String Interactions as a Source of Collective Behaviour
Abstract
:1. Introduction
2. Multi-Parton Interactions and the Angantyr Model
Angantyr for Heavy Ion Collisions
3. The Lund String Model and Microscopic Collectivity
3.1. Physics of a Single Lund String
3.2. Interactions of Multiple Strings
3.3. Colour Reconnections
3.4. The String-Shoving Mechanism
3.4.1. Soft Collective Effects
3.4.2. Effects on Jets
3.5. Rope Hadronization
3.5.1. Effects on Inclusive Production
4. Conclusions and Outlook
Funding
Acknowledgments
Conflicts of Interest
1 | QGP formation predicts several other types of modifications with respect to proton collisions, such as jet quenching, heavy quark modifications, altered resonance production, and several more. The focus in this mini-review will, however, be on strangeness and flow. |
2 | This review is thus not a general review on collectivity in small systems. The reader is referred to excellent reviews in refs. [14,18,19,20,21,22] for other perspectives, both from an experimental and theoretical starting point. In particular ref. [20] offers a RHIC perspective, which is not covered in this review. |
3 | In this sense, Angantyr is more of a successor to the FRITIOF model [33], which had the same starting point. |
4 | For a more comprehensive, recent review, see ref. [9]. |
5 | In principle, GeV, but fits to LEP data suggest this number to be higher, indicating that a non-negligible factor of the comes from another source. |
6 | In principle, this number could be obtained if a suitable value for quark masses were inserted. However, current quark masses lead to too little strangeness suppression, and constituent quark masses to too much. |
7 | The other curve, labelled “Clem profile”, is derived from Landau–Ginzburg theory and is given by (where is a modified Bessel function, the cylindrical radius coordinate, the condensate coherence length, and the penetration depth.) See ref. [40] for more details. |
8 | This, in principle, ought to give rise to a mixed phase of strings and hadrons. However, this possibility has not yet been pursued in this framework. |
9 | Formally obtained [52] by letting ( is the number of colours), while keeping fixed. This eliminates coherence effects which are suppressed by a factor and allows for a simple representation of gluons as colour–anti-colour. |
10 | Such states have no analogy in limit, which corresponds only to dipole-like connections. These states represent structures in colour space, which are explicitly . |
11 | It is possible to calculate initial geometries in other types of approaches like BFKL evolution in impact parameter space [60]. While the first steps have been made to interface this, it is not yet mature enough for real calculations. |
12 | As a historical note, it should be mentioned that the string-shoving model is not the first attempt to generate anisotropic flow from string interactions. Abramovsky et al. introduced a simple but similar idea already in 1988 [62], before the idea of flow had been coupled to QGP formation at all. |
13 | In the experiment, the reaction plane angle is not known event-by-event, and one must construct flow coefficients from two -or multiparticle correlations. In calculations, in particular in collisions where the non-flow contributions are small, the true reaction plane can be used. |
