the formation of CMBR, and is best described by the
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standard (FLRW) model of cosmology. This manuscript is devoted to reconstructing all
three different forms for the gravity theories with curvature [F(R)] and torsion [F(T)],
as well as non-metricity [F(Q)] of different extended theories of gravity in view of a viable
radiation-dominated era.

In Section 2, we briefly review the three above-mentioned pillars of gravity theory.
In Section 3, we follow the reconstruction program as mentioned, to explore the forms of
F(R), and F(T) gravity theories, primarily in view of a viable Friedmann-like radiation-
dominated era. The form of F(T) is also known from the Noether symmetry consideration,
which is different from the form obtained here. We, therefore, have studied the energy
conditions and inflation, taking into account different forms of F(T) so obtained. Since
F(Q) gravity in a coincident gauge is no different from F(T) in the present context, all the
results obtained for the F(T) theory hold as well in the F(Q) theory of gravity. Yet another
largely developed theory of gravity, the so called Palatini formalism, has been discussed
briefly at the end of Section 3. Finally, we conclude in Section 4.

2. The Three Pillars of Gravitation

The building block of gravitation is the general affine connection Γα
µν, which is

constructed from the Levi-Civita connection ({µ
α

ν}), the contorsion tensor (Kα
µν) and the

disformation tensor (Lα
µν) as

Γα
µν = {µ

α
ν}+ Kα

µν + Lα
µν, (1)

where

{µ
α

ν} =
1
2

gαλ
(

gµλ,ν + gνλ,µ − gµν,λ
)
,

Kα
µν =

1
2

gαλ
(
Tλµν − Tµλν − Tνλµ

)
,

Lα
µν =

1
2

gαλ
(
Qλµν − Qµλν − Qνλµ

)
.

(2)

while the Levi-Civita connection is formed from the derivatives of the metric, and the con-
torsion tensor, being the difference between the connections with and without torsion, is
again equivalent to the difference between the Weitzenböck (Γλ

aµ = eaλ∂µeaν, where ea
µ

are the components of the orthonormal basis vectors of the tetrad field, commonly called
the vielbein (or vierbein) field, to be more specific. Here, Latin indices stands for Lorentz
indices, while Greek indices stand for space time. Since both run from 0 to 3, we shall omit
using Latin indices in the following.)1 and the Levi-Civita connections, which are formed
from the torsion tensor as

Tα
µν = ∂µeα

ν − ∂νeα
µ = Γα

[µ,ν] = Γα
µν − Γα

νµ, (3)

and, finally, the disformation tensor is constructed from the non-metricity tensor
Qαµν = ∇αgµν ̸= 0 as

Qαµν = ∇αgµν = gµν,α − Γλ
µαgλν − Γλ

ναgµλ. (4)

Einstein’s GTR is built from the non-vanishing Riemann tensor formed from the
Levi-Civita connection,

Rα
βµν = ∂µ{ν

α
β} − ∂ν{µ

α
β}+ {µ

α
λ}{ν

λ
β} − {ν

α
λ}{µ

λ
β}, (5)

the simple reason being that the Levi-Civita connections are the unique affine torsion-free
connections on the tangent bundle of a manifold that preserves the Riemannian metric
gµν

;ν = 0. So, once a metric is specified, the unique non-vanishing components of the
Riemann tensor are found from the Levi-Civita connections or Christoffel symbols, to be
specific2 (79). The above relation (79) is contracted to find the Ricci tensor (Rµν) and, under
further contraction, results in the Ricci scalar (R),

while the Einstein–Hilbert action for GTR is constructed from the Ricci scalar, the so
called modified theory of gravity is constructed from F(R) as
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A =
∫ [

F(R)
√
−g d4x

]
+ Sm, (6)

with Sm being the matter action. The field equations corresponding to the action (6) may
be expressed as

F′(R)Rµν −
1
2

F(R)gµν −∇µ∇νF′(R) + gµν□F′(R) = κTµν. (7)

In the above, □F′(R) = F;µ
;µ = 1√−g ∂µ(

√−g gµν∂νF′), where the semicolon stands
for the covariant derivative, and κ = 8πG. It is noteworthy that the F(R) theory of gravity,
under weak field approximation, leads to the ‘GTR’ [11,12]. However, once flatness is
assumed, the curvature vanishes and the orientation of vectors remain unaltered under
parallel transport along a curve, and the geometry is teleparallel. The condition for torsion-
based teleparallelism is R̄α

βµν = 0 = R̃α
βµν, where over-bar and over-tilde stand for the

Riemann curvature formed from the Weitzenböck connections and connections associated
with the non-metricity tensor, respectively. The role of R is played by the torsion scalar T
and the action for generalized gravity theory with torsion [13] may be expressed as

A =
∫

|e|F(T)d4x + Sm, (8)

where |e| = det ei
µ =

√−g, ei
µ are the components of the vierbien field ei(xµ) = eµ

i ∂µ.

The metric tensor is obtained from the dual vierbein as gµν(x) = ηijei
µ(x)ej

ν(x). The role of
the Ricci scalar (R) in the Einstein–Hilbert action is played in the metric teleparallel theory
by the torsion scalar (T), which is found from the torsion tensor

Tρ
µν ≡ eρ

i[∂µei
ν − ∂νei

µ], (9)

as
T = Sρ

µνTρ
µν, where, Sρ

µν =
1
2

(
Kρ

µν + ∂
µ
ρ Tα

αν − ∂ν
ρTα

αµ
)

, (10)

which is called the super-potential, and the affine connection takes the Weitzenböck form,

Γα
µν = eα

λ∂νeλ
µ. (11)

The above action (8) leads to the following field equations for F(T) gravity:

e−1∂µ(eSµν
i )F,T − eλ

i Tρ
µλSνµ

ρ F,T + Sµν
i ∂µ(F(T))F,TT +

1
4

eν
i F(T) =

1
4

eρ
i Tν

ρ , (12)

where Sµν
i = eρ

iSµν
ρ and F,T denotes differentiation with respect to T.

In symmetric teleparallel gravity, on the contrary, the role of Ricci scalar is played by
the non-metricity scalar (Q), and again the generalized action is given by

A =
∫

F(Q)
√
−gd4x + Sm, (13)

where

Qαµν =
∂gµν

∂xα
− Γβ

αµgβν − Γβ
ανgµβ;

Qα = gµνQαµν = Qαν
ν; Q̂α = gµνQµαν = Qνα

ν;

Q = −1
4

QαµνQαµν +
1
2

QαµνQµνα +
1
4

QµQµ − 1
2

QµQ̂µ.

(14)

Varying the above action (13) with respect to the metric tensor gµν and the connection,
the following field equations are obtained:

2√−g
∇λ(

√
−gFQPλ

µν) +
1
2

Fgµν + FQ(PνρσQµ
ρσ − 2PρσµQρσ

ν) = −κTµν, (15)
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∇µ∇ν

(√
−gF,QPµν

λ

)
= 0, (16)

where

Pα
µν =

1
2

Q α
(µ ν) −

1
4

Qα
µν +

1
4
(Qα − Q̂α)gµν −

1
4

δα
(µQν) (17)

is called the non-metricity conjugate tensor. In the above, we have used the first bracket in
the suffix to denote symmetrization of indices. The covariant formulation [14] of the field
Equation (15) is

F,QGµν +
1
2

gµν(QF,Q − F(Q)) + 2F,QQ∇λQPλ
µν = −κTµν (18)

where Gµν = Rµν − 1
2 gµνR, which corresponds to the Levi-Civita connection, and F,Q stands

for the derivative of F(Q) with respect to Q.
Having briefly discussed the three different ways attributed to the gravity, sometimes

dubbed as the ‘geometrical trinity of gravity’, we now proceed in the following section to
find the specific forms of F(R), F(T) and F(Q).

