Exploring Global Polarization Splitting in Au+Au Collisions at GeV Using Viscous Hydrodynamic Model CLVisc
Abstract
:1. Introduction
2. Model Framework
2.1. Initial Condition: Modified 3D Optical Glauber Model
2.2. (3+1)D Hydrodynamic Evolution: CLVisc
2.3. Spin Polarization of Hyperons
3. Numerical Results
3.1. Global Polarization of and Hyperons
3.2. Effect of the Magnitude of the Net Baryon Density on the Global Polarization Splitting
3.3. Effect of the Tilted Geometry of the Net Baryon Density on the Global Polarization Splitting
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ollitrault, J.Y. Anisotropy as a signature of transverse collective flow. Phys. Rev. D 1992, 46, 229–245. [Google Scholar] [CrossRef] [PubMed]
- Rischke, D.H.; Bernard, S.; Maruhn, J.A. Relativistic hydrodynamics for heavy ion collisions. 1. General aspects and expansion into vacuum. Nucl. Phys. A 1995, 595, 346–382. [Google Scholar] [CrossRef]
- Sorge, H. Elliptical flow: A Signature for early pressure in ultrarelativistic nucleus–nucleus collisions. Phys. Rev. Lett. 1997, 78, 2309–2312. [Google Scholar] [CrossRef]
- Bass, S.; Gyulassy, M.; Stoecker, H.; Greiner, W. Signatures of quark gluon plasma formation in high-energy heavy ion collisions: A Critical review. J. Phys. G 1999, 25, R1–R57. [Google Scholar] [CrossRef]
- Aguiar, C.E.; Hama, Y.; Kodama, T.; Osada, T. Event-by-event fluctuations in hydrodynamical description of heavy ion collisions. Nucl. Phys. A 2002, 698, 639–642. [Google Scholar] [CrossRef]
- Shuryak, E. Why does the quark gluon plasma at RHIC behave as a nearly ideal fluid? Prog. Part. Nucl. Phys. 2004, 53, 273–303. [Google Scholar] [CrossRef]
- Heinz, U.; Snellings, R. Collective flow and viscosity in relativistic heavy-ion collisions. Ann. Rev. Nucl. Part. Sci. 2013, 63, 123–151. [Google Scholar] [CrossRef]
- Busza, W.; Rajagopal, K.; van der Schee, W. Heavy Ion Collisions: The Big Picture, and the Big Questions. Ann. Rev. Nucl. Part. Sci. 2018, 68, 339–376. [Google Scholar] [CrossRef]
- Aoki, Y.; Endrodi, G.; Fodor, Z.; Katz, S.D.; Szabo, K.K. The Order of the quantum chromodynamics transition predicted by the standard model of particle physics. Nature 2006, 443, 675–678. [Google Scholar] [CrossRef]
- Becattini, F.; Piccinini, F.; Rizzo, J. Angular momentum conservation in heavy ion collisions at very high energy. Phys. Rev. C 2008, 77, 024906. [Google Scholar] [CrossRef]
- Becattini, F.; Piccinini, F. The Ideal relativistic spinning gas: Polarization and spectra. Ann. Phys. 2008, 323, 2452–2473. [Google Scholar] [CrossRef]
- Liang, Z.T.; Wang, X.N. Globally polarized quark–gluon plasma in non-central A+A collisions. Phys. Rev. Lett. 2005, 94, 102301, Erratum: Phys. Rev. Lett. 2006, 96, 039901. [Google Scholar] [CrossRef] [PubMed]
- Liang, Z.T.; Wang, X.N. Spin alignment of vector mesons in non-central A+A collisions. Phys. Lett. B 2005, 629, 20–26. [Google Scholar] [CrossRef]
- Betz, B.; Gyulassy, M.; Torrieri, G. Polarization probes of vorticity in heavy ion collisions. Phys. Rev. C 2007, 76, 044901. [Google Scholar] [CrossRef]