14 | As well as requiring a Z with GeV, the jet is the leading anti- [67] jet with . |
15 | The rope hadronization idea dates back to the 1980s [50], and has since been pursued in similar forms by many authors. Some very similar to the Pythia ropes, others in the same general class of string fusion models. Some implemented in event generators [69,70,71,72,73,74,75], and others with purely theoretical work [76,77,78,79,80]. |
References
- Rafelski, J.; Muller, B. Strangeness Production in the Quark—Gluon Plasma. Phys. Rev. Lett. 1982, 48, 1066, Erratum in Phys. Rev. Lett. 1986, 56, 2334. [Google Scholar] [CrossRef]
- Stock, R.; Eschke, J.; Heck, W.; Kabana, S.; Kuehmichel, A.; Lahanas, M.; Lee, Y.; Margetis, S.; Renfordt, R.; Roehrich, D.; et al. Strangeness enhancement in central S + S collisions at 200-GeV/nucleon. Nucl. Phys. A 1991, 525, 221C–226C. [Google Scholar] [CrossRef]
- Ollitrault, J.Y. Anisotropy as a signature of transverse collective flow. Phys. Rev. D 1992, 46, 229–245. [Google Scholar] [CrossRef]
- Ackermann, K.H. Elliptic flow in Au + Au collisions at (S(NN))**(1/2) = 130 GeV. Phys. Rev. Lett. 2001, 86, 402–407. [Google Scholar] [CrossRef]
- Andersson, B.; Gustafson, G.; Ingelman, G.; Sjöstrand, T. Parton Fragmentation and String Dynamics. Phys. Rep. 1983, 97, 31–145. [Google Scholar] [CrossRef]
- Webber, B.R. A QCD Model for Jet Fragmentation Including Soft Gluon Interference. Nucl. Phys. B 1984, 238, 492–528. [Google Scholar] [CrossRef]
- Buckley, A.; Butterworth, J.; Gieseke, S.; Grellsheid, D.; Höche, S.; Hoeth, H.; Krauss, F.; Lönnblad, L.; Nurse, E.; Richardson, P.; et al. General-purpose event generators for LHC physics. Phys. Rep. 2011, 504, 145–233. [Google Scholar] [CrossRef]
- Campbell, J.M.; Diefenthaler, M.; Hobbs, T.J.; Höche, S.; Isaacson, J.; Kling, F.; Mrenna, S.; Reuter, J.; Alioli, S.; Andersen, J.R.; et al. Event Generators for High-Energy Physics Experiments. In Proceedings of the Snowmass 2021, Seattle, WA, USA, 17–26 July 2022; p. 3. [Google Scholar]
- Bierlich, C.; Chakraborty, S.; Desai, N.; Gellersen, L.; Helenius, I.; Ilten, P.; Lönnblad, L.; Mrenna, S.; Prestel, S.; Preuss, C.T.; et al. A comprehensive guide to the physics and usage of PYTHIA 8.3. SciPost Phys. Codeb. 2022, 8. [Google Scholar] [CrossRef]
- Bellm, J.; Gieseke, S.; Grellscheid, D.; Plätzer, S.; Rauch, M.; Reuschle, C.; Richardson, P.; Schichtel, P.; Seymour, M.H.; Siódmok, A.; et al. Herwig 7.0/Herwig++ 3.0 release note. Eur. Phys. J. C 2016, 76, 196. [Google Scholar] [CrossRef]
- Bothmann, E.; Chahal, G.S.; Höche, S.; Krause, J.; Krauss, F.; Kuttimalai, S.; Liebschner, S.; Napoletano, D.; Schönherr, M.; Schulz, H.; et al. Event Generation with Sherpa 2.2. SciPost Phys. 2019, 7, 034. [Google Scholar] [CrossRef]
- ALICE Collaboration. Enhanced production of multi-strange hadrons in high-multiplicity proton–proton collisions. Nat. Phys. 2017, 13, 535–539. [Google Scholar] [CrossRef]
- Khachatryan, V.; Sirunyan, A.M.; Tumasyan, A.; Adam, W.; Bergauer, T.; Dragicevic, M.; Erö, J.; Fabjan, C.; Friedl, M.; Frühwirth, R.; et al. Observation of Long-Range Near-Side Angular Correlations in Proton-Proton Collisions at the LHC. J. High Energy Phys. 2010, 2010, 91. [Google Scholar] [CrossRef]
- The ALICE experiment—A journey through QCD. arXiv 2022, arXiv:2211.04384.