3. Reconstruction from the Radiation Era

As mentioned, the standard FLRW model of cosmology fits best in the radiation-
and early matter-dominated eras. In particular, a Friedmann-like radiation-dominated
era expedites the standard Big-Bang-Nucleosynthesis (BBN), accounts for the observed
structure formation (once the seeds of structure are given) and the Cosmic Microwave
Background Radiation (CMBR). Therefore, exploring suitable forms of different theories of
gravity in view of early Friedmann-like radiation era is supposed to be the best option. It
may be mentioned that the modified or generalized alternative theories of gravity might
admit Friedmann-like solutions, depending on their forms. For example, the first-order
Palatini theory of gravity and also the two telleparallel theories, viz. TEGR and STEGR,
are equivalent to GTR. As a result, Friedmann solutions automatically follows. We also
remind the reader that if modified gravity includes terms like F(R) = αR + βR2 + γRn

or others, so that R dominates in the middle, then Friedmann-like solutions result in
the radiation- as well as in the early matter-dominated eras. Nonetheless, modified and
alternative theories should be treated as viable only if these theories admit Friedmann-like
solutions in the radiation- and early matter-dominated eras. Therefore, in this article, we
restrict ourselves to the cosmological principle, considering the isotropic and homogeneous
Robertson–Walker (RW) space-time,

ds2 = −dt2 + a2(t)
[

dr2

1 − kr2 + r2(dθ2 + r2sin2θdϕ2)

]
, (19)

and explore the relevant forms of modified gravity theories comprised with the curvature
[F(R)], torsion [F(T)], as well as non-metricity [F(Q)].

3.1. F(R) Gravity

The Ricci scalar corresponding to the RW metric (19) is

R = 6
(

ä
a
+

ȧ2

a2 +
k
a2

)
. (20)

The point Lagrangian corresponding to the action (6) is given by [15]

LR = −6aȧ2F′ − 6a2 ȧṘF′′ + a3(F − RF′) + 6kaF′ + Lm, (21)

with Lm being the matter Lagrangian, comprised a barotropic fluid associated with the
thermodynamic pressure (p) and energy density (ρ) along with the cold dark matter (CDM).
The field equations are
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(
2

ä
a
+

ȧ2

a2 +
k
a2

)
F′ +

(
R̈ + 2

ȧ
a

Ṙ
)

F′′ + Ṙ2F′′′ +
1
2
(F − RF′) = −p,(

ȧ2

a2 +
k
a2

)
F′ +

ȧ
a

ṘF′′ +
1
6
(F − RF′) =

ρ

3
,

(22)

Adding the above pair of equations, one obtains,

2
(

ä
a
+

ȧ2

a2 +
k
a2

)
F′ +

(
3

ȧ
a

Ṙ + R̈
)

F′′ ++Ṙ2F′′′ +
2
3
(F − RF′) =

ρ

3
− p. (23)

Clearly, the radiation era (p = 1
3 ρ) does not evolve like standard (FLRW) model

(a ∝
√

t) for the spatially flat (k = 0) universe and, as such, a viable form of F(R) remains
obscure. For k ̸= 0, on the other hand, the differential equation cannot be solved, either
in the radiation or in the vacuum-dominated (ρ = 0 = p) era, other than the fact that,
for k = 0, the vacuum era admits a de-Sitter solution. On the contrary, it may be mentioned
that different forms of F(R) emerge in different eras, in view of the Noether symmetry [16].

Nonetheless, interesting results emerge from a generalized four-dimensional string
effective action associated with higher-order curvature invariant terms, being expressed in
the following form [17]:

A =
∫ [

f (ϕ)R + BF(R)− ω(ϕ)

ϕ
ϕ,µϕ

,µ − V(ϕ)− κLm

]√
−gd4x, (24)

where B is the coupling constant, f (ϕ) is the coupling parameter, ω(ϕ) is the variable
Brans–Dicke parameter, and Lm is the matter Lagrangian density. It had been revealed [17]
that the above action admits a conserved current Jµ = (3 f ′2 + 2 f ω

ϕ )
1
2 under the condition

B
[
RF,R + 3(F,R)

;α
;α − 2 f

]
=

κ

2
Tµ

µ , provided V = λ f 2, (25)

where λ is a constant. To perceive the very important role of such a conserved current,
a particular case was also studied [17]. For example, considering F(R) = R2, the condition
for the existence of conserved current (25) reads as

R;µ
;µ = □R =

(
R̈ + 3

ȧ
a

R
)
=

κ

12B
Tµ

µ . (26)

Now, if the scalar field (ϕ) is completely used up in the process of driving inflation and
reheating under particle creation then, since in the radiation-dominated era Tµ

µ = T =
ρ − 3p = 0, in view of (26), □R =

(
R̈ + 3 ȧ

a R
)
= 0. Further, since in the very early vacuum-

dominated era, sufficient inflation makes the universe spatially flat, i.e., k = 0, the above
Equation (26) admits a Friedmann-like solution, a = a0

√
t in the radiation-dominated era

as demonstrated in [17]. This is a unique result, since even in the presence of a higher-order
curvature, invariant-term Friedmann-like radiation era is admissible.

Finally, we consider pure curvature-induced gravity theory, a yet another generalized
form of F(R) action, considered in [18] being expressed as

A =
∫ [

αR + BR
3
2 + γR2 −Lm

]√
−gd4x. (27)

The above action was found more suitable to explain cosmic evolution right from the
very early stage to date, since it satisfies all the strong conditions necessary for a viable
F(R) theory of gravity. It may be mentioned that the R

3
2 term appeared as a consequence

of the Noether symmetry in the R-W metric, both in vacuum- as well as in the matter-
dominated eras [19–23]. At the initial stage, the R2 term dominates and a de-Sitter solution
is realizable. This leads to the inflationary epoch and reheating following the mechanism
of particle production via scalaron decay, exploiting gravity only without invoking phase
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transition [24,25]. After the reheating is over, the universe evolves as Friedmann-like
radiation (a ∝

√
t) and early matter (a ∝ t

2
3 )-dominated eras, and finally accelerated

expansion is realized due to the presence of the combination of linear term R and non-linear
term R

3
2 [21]. Further, following numerical analysis [18] taking deceleration parameter q

as a function of the red-shift parameter z, three distinct cases were analyzed to establish
the fact that, within a particular range of values for β and γ, the q versus z plot depicts
that the universe was in the pure radiation era at z > 3200. Thereafter, the deceleration
parameter falls off from the matter–radiation equality epoch to the decoupling epoch. It
falls even more sharply thereafter, and a Friedmann-type (q ≈ 0.5) matter-dominated era
is reached at around z ≈ 200. The deceleration parameter then starts increasing slowly,
and it is peaked to (q = 1), explaining re-ionization of the inter-galactic medium (IGM).
Subsequently, late time accelerated expansion is initiated and the phantom divide line is
crossed, to make a second transition out of it at z ≈ 0.5.