- Gao, J.H.; Chen, S.W.; Deng, W.t.; Liang, Z.T.; Wang, Q.; Wang, X.N. Global quark polarization in non-central A+A collisions. Phys. Rev. C 2008, 77, 044902. [Google Scholar] [CrossRef]
- Chen, S.w.; Deng, J.; Gao, J.h.; Wang, Q. A General derivation of differential cross-section in quark-quark scatterings at fixed impact parameter. Front. Phys. China 2009, 4, 509–516. [Google Scholar] [CrossRef]
- Huang, X.G.; Huovinen, P.; Wang, X.N. Quark Polarization in a Viscous quark–gluon Plasma. Phys. Rev. C 2011, 84, 054910. [Google Scholar] [CrossRef]
- Adamczyk, L.; Adkins, J.K.; Agakishiev, G.; Aggarwal, M.M.; Ahammed, Z.; Ajitanand, N.N.; Alekseev, I.; Anderson, D.M.; Aoyama, R.; Aparin, A.; et al. Global Λ hyperon polarization in nuclear collisions: Evidence for the most vortical fluid. Nature 2017, 548, 62–65. [Google Scholar] [CrossRef]
- Adam, J.; Adamczyk, L.; Adams, J.R.; Adkins, J.K.; Agakishiev, G.; Aggarwal, M.M.; Ahammed, Z.; Alekseev, I.; Anderson, D.M.; Aoyama, R.; et al. Polarization of () hyperons along the beam direction in Au+Au collisions at = 200 GeV. Phys. Rev. Lett. 2019, 123, 132301. [Google Scholar] [CrossRef]
- Abdulhamid, M.I.; Aboona, B.E.; Adam, J.; Adamczyk, L.; Adams, J.R.; Aggarwal, I.; Aggarwal, M.M.; Ahammed, Z.; Alpatov, E.; Anderson, D.M.; et al. Global polarization of and hyperons in Au+Au collisions at and 27 GeV. Phys. Rev. C 2023, 108, 014910. [Google Scholar] [CrossRef]
- Fu, B.; Xu, K.; Huang, X.G.; Song, H. Hydrodynamic study of hyperon spin polarization in relativistic heavy ion collisions. Phys. Rev. C 2021, 103, 024903. [Google Scholar] [CrossRef]
- Ivanov, Y.B.; Toneev, V.D.; Soldatov, A.A. Estimates of hyperon polarization in heavy-ion collisions at collision energies = 4–40 GeV. Phys. Rev. C 2019, 100, 014908. [Google Scholar] [CrossRef]
- Ivanov, Y.B. Global Λ polarization in moderately relativistic nuclear collisions. Phys. Rev. C 2021, 103, L031903. [Google Scholar] [CrossRef]
- Wu, H.Z.; Pang, L.G.; Huang, X.G.; Wang, Q. Local spin polarization in high energy heavy ion collisions. Phys. Rev. Res. 2019, 1, 033058. [Google Scholar] [CrossRef]
- Ryu, S.; Jupic, V.; Shen, C. Probing early-time longitudinal dynamics with the Λ hyperon’s spin polarization in relativistic heavy-ion collisions. Phys. Rev. C 2021, 104, 054908. [Google Scholar] [CrossRef]
- Yi, C.; Pu, S.; Yang, D.L. Reexamination of local spin polarization beyond global equilibrium in relativistic heavy ion collisions. Phys. Rev. C 2021, 104, 064901. [Google Scholar] [CrossRef]
- Alzhrani, S.; Ryu, S.; Shen, C. Λ spin polarization in event-by-event relativistic heavy-ion collisions. Phys. Rev. C 2022, 106, 014905. [Google Scholar] [CrossRef]
- Wu, X.Y.; Yi, C.; Qin, G.Y.; Pu, S. Local and global polarization of Λ hyperons across RHIC-BES energies: The roles of spin hall effect, initial condition, and baryon diffusion. Phys. Rev. C 2022, 105, 064909. [Google Scholar] [CrossRef]
- Xia, X.L.; Li, H.; Tang, Z.B.; Wang, Q. Probing vorticity structure in heavy-ion collisions by local Λ polarization. Phys. Rev. C 2018, 98, 024905. [Google Scholar] [CrossRef]