- Chen, Y.C.; Lee, Y.J.; Chen, Y.; Chang, P.; McGinn, C.; Sheng, T.A.; Innocenti, G.M.; Maggi, M. Analysis note: Two-particle correlation in e+e− collisions at 91-209 GeV with archived ALEPH data. arXiv 2023, arXiv:2309.09874. [Google Scholar]
- Werner, K. Core-corona separation in ultra-relativistic heavy ion collisions. Phys. Rev. Lett. 2007, 98, 152301. [Google Scholar] [CrossRef] [PubMed]
- Kanakubo, Y.; Tachibana, Y.; Hirano, T. Unified description of hadron yield ratios from dynamical core–corona initialization. Phys. Rev. C 2020, 101, 024912. [Google Scholar] [CrossRef]
- Li, W. Observation of a ‘Ridge’ correlation structure in high multiplicity proton–proton collisions: A brief review. Mod. Phys. Lett. A 2012, 27, 1230018. [Google Scholar] [CrossRef]
- Schlichting, S.; Tribedy, P. Collectivity in Small Collision Systems: An Initial-State Perspective. Adv. High Energy Phys. 2016, 2016, 8460349. [Google Scholar] [CrossRef]
- Nagle, J.L.; Zajc, W.A. Small System Collectivity in Relativistic Hadronic and Nuclear Collisions. Ann. Rev. Nucl. Part. Sci. 2018, 68, 211–235. [Google Scholar] [CrossRef]
- Citron, Z.; Dainese, A.; Grosse-Oetringhaus, J.F.; Jowett, J.M.; Lee, Y.-J.; Wiedemann, U.A.; Winn, M.; Andronic, A.; Bellini, F.; Bruna, E.; et al. Report from Working Group 5: Future physics opportunities for high-density QCD at the LHC with heavy-ion and proton beams. CERN Yellow Rep. Monogr. 2019, 7, 1159–1410. [Google Scholar] [CrossRef]
- Adolfsson, J.; Andronic, A.; Bierlich, C.; Bozek, P.; Chakraborty, S.; Christiansen, P.; Chinellato, D.D.; Fries, R.J.; Gustafson, G.; van Hees, H.; et al. QCD challenges from pp to A—A collisions. Eur. Phys. J. A 2020, 56, 288. [Google Scholar] [CrossRef]
- Sjöstrand, T.; van Zijl, M. A Multiple Interaction Model for the Event Structure in Hadron Collisions. Phys. Rev. D 1987, 36, 2019. [Google Scholar] [CrossRef] [PubMed]
- Gelis, F.; Iancu, E.; Jalilian-Marian, J.; Venugopalan, R. The Color Glass Condensate. Ann. Rev. Nucl. Part. Sci. 2010, 60, 463–489. [Google Scholar] [CrossRef]
- Bierlich, C.; Gustafson, G.; Lönnblad, L.; Shah, H. The Angantyr model for Heavy-Ion Collisions in PYTHIA8. J. High Energy Phys. 2018, 2018, 134. [Google Scholar] [CrossRef]
- Bierlich, C.; Gustafson, G.; Lönnblad, L. Diffractive and non-diffractive wounded nucleons and final states in pA collisions. J. High Energy Phys. 2016, 2016, 139. [Google Scholar] [CrossRef]
- Miller, M.L.; Reygers, K.; Sanders, S.J.; Steinberg, P. Glauber modeling in high energy nuclear collisions. Ann. Rev. Nucl. Part. Sci. 2007, 57, 205–243. [Google Scholar] [CrossRef]
- Rybczynski, M.; Stefanek, G.; Broniowski, W.; Bozek, P. GLISSANDO 2: GLauber Initial-State Simulation AND mOre…, ver. 2. Comput. Phys. Commun. 2014, 185, 1759–1772. [Google Scholar] [CrossRef]
- Gribov, V.N. Glauber corrections and the interaction between high-energy hadrons and nuclei. Sov. Phys. JETP 1969, 29, 483–487. [Google Scholar]
- Heiselberg, H.; Baym, G.; Blaettel, B.; Frankfurt, L.L.; Strikman, M. Color transparency, color opacity, and fluctuations in nuclear collisions. Phys. Rev. Lett. 1991, 67, 2946–2949. [Google Scholar] [CrossRef]
- Blaettel, B.; Baym, G.; Frankfurt, L.L.; Heiselberg, H.; Strikman, M. Hadronic cross-section fluctuations. Phys. Rev. D 1993, 47, 2761–2772. [Google Scholar] [CrossRef]