In a nutshell, higher-order gravity theory is a viable option to explain cosmological
evolution, from the early vacuum-dominated era to date, via a Friedmann-like radiation-
and early matter-dominated eras. Additionally, re-ionization of the IGM may also be
explained in the process. Inflation in the Starobinski model [24,25], with the R2 term, is
widely explored in the literature and, therefore, we leave it here.

3.2. Torsion-Based Metric F(T) Teleparallel Gravity

Although the modified F(R) theory of gravity seems to produce a viable theory
of gravity, the fact that the field equations are fourth-order means it is vulnerable to
Ostrogradsky’s instability and also suffers from the violation of the superposition principle.
This led us to consider alternative telleparallel theories of gravity, as already discussed.
The main virtue of telleparallel theory of gravity is that the field equations are second-order
as in the case of Lanczos–Lovelock gravity. Yet another possible fundamental motivation
for teleparallelism is that it was thought to account for the otherwise anomalous dimension
and, hence, non-renormalisability of the GTR action, providing a totally different approach
towards a ultra-violet completion of gravity. Here, we shall consider generalized metric
telleparallel gravity theory. In recent years, a generalized version of the ‘teleparallel gravity’
with torsion, namely the F(T) theory of gravity (where T stands for the torsion scalar),
also dubbed as generalized ‘gravity with torsion’, has been proposed as an alternative to
both the dark energy theories and the modified theories of gravity. Primarily, the F(T)
theory of gravity was proposed to drive inflation. Later, it was applied to drive the current
accelerated expansion of the present universe without considering dark energy [26,27]. It is
worth mentioning that ‘teleparallel equivalent of general relativity’ (TEGR) is established
for F(T) ∝ T, since dynamically it leads to GTR. Further, as demonstrated in [18], when
the trace of the electro-magnetic radiation field tensor (T = ρ − 3p) is zero, the contracted
GTR equation R ∝ T enforces the Ricci scalar to vanish (R = 0) and the Friedmann-like
decelerated expansion [a(t) ∝

√
t] results automatically in the radiation-dominated era.

This is true also in the case of modified theory of gravity, as demonstrated above. However,
in the case of torsion, although F(T) ∝ T leads to GTR, the trace of the energy–momentum
tensor T = 0 does not lead to the static solution T = 0. Therefore, even though all the results
of GTR hold, the pathology of discontinuous evolution of the Ricci scalar (large initially,
vanishing in the middle and small at present) is averted. However, unlike GTR and F(R)
theories, gravity with torsion is not generally covariant by default. Nonetheless, it has been
argued that it may be made so by introducing a new variable, viz. a spin-connection [13,28].
The reason being that the spin-connection enters the teleparallel action only as a surface
term, and does not contribute to the field equations.

Now, the components of the vierbein field for the RW metric (19) are expressed in
terms of the cosmological scale factor a(t) as

ei
µ = diag(1, a(t), a(t), a(t)), (28)

and the torsion scalar reads as [29]
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T = −6H2 +
6k
a2 , (29)

where H = ȧ
a is the Hubble parameter. Thus, the field Equations (12) for RW metric are

12H2F,T + F(T) = ρ, (30)

4
(

k
a2 + Ḣ

)[
12H2F,TT + F,T

]
− F(T)− 4F,T[2Ḣ + 3H2] = p, (31)

where ρ and p are the energy density and thermodynamic pressure of a barotropic fluid
(inclusive of dark matter component), respectively, and F,T stands for derivative of F(T)
with respect to T. Bianchi identity does not hold naturally in teleparallel gravity theories.
However, in the RW metric under consideration, it holds even for extended models such
as F(T) [29]. For example, taking the time derivative of the first Equation (30), and also
adding the the two (30) and (31), one obtains

ρ̇ = 12H2ṪF,TT + 24HḢF,T + ṪF,T

= −144H3ḢF,TT − 144kH3F,TT

a2 + 12HḢF,T − 12kHF,T

a2 ,

and (ρ + p) = 48ḢH2F,TT − 4ḢF,T +
48k
a2 H2F,TT +

4k
a2 F,T.

(32)

Combining the above two, one finds

ρ̇ + 3H(ρ + p) = 0, (33)

which is the energy–momentum conservation law, an outcome Bianchi identity. Thus, one
may also write

ρ = ρ0a−3(1+ω), (34)

for the barotropic equation of state p = ωρ, as usual, where ω is the state parameter.
Let us now proceed to find the form of F(T) for flat space (k = 0), already obtained

earlier in view of cosmological evolution [30]. First, combining Equations (30) and (31) for
flat space k = 0, one finds for the vacuum era (p = 0 = ρ),

Ḣ
[
12H2F,TT − F,T

]
= 0. (35)

Clearly, two possibilities emerge from Equation (35): (i) F = F0
√

T, where F0 is a
constant of integration. In view of this form of F(T), either of the field Equations (30) or (31)
yields simply the definition and, hence, no dynamic results. Indeed, it is expected, since
the above form of F(T) only results in a divergent term in the action. (ii) H = λ (where λ is
a constant), leading to the de-Sitter solution a = a0 exp(λt), while F(T) = F0 exp(− t

12Λ2 )
emerges as an exponentially decaying function, which is not very promising.

Since the vacuum-dominated era does not yield a reasonably viable form of F(T), let
us now advance further to study the radiation-dominated era. Starting from the action (8),
if a solution in the form a = a0tn is sought in the radiation-dominated era (p = 1

3 ρ),
for which the energy–momentum conservation law yields ρa4 = ρr0, where a0, n and ρr0
are constants, then the following form of F(T) is found [16]:

F(T)r = 2 f1
√
−6T +

ρr0

6a4
0(4n − 1)n4n(−6)2n−1

T2n, (36)

where f1 is a constant and the suffix r stands for the radiation-dominated era. Note that
the first term of the above equation is essentially a divergent term in the RW metric under
consideration. Thus, only the second term is left and, hence,

F(T)r =
ρr0

6a4
0(4n − 1)n4n(−6)2n−1

T2n. (37)
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It is quite apparent that under the choice n = 1
2 , the radiation era evolves exactly

like the standard (FLRW) model; however, the action too reduces to that of GTR, since
[F(T) ∝ T] (apart from a total derivative term), which is TEGR, as already mentioned. Of
course, n = 3

4 also leads to decelerated expansion, but such a slow deceleration suggests the
formation of CMBR at latter times than observed. Let us next focus on the matter-dominated
era (p = 0), for which the energy–momentum conservation law yields ρa3 = ρm0, where
ρm0 is a constant, and suffix m stands for the matter-dominated era. Proceeding in the
similar manner as before, one finds

F(T)m =
ρm0

3a3
0(3n − 1)n3n(−6)

3n
2 −1

T
3n
2 , (38)

where the suffix m stands for the matter-dominated era. Thus, for n = 2
3 , the matter-

dominated era evolves (a ∝ t
2
3 ) in the same manner as the standard (FLRW) model of

cosmology, and GTR is recovered through TEGR. However, it was also discussed in [16]
that when torsion is attributed to gravity, usually a form such as F(T) = f0T + f1T2 + · · ·
is chosen to combat early deceleration in the Friedmann form [a(t) ∝ t

2
3 ], followed by a

late-time cosmic acceleration in the matter (pressure-less dust)-dominated era. In view
of (36) and (38), it is clear that F(T) ∝ T gives an exactly Friedmann-like radiation-
dominated era [a(t) ∝ t