- Wei, D.X.; Deng, W.T.; Huang, X.G. Thermal vorticity and spin polarization in heavy-ion collisions. Phys. Rev. C 2019, 99, 014905. [Google Scholar] [CrossRef]
- Guo, Y.; Shi, S.; Feng, S.; Liao, J. Magnetic Field Induced Polarization Difference between Hyperons and Anti-hyperons. Phys. Lett. B 2019, 798, 134929. [Google Scholar] [CrossRef]
- Li, H.; Pang, L.G.; Wang, Q.; Xia, X.L. Global Λ polarization in heavy-ion collisions from a transport model. Phys. Rev. C 2017, 96, 054908. [Google Scholar] [CrossRef]
- Abdallah, M.S.; Aboona, B.E.; Adam, J.; Adamczyk, L.; Adams, J.R.; Adkins, J.K.; Agakishiev, G.; Aggarwal, I.; Aggarwal, M.M.; Ahammed, Z.; et al. Pattern of global spin alignment of ϕ and K*0 mesons in heavy-ion collisions. Nature 2023, 614, 244–248. [Google Scholar] [CrossRef]
- Liu, S.Y.F.; Yin, Y. Spin Hall effect in heavy-ion collisions. Phys. Rev. D 2021, 104, 054043. [Google Scholar] [CrossRef]
- Fu, B.; Pang, L.; Song, H.; Yin, Y. Signatures of the spin Hall effect in hot and dense QCD matter. arXiv 2022, arXiv:2201.12970. [Google Scholar]
- Jiang, Z.F.; Wu, X.Y.; Cao, S.; Zhang, B.W. Directed flow and global polarization in Au+Au collisions across energies covered by the beam energy scan at RHIC. Phys. Rev. C 2023, 107, 034904. [Google Scholar] [CrossRef]
- Jiang, Z.F.; Wu, X.Y.; Cao, S.; Zhang, B.W. Hyperon polarization and its relation with directed flow in high-energy nuclear collisions. Phys. Rev. 2023, 108, 064904. [Google Scholar] [CrossRef]
- Pang, L.G.; Hatta, Y.; Wang, X.N.; Xiao, B.W. Analytical and numerical Gubser solutions of the second-order hydrodynamics. Phys. Rev. D 2015, 91, 074027. [Google Scholar] [CrossRef]
- Pang, L.G.; Petersen, H.; Wang, X.N. Pseudorapidity distribution and decorrelation of anisotropic flow within the open-computing-language implementation CLVisc hydrodynamics. Phys. Rev. C 2018, 97, 064918. [Google Scholar] [CrossRef]
- Wu, X.Y.; Pang, L.G.; Qin, G.Y.; Wang, X.N. Longitudinal fluctuations and decorrelations of anisotropic flows at energies available at the CERN Large Hadron Collider and at the BNL Relativistic Heavy Ion Collider. Phys. Rev. C 2018, 98, 024913. [Google Scholar] [CrossRef]
- Wu, X.Y.; Qin, G.Y.; Pang, L.G.; Wang, X.N. (3+1)-D viscous hydrodynamics at finite net baryon density: Identified particle spectra, anisotropic flows, and flow fluctuations across energies relevant to the beam-energy scan at RHIC. Phys. Rev. C 2022, 105, 034909. [Google Scholar] [CrossRef]
- Wu, J.; Cao, S.; Li, F. Partonic Critical Opalescence and Its Impact on the Jet Quenching Parameter . arXiv 2022, arXiv:2208.14297. [Google Scholar]
- Zhao, W.; Ke, W.; Chen, W.; Luo, T.; Wang, X.N. From Hydrodynamics to Jet Quenching, Coalescence, and Hadron Cascade: A Coupled Approach to Solving the RAA⊗v2 Puzzle. Phys. Rev. Lett. 2022, 128, 022302. [Google Scholar] [CrossRef]
- Vitiuk, O.; Bravina, L.V.; Zabrodin, E.E. Is different and polarization caused by different spatio-temporal freeze-out picture? Phys. Lett. B 2020, 803, 135298. [Google Scholar] [CrossRef]
- Cimerman, J.; Karpenko, I.; Tomasik, B.; Huovinen, P. Next-generation multifluid hydrodynamic model for nuclear collisions at sNN from a few GeV to a hundred GeV. Phys. Rev. C 2023, 107, 044902. [Google Scholar] [CrossRef]