- Good, M.L.; Walker, W.D. Diffraction disssociation of beam particles. Phys. Rev. 1960, 120, 1857–1860. [Google Scholar] [CrossRef]
- Andersson, B.; Gustafson, G.; Nilsson-Almqvist, B. A Model for Low p(t) Hadronic Reactions, with Generalizations to Hadron - Nucleus and Nucleus-Nucleus Collisions. Nucl. Phys. B 1987, 281, 289–309. [Google Scholar] [CrossRef]
- Bialas, A.; Bleszynski, M.; Czyz, W. Multiplicity Distributions in Nucleus-Nucleus Collisions at High-Energies. Nucl. Phys. B 1976, 111, 461–476. [Google Scholar] [CrossRef]
- Bierlich, C.; Buckley, A.; Butterworth, J.; Christensen, C.H.; Corpe, L.; Grellscheid, D.; Grosse-Oetringhaus, J.F.; Gutschow, C.; Karczmarczyk, P.; Klein, J.; et al. Robust Independent Validation of Experiment and Theory: Rivet version 3. SciPost Phys. 2020, 8, 026. [Google Scholar] [CrossRef]
- Bierlich, C.; Buckley, A.; Christensen, C.H.; Christiansen, P.H.L.; Duncan, C.B.; Grosse-Oetringhaus, J.F.; Karczmarczyk, P.; Kirchgaeßer, P.; Klein, J.; Lönnblad, L.; et al. Confronting experimental data with heavy-ion models: RIVET for heavy ions. Eur. Phys. J. C 2020, 80, 485. [Google Scholar] [CrossRef]
- ATLAS Collaboration. Measurement of the centrality dependence of the charged-particle pseudorapidity distribution in proton–lead collisions at = 5.02 TeV with the ATLAS detector. Eur. Phys. J. C 2016, 76, 199. [Google Scholar] [CrossRef] [PubMed]
- ALICE Collaboration. Centrality dependence of the pseudorapidity density distribution for charged particles in Pb-Pb collisions at = 5.02 TeV. Phys. Lett. B 2017, 772, 567–577. [Google Scholar] [CrossRef]
- Cea, P.; Cosmai, L.; Cuteri, F.; Papa, A. Flux tubes in the SU(3) vacuum: London penetration depth and coherence length. Phys. Rev. D 2014, 89, 094505. [Google Scholar] [CrossRef]
- Bierlich, C.; Chakraborty, S.; Gustafson, G.; Lönnblad, L. Setting the string shoving picture in a new frame. J. High Energy Phys. 2021, 2021, 270. [Google Scholar] [CrossRef]
- Bierlich, C.; Gustafson, G.; Lönnblad, L.; Tarasov, A. Effects of Overlapping Strings in pp Collisions. J. High Energy Phys. 2015, 2015, 148. [Google Scholar] [CrossRef]
- da Silva, A.V.; Serenone, W.M.; Chinellato, D.D.; Takahashi, J.; Bierlich, C. Studies of heavy-ion collisions using PYTHIA Angantyr and UrQMD. arXiv 2020, arXiv:2002.10236. [Google Scholar]
- Bierlich, C.; Sjöstrand, T.; Utheim, M. Hadronic rescattering in pA and AA collisions. Eur. Phys. J. A 2021, 57, 227. [Google Scholar] [CrossRef]
- Ortiz Velasquez, A.; Christiansen, P.; Cuautle Flores, E.; Maldonado Cervantes, I.; Paić, G. Color Reconnection and Flowlike Patterns in pp Collisions. Phys. Rev. Lett. 2013, 111, 042001. [Google Scholar] [CrossRef] [PubMed]
- Bierlich, C. Microscopic collectivity: The ridge and strangeness enhancement from string–string interactions. Nucl. Phys. A 2019, 982, 499–502. [Google Scholar] [CrossRef]
- Christiansen, J.R.; Skands, P.Z. String Formation Beyond Leading Colour. J. High Energy Phys. 2015, 2015, 3. [Google Scholar] [CrossRef]
- Bierlich, C.; Christiansen, J.R. Effects of color reconnection on hadron flavor observables. Phys. Rev. D 2015, 92, 094010. [Google Scholar] [CrossRef]