1
2 ], and early pressure-less dust-dominated era [a(t) ∝ t

2
3 ], re-

spectively. Thus, following generalized form of F(T),

F(T) = f0T + f1(−T)
3
2 + f2(T2) + · · · (39)

might be useful to study cosmic evolution. On the contrary, Noether symmetry analysis [16]
demands that instead of T2, one should associate T3 and higher odd integral powers in the
action. That is, a viable form that might explain the cosmic evolutionary history may be
in the form F(T) = f0T + f1T3 + · · · . It may be mentioned that the current analysis also
reveals the fact that pure F(T) gravity in vacuum (ρ = p = 0) does not give rise to any
dynamics. Therefore, to drive inflation, and also to avert the pathological behavior of pure
F(T) gravity in the very early vacuum-dominated era, either unimodular F(T) gravity has
to be considered [31], or a scalar field should be associated with F(T) gravity theory [30]
and the action may be proposed as

A =
∫ [

f0T + f1T3 + · · · − 1
2

ϕ,µϕ,µ − V(ϕ)

]√
−gd4x, (40)

where the scalar field drives inflation at the very early stage and decays to an insignificant
value in the process of particle creation. Therefore, once the inflation is over, the universe
enters the radiation- and, thereafter, the matter-dominated eras, whence T dominates to
envisage the standard model. Now, since T = −6H2 < 0 by definition, therefore, as the
Hubble parameter decreases further, the odd-integral higher degree terms start dominating
and become responsible for late-time cosmic acceleration. The great conceptual advantage
over modified theories of gravity is that, unlike the Ricci scalar, T ̸= 0, at any stage of
cosmic evolution in the middle.

3.2.1. Energy Conditions

Before we proceed further, it is necessary to fix the signature of the coefficients
( f0, f1 and f2) associated with the two different forms of F(T) obtained above, viz.
(i) F(T) = f0T + f1(−T)

3
2 + f2(T2) + · · · , and (ii) F(T) = f0T + f1T3 + f2T5 + · · · , in view

of the energy conditions. For perfect fluid Tµν = (ρ + p)uµuν + pgµν, the energy condi-
tions are:

1. Null energy condition: ρ + p ≥ 0.
2. Weak energy condition: ρ + p ≥ 0 and ρ ≥ 0.
3. Dominant energy condition: ρ ≥ |p|.
4. Strong energy condition: ρ + p ≥ 0 and ρ + 3p ≥ 0.
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Note that there is no restriction on the thermodynamic pressure, i.e., p < 0 is allowed;
nonetheless, if both ρ > 0 and p > 0, all energy conditions are satisfied simultaneously.

Form 1. Fixing coefficients of F(T) = f0T + f1(−T)
3
2 + f2(T2) + · · · .

To expatiate the signature associated with the coefficients of F(T), let us analyze the
form of for each individual term separately.

1. For, F(T) = f0T, the field Equations (30) and (31) read as

6 f0H2 = ρ, and − 6 f0H2 − 4 f0Ḣ = p, (41)

respectively. Therefore, f0 has to be positive so that ρ > 0. Consequently, ρ + p =
−4 f0Ḣ > 0 is also satisfied, because Ḣ < 0, in the expanding model.

2. Again for, F(T) = f1(−T)
3
2 , the field Equation (30) is

24 f1
√

6H3 = ρ, and − 9
2

f1
√

6ḢH − 24 f1
√

6H3 = p, (42)

so, to keep ρ positive, f1 has to be positive and ρ + p = − 9
2 f1

√
6ḢH > 0 is also

satisfied, since Ḣ < 0.
3. Finally, for F(T) = f2T2, the field Equations (30) and (31) may be cast as

−108 f2H4 = ρ, and 144 f2ḢH2 + 108 f2H4 = p, (43)

respectively. Therefore, ρ > 0 is ensured, provided that f2 < 0 and, finally, to satisfy
the weak energy condition, ρ + p = 144 f2ḢH2 > 0 also ensures f2 < 0, since Ḣ < 0
in the expanding model.

Thus, all the energy conditions are satisfied, provided that F(T) has the form

F(T) = f0T + f1(−T)
3
2 − f2(T2), (44)

in which all the coefficients are positive, i.e., f0 > 0, f1 > 0, and f2 > 0, and we terminate
after the third term.

Form 2. Fixing the coefficients of F(T) = f0T + f1(T3) + f2(T5) + · · · .

Likewise, let us fix the signature of the coefficients ( f0, f1 and f2) appearing in the
second form of F(T), considering each term separately.

1. For F(T) = f0T, the field Equations (30) and (31) are expressed as

6 f0H2 = ρ, and − 6 f0H2 − 4 f0Ḣ = p, (45)

respectively. Therefore, to ensure ρ > 0, f0 must be positive and, thus, ρ + p =
−4 f0Ḣ > 0 is also satisfied as Ḣ < 0 in an expanding model.

2. Again, for F(T) = f1(T)3, the field Equations (30) and (31) are

1512 f1H6 = ρ, and − 2160 f1ḢH4 − 1512 f1H6 = p. (46)

Therefore, ρ > 0 is ensured provided f1 > 0, and ρ + p = −2160 f1ḢH4 > 0 is also
ensured if f1 > 0 as Ḣ < 0, and as a result, the weak energy condition is also satisfied.

3. Finally, for F(T) = f2T5, the field Equation (30) takes the form

69984 f2H10 = ρ, and 181440 f2ḢH8 − 69984 f2H10 = p. (47)

Hence, ρ > 0 together with ρ + p = 181440 f2ḢH8 > 0, provided f2 > 0 as Ḣ < 0,
and so the weak energy condition is also satisfied.

Thus, all the energy condition are satisfied, provided the form of F(T) is

F(T) = f0T + f1(T)3 + f2(T5), (48)

where all the coefficients f0, f1, f2 are positive, considering no additional terms.
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3.2.2. Slow Roll Inflation

We have seen that both the forms F(T) of generalized metric teleparallel gravity theory
presented in (44) and (48) admit FLRW-type radiation- and early matter-dominated eras,
and can trigger accelerated expansion in the late stage of cosmological evolution. Further,
both the forms are validated by energy conditions. To explore their behavior in the very
early universe, let us consider slow roll inflation for both the models to find the inflationary
parameters and to compare with the currently observed constraints.

Cosmological inflation, that occurred sometimes between 10−42 s and 10−32±6 s, not
only can solve the horizon, flatness and monopole problems, but also generates the seeds
of perturbation required to trigger the structure formation at a latter epoch. Although it is a
quantum theory of perturbation, where gravity is treated as classical, while all other fields
remain quantized, classical field equations are well suited to study inflation. The recently
released data-sets [32,33] imposed tighter constraints on the inflationary parameters ns
(0.9631 ≤ ns ≤ 0.9705), as well as on the tensor-to-scalar ratio (r < 0.055). More recently,
combination of Planck PR4 data with ground-based experiments, such as BICEP/Keck
2018 (BK18), BAO and CMB lensing data, tightens the tensor to scalar ratio even further to
r < 0.032 [34]. Nonetheless, in recent years, r has been constrained starting from r < 0.14
to the above-mentioned value and, therefore, we presume that r might be restricted to
even less value in more precise future experiments, such as polarized CMB space missions
(including LiteBIRD) [35]. To study inflation, we incorporate a scalar field ϕ along with a
potential V(ϕ) in the action, which drives the inflation, as already mentioned in (40). As an
example, let us choose a special form of potential V = V0 − V1