- Loizides, C.; Kamin, J.; d’Enterria, D. Improved Monte Carlo Glauber predictions at present and future nuclear colliders. Phys. Rev. C 2018, 97, 054910, Erratum: Phys. Rev. C 2019, 99, 019901.. [Google Scholar] [CrossRef]
- Jiang, Z.F.; Yang, C.B.; Peng, Q. Directed flow of charged particles within idealized viscous hydrodynamics at energies available at the BNL Relativistic Heavy Ion Collider and at the CERN Large Hadron Collider. Phys. Rev. C 2021, 104, 064903. [Google Scholar] [CrossRef]
- Jiang, Z.F.; Cao, S.; Wu, X.Y.; Yang, C.B.; Zhang, B.W. Longitudinal distribution of initial energy density and directed flow of charged particles in relativistic heavy-ion collisions. Phys. Rev. C 2022, 105, 034901. [Google Scholar] [CrossRef]
- Jiang, Z.F.; Cao, S.; Xing, W.J.; Wu, X.Y.; Yang, C.B.; Zhang, B.W. Probing the initial longitudinal density profile and electromagnetic field in ultrarelativistic heavy-ion collisions with heavy quarks. Phys. Rev. C 2022, 105, 054907. [Google Scholar] [CrossRef]
- Bozek, P.; Wyskiel, I. Directed flow in ultrarelativistic heavy-ion collisions. Phys. Rev. C 2010, 81, 054902. [Google Scholar] [CrossRef]
- Bozek, P. Flow and interferometry in 3+1 dimensional viscous hydrodynamics. Phys. Rev. C 2012, 85, 034901. [Google Scholar] [CrossRef]
- Pang, L.G.; Endrődi, G.; Petersen, H. Magnetic-field-induced squeezing effect at energies available at the BNL Relativistic Heavy Ion Collider and at the CERN Large Hadron Collider. Phys. Rev. C 2016, 93, 044919. [Google Scholar] [CrossRef]
- Denicol, G.S.; Gale, C.; Jeon, S.; Monnai, A.; Schenke, B.; Shen, C. Net baryon diffusion in fluid dynamic simulations of relativistic heavy-ion collisions. Phys. Rev. C 2018, 98, 034916. [Google Scholar] [CrossRef]
- Bozek, P. Splitting of proton-antiproton directed flow in relativistic heavy-ion collisions. Phys. Rev. C 2022, 106, L061901. [Google Scholar] [CrossRef]
- Shen, C.; Schenke, B. Dynamical initial state model for relativistic heavy-ion collisions. Phys. Rev. C 2018, 97, 024907. [Google Scholar] [CrossRef]
- Bialas, A.; Jezabek, M. Bremsstrahlung from color charges as a source of soft particle production in hadronic collisions. Phys. Lett. B 2004, 590, 233–238. [Google Scholar] [CrossRef]
- Shen, C.; Alzhrani, S. Collision-geometry-based 3D initial condition for relativistic heavy-ion collisions. Phys. Rev. C 2020, 102, 014909. [Google Scholar] [CrossRef]
- Li, X.; Jiang, Z.F.; Cao, S.; Deng, J. Evolution of global polarization in relativistic heavy-ion collisions within a perturbative approach. Eur. Phys. J. C 2023, 83, 96. [Google Scholar] [CrossRef]
- Jeżabek, M.; Rybicki, A. Baryon number in proton-proton and proton-nucleus high energy collisions. Eur. Phys. J. Plus 2021, 136. [Google Scholar] [CrossRef]
- Akamatsu, Y.; Asakawa, M.; Hirano, T.; Kitazawa, M.; Morita, K.; Murase, K.; Nara, Y.; Nonaka, C.; Ohnishi, A. Dynamically integrated transport approach for heavy-ion collisions at high baryon density. Phys. Rev. C 2018, 98, 024909. [Google Scholar] [CrossRef]