- Bierlich, C.; Gustafson, G.; Lönnblad, L. Collectivity without plasma in hadronic collisions. Phys. Lett. B 2018, 779, 58–63. [Google Scholar] [CrossRef]
- Bierlich, C. Soft modifications to jet fragmentation in high energy proton–proton collisions. Phys. Lett. B 2019, 795, 194–199. [Google Scholar] [CrossRef]
- Biro, T.S.; Nielsen, H.B.; Knoll, J. Color Rope Model for Extreme Relativistic Heavy Ion Collisions. Nucl. Phys. B 1984, 245, 449–468. [Google Scholar] [CrossRef]
- Sjöstrand, T.; Utheim, M. A Framework for Hadronic Rescattering in pp Collisions. Eur. Phys. J. C 2020, 80, 907. [Google Scholar] [CrossRef]
- ’t Hooft, G. A Planar Diagram Theory for Strong Interactions. Nucl. Phys. B 1974, 72, 461. [Google Scholar] [CrossRef]
- UA1 Collaboration. A Study of the General Characteristics of p Collisions at = 0.2-TeV to 0.9-TeV. Nucl. Phys. B 1990, 335, 261–287. [Google Scholar] [CrossRef]
- Sjöstrand, T.; Skands, P.Z. Baryon number violation and string topologies. Nucl. Phys. B 2003, 659, 243. [Google Scholar] [CrossRef]
- CMS Collaboration. Strange Particle Production in pp Collisions at = 0.9 and 7 TeV. J. High Energy Phys. 2011, 2011, 64. [Google Scholar] [CrossRef]
- ALICE Collaboration. Production and Baryon-to-Meson Ratios in pp and p-Pb Collisions at = 5.02 TeV at the LHC. Phys. Rev. Lett. 2021, 127, 202301. [Google Scholar] [CrossRef] [PubMed]
- Bierlich, C.; Gustafson, G.; Lönnblad, L.; Shah, H. The dynamic hadronization of charm quarks in heavy-ion collisions. arXiv 2023, arXiv:2309.12452. [Google Scholar]
- ALICE Collaboration. Measurement of Prompt , , and (2455) Production in Proton–Proton Collisions at = 13 TeV. Phys. Rev. Lett. 2022, 128, 012001. [Google Scholar] [CrossRef]
- The ALICE Collaboration. Measurement of the production cross section of prompt baryons at midrapidity in pp collisions at = 5.02 TeV. J. High Energy Phys. 2021, 2021, 159. [Google Scholar] [CrossRef]
- Bierlich, C.; Rasmussen, C.O. Dipole evolution: Perspectives for collectivity and γ*A collisions. J. High Energy Phys. 2019, 2019, 26. [Google Scholar] [CrossRef]
- Aaboud, M.; Aad, G.; Abbott, B.; Abbott, D.C.; Abdinov, O.; Abeloos, B.; Abhayasinghe, D.K.; Abidi, S.H.; AbouZeid, O.S.; Abraham, N.L.; et al. Measurement of long-range two-particle azimuthal correlations in Z-boson tagged pp collisions at = 8 and 13 TeV. Eur. Phys. J. C 2020, 80, 64. [Google Scholar] [CrossRef]
- Abramovsky, V.A.; Gedalin, E.V.; Gurvich, E.G.; Kancheli, O.V. Long Range Azimuthal Correlations in Multiple Production Processes at High-energies. JETP Lett. 1988, 47, 337–339. [Google Scholar]
- The ALICE Collaboration. Anisotropic flow of charged particles in Pb-Pb collisions at = 5.02 TeV. Phys. Rev. Lett. 2016, 116, 132302. [Google Scholar] [CrossRef] [PubMed]
- Noronha-Hostler, J.; Yan, L.; Gardim, F.G.; Ollitrault, J.Y. Linear and cubic response to the initial eccentricity in heavy-ion collisions. Phys. Rev. C 2016, 93, 014909. [Google Scholar] [CrossRef]
- Wei, D.X.; Huang, X.G.; Yan, L. Hydrodynamic response in simulations within a multiphase transport model. Phys. Rev. C 2018, 98, 044908. [Google Scholar] [CrossRef]
- Alver, B.; Back, B.B.; Baker, M.D.; Ballintijn, M.; Barton, D.S.; Betts, R.R.; Bickley, A.A.; Bindel, R.; Busza, W.; Carroll, A. System size, energy, pseudorapidity, and centrality dependence of elliptic flow. Phys. Rev. Lett. 2007, 98, 242302. [Google Scholar] [CrossRef] [PubMed]