ϕ , such that when ϕ becomes
large enough, then V ≈ V0, representing a flat potential.
Form-1:
F(T) = f0T + f1(−T)

3
2 − f2(T2) + · · · ,

As the energy condition ensures all the coefficients are positive, so in the vacuum era,
the field Equation (30), and the ϕ variation equation are expressed as

6 f0H2 + 24
√

6 f1H3 + 108 f2H4 = V(ϕ) +
1
2

ϕ̇2, ϕ̈ + 3H|ϕ̇|+ V′ = 0. (49)

Let us now consider the standard slow-roll conditions ϕ̇2 ≪ V(ϕ) and |ϕ̈| ≪ 3H|ϕ̇|,
on the pair of Equation (49), which therefore finally reduce to

108 f2H4 + 24
√

6 f1H3 + 6 f0H2 − V(ϕ) = 0, 3Hϕ̇ + V′ = 0. (50)

Clearly, the first quartic Equation (50) has four roots, each of which are exorbitantly
large and complicated, including cubic roots. Hence, these three terms together in F(T)
cannot be handled. Therefore, in the following, we consider the combination of (i) the first
term (T) and the third term (T2), and (ii) the first two terms, i.e., T and (−T)

3
2 .

Case 1. F(T) = f0T − f2T2:

Earlier, slow roll inflation considering the form F(T) = f0T + f2T2, where both f0 > 0
and f2 > 0, has been studied extensively and wonderful agreement with the observed data
was found [30]. Nonetheless, the energy condition suggests that the T2 term must appear
with a negative sign. Hence, it is required to look over if the inflationary parameters are
still on par with the observational data. The field equations are now

6 f0H2 + 108 f2H4 =
1
2

ϕ̇2 + V(ϕ), ϕ̈ + 3H|ϕ̇|+ V′(ϕ) = 0, (51)

upon which we apply the standard slow-roll conditions ϕ̇2 ≪ V(ϕ) and |ϕ̈| ≪ 3H|ϕ̇| to
finally obtain

γH4 + 6 f0H2 − V(ϕ) = 0, 3Hϕ̇ + V′(ϕ) = 0, (52)
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where γ = 108 f2. Now for the above choice of the potential V = V0 − V1
ϕ , the slow roll

parameters are expressed as

ϵ =
γ2V1

2

12ϕ4
(√

9 f 2
0 + γV1

(
V0
V1

− 1
ϕ

))[
−3 f0 +

√
9 f 2

0 + γV1

(
V0
V1

− 1
ϕ

)]2 ; η = −
2M2

P

ϕ2(V0
V1

ϕ − 1)
,

N =
∫ ϕi

ϕ f

3ϕ2
[
−3 f0 +

√
9 f 2

0 + γV1

(
V0
V1

− 1
ϕ

)]
γV1

dϕ,

(53)

where N is the number of e-folds. In yet another paper (under preparation), we have found
excellent agreement of the inflationary parameters with the observational data. While
N = 50 is sufficient to solve the horizon and flatness problems, the oscillatory behavior of
the scalar field has also been explored. As an example, we present a set of data in Table 1.

Table 1. Data-set for the inflationary parameters for F(T) = f0T − f2T2.

ϕi MP
V0
V1

M−1
P γV1 M5

P f0 M2
P ϕ f MP ns r N

3.0 6.5 0.1 0.5 0.69599 0.96425 0.03128 50

It is also important to mention that one may fix the value of γ, which is arbitrary, to set
the energy scale of inflation H∗ at the sub-Planckian scale.

Case 2. F(T) = f0T + f1(−T)
3
2 :

This case has never been studied earlier. For the above form of F(T), we apply the
standard slow-roll conditions ϕ̇2 ≪ V(ϕ) and |ϕ̈| ≪ 3H|ϕ̇| and, as such, the field equations
reduce to

6 f0H2 + 24
√

6 f1H3 − V(ϕ) = 0, 3Hϕ̇ + V′ = 0. (54)

Now, the first cubic equation of (54) can be solved for H as

H =
1
γ

−2 f0 +
6.35 f 2

0 +
(

V(ϕ)γ2 − 16 f 3
0 +

√
V(ϕ)2γ4 − 32V(ϕ)γ2 f 3

0

) 2
3

1.26
(
Vγ2 − 16 f 3

0 +
√

V(ϕ)2γ4 − 32V(ϕ)γ2 f 3
0
) 1

3

, (55)

where γ = 24
√

6 f1. Combining the pair of Equation (54), one can identify the ‘potential
slow roll parameter’ ϵ with the ‘Hubble slow roll parameter’ (ϵ1), and can also express η
and the number of e-folds, respectively, as

ϵ ≡ Ḣ
H2 =

V′(ϕ)2

3H4[12 f0 + 3γH]
, η = 2 f0

[
V′′(ϕ)

V(ϕ)

]

N(ϕ) ≃
∫ t f

ti

Hdt =
∫ ϕ f

ϕi

H
ϕ̇

dϕ =
∫ ϕi

ϕ f

3

−2 f0 +
6.35 f 2

0 +

(
V(ϕ)γ2−16 f 3

0 +
√

V(ϕ)2γ4−32V(ϕ)γ2 f 3
0

) 2
3

1.26
(

Vγ2−16 f 3
0 +

√
V(ϕ)2γ4−32V(ϕ)γ2 f 3

0

) 1
3


2

[γ2V′]
dϕ.

(56)

Now, for this potential V = V0 − V1
ϕ under consideration, the expression for ϵ takes a

extortionate form, such as
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ϵ =

3.18V2
1 γ4

[
V1γ2(

V0
V1

− 1
ϕ )− 16 f 3

0 +

√
V2

1
( V0

V1
− 1

ϕ

)2
γ4 − 32V1(

V0
V1

− 1
ϕ )γ2 f 3

0

] 5
3

9ϕ4

[
− 2.52 f0

[
V1γ2(

V0
V1

− 1
ϕ )− 16 f 3

0 +

√
V2

1
( V0

V1
− 1

ϕ

)2
γ4 − 32V1(

V0
V1

− 1
ϕ )γ2 f 3

0
] 1

3 + 6.35 f 2
0 +

[
V1γ2(

V0
V1

− 1
ϕ )− 16 f 3

0 +

√
V2

1
( V0

V1
− 1

ϕ

)2
γ4 − 32V1(

V0
V1

− 1
ϕ )γ2 f 3

0
] 2

3

]4

× 1[
2.52 f0

[
V1γ2(

V0
V1

− 1
ϕ )− 16 f 3

0 +

√
V2

1
( V0

V1
− 1

ϕ

)2
γ4 − 32V1(

V0
V1

− 1
ϕ )γ2 f 3

0
] 1

3 + 6.35 f 2
0 +

[
V1γ2(

V0
V1

− 1
ϕ )− 16 f 3

0 +

√
V2

1
( V0

V1
− 1

ϕ

)2
γ4 − 32V1(

V0
V1

− 1
ϕ )γ2 f 3

0
] 2

3
] ,

(57)

while η and N may be expressed, respectively, as

η = − 4 f0

ϕ2(V0
V1

ϕ − 1)
; N(ϕ) ≃

∫ t f

ti

Hdt =
∫ ϕ f

ϕi

H
ϕ̇

dϕ

=
∫ ϕi

ϕ f

[
3ϕ2

1.588V1γ2

(√
V2

1 γ4
(

V0
V1

− 1
ϕ

)2
− 32V1γ2 f 3

0

(
V0
V1

− 1
ϕ

)
+ V1γ2

(
V0
V1

− 1
ϕ

)
− 16 f 3

)2/3 ×

{
− 2.52 f0

[√√√√V2
1 γ4

(
V0

V1
− 1

ϕ

)2

− 32V1γ2 f 3
0

(
V0

V1
− 1

ϕ

)
+ V1γ2

(
V0

V1
− 1

ϕ

)
− 16 f 3

0

] 1
3

+

(√
V2

1 γ4
(

V0

V1
− 1

ϕ

)2
− 32V1γ2 f 3

0

(
V0

V1
− 1

ϕ

)
+ V1γ2

(
V0

V1
− 1

ϕ

)
− 16 f 3

0

)2/3

+ 6.35 f 2
0

}2]
dϕ.