- Monnai, A.; Schenke, B.; Shen, C. Equation of state at finite densities for QCD matter in nuclear collisions. Phys. Rev. C 2019, 100, 024907. [Google Scholar] [CrossRef]
- Monnai, A.; Schenke, B.; Shen, C. QCD Equation of State at Finite Chemical Potentials for Relativistic Nuclear Collisions. Int. J. Mod. Phys. A 2021, 36, 2130007. [Google Scholar] [CrossRef]
- Becattini, F.; Chandra, V.; Del Zanna, L.; Grossi, E. Relativistic distribution function for particles with spin at local thermodynamical equilibrium. Ann. Phys. 2013, 338, 32–49. [Google Scholar] [CrossRef]
- Fang, R.-h.; Pang, L.-g.; Wang, Q.; Wang, X.-n. Polarization of massive fermions in a vortical fluid. Phys. Rev. C 2016, 94, 024904. [Google Scholar] [CrossRef]
- Karpenko, I.; Becattini, F. Lambda polarization in heavy ion collisions: From RHIC BES to LHC energies. Nucl. Phys. A 2019, 982, 519–522. [Google Scholar] [CrossRef]
- Hidaka, Y.; Pu, S.; Yang, D.L. Nonlinear Responses of Chiral Fluids from Kinetic Theory. Phys. Rev. D 2018, 97, 016004. [Google Scholar] [CrossRef]
- Yi, C.; Pu, S.; Gao, J.H.; Yang, D.L. Hydrodynamic helicity polarization in relativistic heavy ion collisions. Phys. Rev. C 2022, 105, 044911. [Google Scholar] [CrossRef]
- Becattini, F.; Buzzegoli, M.; Palermo, A. Spin-thermal shear coupling in a relativistic fluid. Phys. Lett. B 2021, 820, 136519. [Google Scholar] [CrossRef]
- Liu, S.Y.F.; Yin, Y. Spin polarization induced by the hydrodynamic gradients. J. High Energy Phys. 2021, 2021, 188. [Google Scholar] [CrossRef]
- Fu, B.; Liu, S.Y.F.; Pang, L.; Song, H.; Yin, Y. Shear-Induced Spin Polarization in Heavy-Ion Collisions. Phys. Rev. Lett. 2021, 127, 142301. [Google Scholar] [CrossRef]
- Becattini, F.; Karpenko, I.; Lisa, M.; Upsal, I.; Voloshin, S. Global hyperon polarization at local thermodynamic equilibrium with vorticity, magnetic field and feed-down. Phys. Rev. C 2017, 95, 054902. [Google Scholar] [CrossRef]
- Huang, X.G. Vorticity and Spin Polarization—A Theoretical Perspective. Nucl. Phys. A 2021, 1005, 121752. [Google Scholar] [CrossRef]
- Serenone, W.M.; Barbon, J.G.P.; Chinellato, D.D.; Lisa, M.A.; Shen, C.; Takahashi, J.; Torrieri, G. Λ polarization from thermalized jet energy. Phys. Lett. B 2021, 820, 136500. [Google Scholar] [CrossRef]
- Sheng, X.L.; Oliva, L.; Liang, Z.T.; Wang, Q.; Wang, X.N. Spin Alignment of Vector Mesons in Heavy-Ion Collisions. Phys. Rev. Lett. 2023, 131, 042304. [Google Scholar] [CrossRef]
- Harris, J.W.; Müller, B. “QGP Signatures” Revisited. arXiv 2023, arXiv:2308.05743. [Google Scholar]
- Huang, A.; She, D.; Shi, S.; Huang, M.; Liao, J. Dynamical magnetic fields in heavy-ion collisions. Phys. Rev. C 2023, 107, 034901. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ye, S.; Yuan, X.; Jiang, Z.
Exploring Global Polarization Splitting in Au+Au Collisions at
Ye S, Yuan X, Jiang Z.
Exploring Global Polarization Splitting in Au+Au Collisions at
Ye, Shasha, Xuefei Yuan, and Zefang Jiang.
2024. "Exploring Global Polarization Splitting in Au+Au Collisions at
Ye, S., Yuan, X., & Jiang, Z.
(2024). Exploring Global Polarization Splitting in Au+Au Collisions at