- Cacciari, M.; Salam, G.P.; Soyez, G. The anti-kt jet clustering algorithm. J. High Energy Phys. 2008, 2008, 63. [Google Scholar] [CrossRef]
- CMS Collaboration. Studies of Jet Mass in Dijet and W/Z + Jet Events. J. High Energy Phys. 2013, 2013, 90. [Google Scholar] [CrossRef]
- Merino, C.; Pajares, C.; Ranft, J. Effects of interaction of strings in the Dual Parton Model. Phys. Lett. B 1992, 276, 168–172. [Google Scholar] [CrossRef]
- Mohring, H.J.; Ranft, J.; Merino, C.; Pajares, C. String fusion in the dual parton model and the production of anti-hyperons in heavy ion collisions. Phys. Rev. D 1993, 47, 4142–4145. [Google Scholar] [CrossRef]
- Sorge, H.; Berenguer, M.; Stoecker, H.; Greiner, W. Color rope formation and strange baryon production in ultrarelativistic heavy ion collisions. Phys. Lett. B 1992, 289, 6–11. [Google Scholar] [CrossRef]
- Bleicher, M.; Greiner, W.; Stoecker, H.; Xu, N. Strangeness enhancement from strong color fields at RHIC. Phys. Rev. C 2000, 62, 061901. [Google Scholar] [CrossRef]
- Soff, S.; Randrup, J.; Stoecker, H.; Xu, N. Effects of strong color fields on baryon dynamics. Phys. Lett. B 2003, 551, 115–120. [Google Scholar] [CrossRef]
- Amelin, N.S.; Braun, M.A.; Pajares, C. String fusion and particle production at high-energies: Monte Carlo string fusion model. Z. Phys. C 1994, 63, 507–516. [Google Scholar] [CrossRef]
- Armesto, N.; Braun, M.A.; Ferreiro, E.G.; Pajares, C. Strangeness enhancement and string fusion in nucleus-nucleus collisions. Phys. Lett. B 1995, 344, 301–307. [Google Scholar] [CrossRef]
- Bialas, A.; Czyz, W. Chromoelectric Flux Tubes and the Transverse Momentum Distribution in High-energy Nucleus-nucleus Collisions. Phys. Rev. D 1985, 31, 198. [Google Scholar] [CrossRef] [PubMed]
- Kerman, A.K.; Matsui, T.; Svetitsky, B. Particle Production in the Central Rapidity Region of Ultrarelativistic Nuclear Collisions. Phys. Rev. Lett. 1986, 56, 219. [Google Scholar] [CrossRef]
- Gyulassy, M.; Iwazaki, A. Quark and gluon pair production in SU(N) covariant constant fields. Phys. Lett. B 1985, 165, 157–161. [Google Scholar] [CrossRef]
- Braun, M.; Pajares, C. A Probabilistic model of interacting strings. Nucl. Phys. B 1993, 390, 542–558. [Google Scholar] [CrossRef]
- Braun, M.; Pajares, C. Cross-sections and multiplicities in hadron nucleus collisions with interacting color strings. Phys. Rev. D 1993, 47, 114–122. [Google Scholar] [CrossRef]
- Bali, G.S. Casimir scaling of SU(3) static potentials. Phys. Rev. D 2000, 62, 114503. [Google Scholar] [CrossRef]
- Chen, G.; Fries, R.J.; Kapusta, J.I.; Li, Y. Early Time Dynamics of Gluon Fields in High Energy Nuclear Collisions. Phys. Rev. C 2015, 92, 064912. [Google Scholar] [CrossRef]
- Schenke, B.; Tribedy, P.; Venugopalan, R. Event-by-event gluon multiplicity, energy density, and eccentricities in ultrarelativistic heavy-ion collisions. Phys. Rev. C 2012, 86, 034908. [Google Scholar] [CrossRef]
- Schenke, B.; Tribedy, P.; Venugopalan, R. Fluctuating Glasma initial conditions and flow in heavy ion collisions. Phys. Rev. Lett. 2012, 108, 252301. [Google Scholar] [CrossRef]