(58)

Despite such huge structures of the parameters, it is still possible to handle these
expressions, and we present a table of the data-set for the expressions (57) and (58) in
Table 2. In this table, we have varied ϕi within the range 2.80 MP ≤ ϕi ≤ 3.40 MP, so that r
and ns lie more-or-less within the experimental limit. However, restrictions on ns and r,
restricts the number of e-folds within the range 24 ≤ N ≤ 44, which still might solve the
horizon and flatness problems.

Table 2. Data-set for the inflationary parameters in the case F(T) = f0T + f1(−T)
3
2 , taking into

account V0
V1

= 6 M−1
P , V1γ2 = 3.4 M7

P, f0 = 0.5 M2
P and varying ϕ within the range 2.8 MP < ϕi <

3.4 MP, so that ϕ f ≈ 0.460794 MP at the end of inflation.

ϕi in MP ns r N

2.80 0.9656 0.00566 24
2.85 0.9674 0.00520 26
2.90 0.9692 0.00490 27
2.95 0.9707 0.00456 28
3.00 0.9723 0.00426 30
3.10 0.9750 0.00372 33
3.20 0.9773 0.00327 37
3.30 0.9794 0.00288 40
3.40 0.9812 0.00255 44

Let us now compute the energy scale of inflation in view of the relation (55), consider-
ing the data: (N = 40, for which ϕi = 3.3 MP, f0 = 0.5 M2

p, V0
V1

= 6.0 M−1
P , V1γ2 = 3.4 M7

P),
as depicted in Table 2. Correspondingly we find,

H∗ =
8.114

γ
. (59)

Now, the energy scale of inflation in a single scalar field model in GTR [36] is given by
the following expression:
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H∗ = 8 × 1013
√

r
0.2

GeV = 0.96 × 1013GeV ≈ 3.918 × 10−6MP, (60)

whose numerical value is computed, taking into account the value of the tensor-to-scalar
ratio r = 0.00288 from the data-set of Table 2. Thus, in order to match the scale of
inflation (59) with the single field scale of inflation (60), we are required to constrain
γ, such as γ ≈ 2.074 × 106MP. The requirement of the sub-Planckian scale for inflation is
the physical ground upon which the parameter γ has been constrained and, consequently,
the values of V1 and V0 are fixed as well:

V1 = 7.90 × 10−11 M5
P, V0 = 6V1 ≈ 4.74 × 10−10 M4

P. (61)

Finally, to handle the issue of graceful exit from inflation, we recall the first equation
of (54) which, in view, of the above form of the potential, V(ϕ) = V0 − V1

ϕ , is expressed as

−γH3

V1
− 6 f0H2

V1
+

[
ϕ̇2

2V1
+

(
V0

V1
− 1

ϕ

)]
= 0. (62)

During inflation, H2 and V1 are of the same order of magnitude, while the Hubble
parameter varies slowly. But, at the end of inflation, the Hubble rate usually decreases

sharply, and γH3 falls much below V1. Hence, one can neglect both the terms γH3

V1
and f0 H2

V1
without any loss of generality. In the process, one finds

ϕ̇2 = −2
[

V0 −
V1

ϕ

]
. (63)

Taking into account ϕ f = 0.460794 MP, V0 = 4.74× 10−10 M4
P and V1 = 7.90× 10−11 M5

P
from computation, the above equation clearly exhibits the oscillatory behavior of the scalar
field ϕ

ϕ = exp(iωt), (64)

provided that ω ≈ 5.335 × 10−5MP.
In a nutshell, although we have not been able to handle all the three terms together,

both the pairs nonetheless exhibit excellent agreement with the observational data.
Form-2
F(T) = f0T + f1(T)3 + f2(T5) + · · · ,

Case 3. F(T) = f0T + f1(T)3:

Here, too it is impossible to handle all three terms together; we therefore only consider
the first two terms F(T) = f0T + f1(T)3 and focus to study the slow roll inflation. The field
Equation (30) and the ϕ variation equation are now expressed as

6 f0H2 + 1080 f1H6 = V(ϕ) +
1
2

ϕ̇2, ϕ̈ + 3H|ϕ̇|+ V′ = 0. (65)

Applying the standard slow-roll conditions ϕ̇2 ≪ V(ϕ) and |ϕ̈| ≪ 3H|ϕ̇|, the pair of
Equation (65) finally reduce to

γH6 + 6 f0H2 − V = 0, 3Hϕ̇ + V′ = 0, (66)

where 1080 f1 = γ. Solving for H2 in view of (66), we readily obtain

H2 =

[(
Vγ2 +

√
V2γ4 + 32γ3 f 3

0

) 2
3 − 3.175γ f0

]

1.26γ
(

Vγ2 +
√

V2γ4 + 32γ3 f 3
0

) 1
3

. (67)
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Further, combining Equation (66), one can show that the ‘potential slow roll parameter’
ϵ is equal to the ‘Hubble slow roll parameter’ (ϵ1) under the condition

ϵ ≡ − Ḣ
H2 =

2.52γ4V′2
(

Vγ2 +
√

V2γ4 + 32γ3 f 3
0

) 4
3

18

[(
Vγ2 +

√
V2γ4 + 32γ3 f 3

0

) 2
3 − 3.175γ f0

]2

× 1γ

[(
Vγ2 +

√
V2γ4 + 32γ3 f 3

0

) 2
3 − 3.175γ f0

]2

+ 3.175γ2 f0

(
Vγ2 +

√
V2γ4 + 32γ3 f 3

0

) 2
3

 ;

η = 2 f0

(
V′′(ϕ)

V(ϕ)

)
(68)

Further, one can compute the number of e-folds as

N(ϕ) ≃
∫ t f

ti

Hdt =
∫ ϕ f

ϕi

H
ϕ̇

dϕ =
∫ ϕi

ϕ f

3

[(
Vγ2 +

√
V2γ4 + 32γ3 f 3

0

) 2
3 − 3.175γ f0

]
[

1.26γV′
(

Vγ2 +
√

V2γ4 + 32γ3 f 3
0

) 1
3

] dϕ. (69)

Now, under the same choice of the potential as above, viz. V(ϕ) = V0 − V1
ϕ , the ex-

pressions of ϵ, η (68) and N (69) are found as

ϵ =
2.52γ4V2

1

(
V1γ2( V0

V1
− 1

ϕ ) +
√

V2
1 γ4( V0

V1
− 1

ϕ )
2 + 32γ3 f 3

0

) 4
3

18ϕ2

[(
V1γ2( V0

V1
− 1

ϕ ) +
√

V2
1 γ4( V0

V1
− 1

ϕ )
2 + 32γ3 f 3

0

) 2
3 − 3.175γ f0

]2

× 1γ

[(
V1γ2( V0

V1
− 1

ϕ ) +
√

V2
1 γ4( V0

V1
− 1

ϕ )
2 + 32γ3 f 3

0

) 2
3 − 3.175γ f0

]2

+ 3.175γ2 f0

{
V1γ2( V0

V1
− 1

ϕ ) +
√

V2
1 γ4( V0

V1
− 1

ϕ )
2 + 32γ3 f 3

0

} 2
3



η = − 4 f0

ϕ2( V0
V1

ϕ − 1)
, N(ϕ) =

∫ ϕi

ϕ f

3ϕ2

[(
V1γ2( V0

V1
− 1

ϕ ) +
√

V2
1 γ4( V0

V1
− 1

ϕ )
2 + 32γ3 f 3

0

) 2
3 − 3.175γ f0

]

1.26γV1

[
V1γ2( V0

V1
− 1

ϕ ) +
√

V2
1 γ4( V0

V1
− 1

ϕ )
2 + 32γ3 f 3

0

] 1
3

dϕ.

(70)

Again, despite such huge structures of equations, we are able to present a table of the
data-set for the expressions (70). In Table 3, we have varied V1 between 4.5 M5

P ≤ V1 ≤
5.0 M5

P, so that r and ns lie within the experimental limit. Further, the number of e-folds
for Table 3 is found to vary within the range 40 ≤ N ≤ 45, which is more-or-less sufficient
to solve the horizon and flatness problems. Clearly, the agreement with the observational
data is outstanding, since the tensor-to-scalar ratio is able to sustain further constraints,
which might appear from future analysis.

The energy scale of inflation (H∗) is shown in the last column of Table 3, which is of
the order 10−3 MP, i.e., in the sub-Planckian scale, while the energy scale of inflation in a
single scalar field model corresponding to GTR [36] is given by the following expression:

H∗ = 8 × 1013
√

r
0.2

GeV = 1.28 × 1013GeV ≈ 5.25 × 10−6MP, (71)

whose numerical value is computed taking into account the value of the tensor-to-scalar
ratio r = 0.005149 from the data-set of Table 3.
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Table 3. Data-set for the inflationary parameters in the case of F(T) = f0T + f1(T)3, taking into
account ϕi = 4.0 MP, V0 = 2.0 M4

P, γ = 5 × 107 M−2
P , f0 = 0.5 M2

P varying V1 between 4.5 × 10−6 to
5.0 × 10−6 M5

P .

ϕ f in MP
V1 in

×10−6 M5
P

ns r N H∗2 in
×10−6 M2

P

0.75450 4.5 0.96656 0.005836 40 1.33
0.74478 4.6 0.96742 0.005593 41 1.37
0.73540 4.7 0.96823 0.005364 42 1.40
0.72637 4.8 0.96899 0.005149 43 1.43
0.71750 4.9 0.96974 0.004947 44 1.47
0.70900 5.0 0.97044 0.004756 45 1.50

Finally, to handle the issue of graceful exit from inflation, we recall Equation (65)
which, in view of the above form of the potential V(ϕ) = V0 − V1

ϕ , is expressed as

γH6

V1
+

6 f0H2

V1
+

[
ϕ̇2

2V1
−
(

V0

V1
− 1

ϕ

)]
= 0. (72)

During inflation, H2 and V1 are of the same order of magnitude, while the Hubble
parameter varies slowly. But, at the end of inflation, the Hubble rate decreases sharply,

and γH6 falls much below V1. Hence, one can neglect both the terms γH6

V1
and f0 H2

V1
without

any loss of generality. In the process, one obtains

ϕ̇2 = −2
[

V0 −
V1

ϕ

]
. (73)

Taking into account the values: ϕ f = 0.70900MP, V0 = 5.0 × 10−6MP
4 and V1 =

2.0 × 10−6MP
5 from Table 3, it is possible to show that the above equation exhibits following

oscillatory behavior,

ϕ = exp(iωt), (74)

provided that ω ≈ 1.476 × 10−3MP. Hence, a graceful exit is also exhibited. In a nutshell,
both the forms F(T) of the generalized metric teleparallel gravity are found quite capable
of explaining the cosmological evolutionary history, right from the very early inflationary
era up to date.

3.3. Symmetric Teleparallel F(Q) Theory of Gravity

Although everything appears to be nice, non-trivial F(T) theories are not locally
Lorentz invariant, the most fundamental symmetry in physics, resulting in extra degrees
of freedom not present in GTR. In fact, the lack of local Lorentz invariance requires us
to deal with 16 equations, instead of the 10 associated with GTR. Einstein suggested to
identify these extra degrees of freedom with the electromagnetic fields. However, he failed
to find a consistent tensor-like description of the electromagnetic field equations in this
approach. Further, while studying perturbations on the top of RW background, models
based on F(T) gravity appear to suffer from strong coupling problems. In particular,
if the action is expressed in the Einstein frame, and perturbation is studied around the
flat Minkwoski space-time, the spectrum of the ‘general theory of relativity’ reappears,
being free from all additional degrees of freedom. That is, the genuine physical degrees of
freedom lose their kinetic term at the quadratic order, resulting in the breakdown of the
standard perturbation theory. Since no new scalar mode is present in linear and second-
order perturbations in F(T) gravity, a strong coupling problem appears. Additionally, F(T)
theory gravity cannot make any prediction for ‘cosmic microwave background radiation’
and ‘large scale structure’ within the standard RW model, due to strong coupling [9].
Therefore, F(Q) gravity is currently in the lime-light, since these problems do not arise
in F(Q) theory of gravity, as already mentioned. This led people to consider generalized
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symmetric teleparallel F(Q) gravity theory. Recently F(Q) theory has been studied largely
in different perspectives [37–45]. Further, the field equations in view of the variational
principle have also been derived [14]. In the F(Q) theory, one may use the special FLRW
metric in Cartesian coordinates and the coincident gauge in this setting, which make the
calculation easier by reducing the covariant derivative to merely a partial derivative. In the
coincidence gauge, all connections are made to vanish globally in a set of local Lorentz
frame. As a result, the affine connection vanishes everywhere in a manifold, and also, both
the Riemann-tensor R̃α

βµν and the torsion-tensor Tαµν vanish globally. In the coincidence

gauge, the non metricity scalar reads as Q = − 6ȧ2

a2 N2 = −6H2 under the gauge choice
N = 1. Consequently, the Friedmann equations become identical to those of the F(T)
gravity theory, and all the results found in connection with F(T) gravity theory holds,
averting the problems associated with F(T) gravity theory.