- Bautista, I.; Pajares, C.; Ramírez, J.E. String percolation in AA and p+p collisions. Rev. Mex. Fis. 2019, 65, 197–223. [Google Scholar] [CrossRef]
- Ramírez, J.E.; Díaz, B.; Pajares, C. Interacting color strings as the origin of the liquid behavior of the quark-gluon plasma. Phys. Rev. D 2021, 103, 094029. [Google Scholar] [CrossRef]
- Bierlich, C.; Chakraborty, S.; Gustafson, G.; Lönnblad, L. Strangeness enhancement across collision systems without a plasma. Phys. Lett. B 2022, 835, 137571. [Google Scholar] [CrossRef]
- Fischer, N.; Sjöstrand, T. Thermodynamical String Fragmentation. J. High Energy Phys. 2017, 2017, 140. [Google Scholar] [CrossRef]
- Argyropoulos, S.; Sjöstrand, T. Effects of color reconnection on tt¯ final states at the LHC. J. High Energy Phys. 2014, 2014, 43. [Google Scholar] [CrossRef]
- Ferreres-Solé, S.; Sjöstrand, T. The space–time structure of hadronization in the Lund model. Eur. Phys. J. C 2018, 78, 983. [Google Scholar] [CrossRef]
- Bierlich, C.; Chakraborty, S.; Gustafson, G.; Lönnblad, L. Hyperfine splitting effects in string hadronization. Eur. Phys. J. C 2022, 82, 228. [Google Scholar] [CrossRef]
- Berges, J.; Floerchinger, S.; Venugopalan, R. Thermal excitation spectrum from entanglement in an expanding quantum string. Phys. Lett. B 2018, 778, 442–446. [Google Scholar] [CrossRef]
- Hunt-Smith, N.; Skands, P. String fragmentation with a time-dependent tension. Eur. Phys. J. C 2020, 80, 1073. [Google Scholar] [CrossRef]
- Gieseke, S.; Kirchgaeßer, P.; Plätzer, S. Baryon production from cluster hadronisation. Eur. Phys. J. C 2018, 78, 99. [Google Scholar] [CrossRef]
- Duncan, C.B.; Kirchgaeßer, P. Kinematic strangeness production in cluster hadronization. Eur. Phys. J. C 2019, 79, 61. [Google Scholar] [CrossRef]
- Ghosh, A.; Ju, X.; Nachman, B.; Siodmok, A. Towards a deep learning model for hadronization. Phys. Rev. D 2022, 106, 096020. [Google Scholar] [CrossRef]
- Chan, J.; Ju, X.; Kania, A.; Nachman, B.; Sangli, V.; Siodmok, A. Fitting a deep generative hadronization model. J. High Energy Phys. 2023, 2023, 84. [Google Scholar] [CrossRef]
- Ilten, P.; Menzo, T.; Youssef, A.; Zupan, J. Modeling hadronization using machine learning. SciPost Phys. 2023, 14, 027. [Google Scholar] [CrossRef]
- Bierlich, C.; Ilten, P.; Menzo, T.; Mrenna, S.; Szewc, M.; Wilkinson, M.K.; Youssef, A.; Zupan, J. Towards a data-driven model of hadronization using normalizing flows. arXiv 2023, arXiv:2311.09296. [Google Scholar]
- Bierlich, C.; Ilten, P.; Menzo, T.; Mrenna, S.; Szewc, M.; Wilkinson, M.K.; Youssef, A.; Zupan, J. Reweighting Monte Carlo Predictions and Automated Fragmentation Variations in Pythia 8. arXiv 2023, arXiv:2308.13459. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bierlich, C. String Interactions as a Source of Collective Behaviour. Universe 2024, 10, 46. https://doi.org/10.3390/universe10010046
Bierlich C. String Interactions as a Source of Collective Behaviour. Universe. 2024; 10(1):46. https://doi.org/10.3390/universe10010046
Chicago/Turabian StyleBierlich, Christian. 2024. "String Interactions as a Source of Collective Behaviour" Universe 10, no. 1: 46. https://doi.org/10.3390/universe10010046
APA StyleBierlich, C. (2024). String Interactions as a Source of Collective Behaviour. Universe, 10(1), 46. https://doi.org/10.3390/universe10010046