Unfortunately, as soon as one considers a nonlinear generalization of STEGR, i.e., F(Q)
theory of gravity, it is also found to run from some serious pathologies. Covariant formula-
tion of the theory requires to introduce Stückelberg fields, in view of which the presence
of ghosts induces Ostrogradski’s instability. In the recent years, it was shown that there
is a strong coupling problem with the scalar perturbations around maximally symmetric
(De-Sitter and Minkowski) backgrounds, and there might also be a potentially strong
coupling problem in the vector sector for flat cosmology [10]. The strong coupling issue in
the maximally symmetric Minkowski background mostly occurs at very small scales, such
as when applying it to the black-holes in the asymptotically Minkowski region. Further, the
lack of diffeomorphic invariance in the self-interaction of graviton might possibly give rise
to the Boulware–Deser ghost [46]. Particularly, while studying cosmological perturbation
around the spatially flat F(Q) gravity theory, seven degrees of freedoms are found propa-
gating in the gravitational sector, out of which at least one is a ghost [47]. Nonetheless, the
isotropic and homogeneous Robertson–Walker metric (19) under present consideration also
admits three non-trivial connections [14,48], apart from the coincidence gauge. The study
of the three other connections have been initiated recently [49,50]. More recently, it has been
shown that all these three connections can also explain the cosmic evolutionary history,
for a linear form of F(Q) = f0Q, without further modification [51]. Since no generalization
to non-linearity is required, these might be free from pathologies.

3.4. Palatini Formalism

For the sake of completeness, let us add a few lines in the context of yet another
theory of gravity presented by Palatini long ago, which again admits late-stage of cosmic
acceleration upon suitable modification [52]. In fact, while the metric gµν measures the dis-
tances in manifold and angles in tangent space, the connection Γα

µν actually maps between
different tangent spaces that define parallel transport. Once the physical consideration that
the principle of equivalence and causality should be related to each other is demanded,
one enters into the realm of GTR, and Γα

µν = {µ
α

ν}, the Levi-Civita. On the contrary,
Palatini formalism treats the metric and the connection as independent quantities. Hence,
mathematically Palatini formalism appears to be more rigorous, and enriches the geometric
structure of the spacetime. The generalized action being a function of both the metric and
the connection is given by

A(g, Γ) =
1

16πG

∫ √
gd4xF(R) + Sm, (75)

where R stands for Ricci scalar in Palatini formalism and Sm is the matter action. Note
that δΓα

µν;α − δΓα
µα;ν and, since there is no way to find the connections, the Ricci scalar R

remains unknown. The field equations are

F′(R)Rµν −
1
2

F(R)gµν = κTµν, (76)

whose trace yields
F(R)R− 2F(R) = κT. (77)
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One can immediately notice that for traceless fields T = 0, such as in the vacuum
(p = ρ = 0) and in the radiation (p = 1

3 ρ) eras; in the context of cosmology, Equation (77)
yields F(R) ∝ R2. As R is obscure, so one does not have any idea regarding the evolution.
Nonetheless, the evolution, whatever it might be, is identical in both eras, which is physi-
cally unrealistic. On the other hand, for F(R) = αR+ βR2, Equation (77) for traceless fields
results in Rn−1 = α

β(n−2) for n ̸= 1, 2. Thus, R is a constant, and a de(anti)Sitter solution
emerges (we shall make it clear in the following) in both the vacuum and radiation eras,
which is unrealistic, as already mentioned. Clearly, one requires considering additional
fields, such as a scalar field, to obtain a physically reasonable outcome. But, prior to that, it
is somehow required to relate R with R, so that one can study cosmological evolution. This
is possible under the conformal transformation, gµν = F′(R)g̃µν, whence the action takes
the following form [53]:

AP =
1

2κ

∫ √
−g̃d4x[ΦR − 3

2Φ
∂µΦ∂µΦ − U(Φ)] + Sm, (78)

where
R = R − 3

2Φ2 ∂µΦ∂µΦ − 3
Φ
□Φ, Φ = F′(R), U(Φ) = Φχ(Φ)− F(χ) (79)

and the new field χ = R. In the linear theory F(R) ∝ R, Φ becomes a constant, so is
U(Φ); as a result, R = R, in view of (79) and GTR, is retrieved. Phase-space structure of
the scalar-tensor equivalence of the Palatini action has been formulated and quantized,
and it was found that the semi-classical wavefunction is classically forbidden, which is
a serious pathology of the formalism. Next, it was observed that either the scale factor
evolves exponentially both in the early vacuum-dominated and radiation-dominated eras,
which is unrealistic, or it admits the Friedman-like solution a ∝

√
t in the radiation era,

but unfortunately, a power law inflation is administered in the vacuum era without a
graceful exit. The fact that the Palatini formalism runs into contradiction with the standard
model of cosmology was also unleashed earlier [54]. Further, in an attempt to analyze the
stellar structure, it was revealed that the formalism exhibits a singular behavior, giving rise
to infinite tidal forces on the surface [55]. Thus, the Palatini formalism lacks novelty.

4. Concluding Remarks

In this article, we have reviewed some earlier works with suitable modification focus-
ing on the reconstruction program of the forms of modified and generalized teleparallel
gravity theories. The importance of the work is that all the forms presented here admit
a viable radiation- and early matter-dominated eras, which are on par with the standard
(FLRW) model of cosmology. Further, these models can also explain the late-time cosmic
accelerated expansion. Since inflation in the context of the modified F(R) theory of gravity
has been studied widely, we have not considered it here. However, for the two possible
forms of the teleparallel F(T) gravity, we have studied inflation and found that the infla-
tioanry parameters are quite in agreement with the recently released observational data.
Also, since symmetric telepallel F(Q) gravity theory in a coincidence gauge produces a
field equation identical to those for F(T) gravity theory, all the results obtained for F(T)
gravity also hold for coincidence general relativity.

While the results obtained here are quite encouraging, nonetheless, all these theories
suffer from some sort of unavoidable pathologies, as discussed in the literature. In the
mean time, linear and second-order scalar perturbations and the strong coupling issues of
F(T) gravity have been reinvestigated by applying the effective field theory [51]. Of course,
no new scalar mode is found, suggesting a strong coupling issue. Nonetheless, the authors
have also shown that this can be avoided at some scale comparable with the cutoff scale
of the applicability of the theory [51]. Clearly, nothing has been settled as yet. In this
context, it may be mentioned that in the RW metric (19) under consideration, symmetric
teleparallel gravity theory admits four different connections. Apart from the coincidence
gauge, the other three involve an additional non-vanishing function of time γ(t) and, as a
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result, some difficulty arises in studying these connections. Nonetheless, very recently, we
have prepared a detailed study with the three other connections (communicated), which
exhibit cosmic evolution at the linear level without any modification. It should also be
mentioned that Bianchi identity, which is an outcome of the invariance of curvature by
isometries of the metric tensor, holds automatically for GTR (Gµν

;µ = 0), and is also
true for F(R) gravity, resulting in the classical conservation of the energy momentum
tensor. Nonetheless, this does not hold in general for teleparallel gravity theories. Even
so, in the background of the isotropic and homogeneous Robertson–Walker metric, the
Bianchi identity holds for F(T) gravity uniquely. In the case of the F(Q) theory of gravity,
the coincidence gauge (Q = −6H2) is usually taken into consideration, in which case
the Bianchi identity also holds automatically. Nevertheless, for other connections, it was
not known with certainty. It has been exhibited [56] that, apart from one single situation,
it holds in general for all the connections. We have also briefly discussed the Palatini
formalism, which appears to be a non-viable alternative to GTR.
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Notes
1 It may be mentioned that the curvature tensor constructed out of Weitzenböck connection vanishes identically, while a theory of

gravity constructed in view of tetrad fields admits both the Weitzenböck and the Riemannian geometry and therefore is more
general.

2 Under the choice of local coordinates and coordinate basis xµ and ∂µ, respectively, the affine Levi-Civita connection (∇) is called
the Christoffel symbol {µ

α
ν}, so that ∇µ∂ν = {µ

α
ν}.
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