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Abstract: Particular Kottler spacetimes are analytically investigated. The investigated spacetimes are
spherically symmetric nonrotating spacetimes endowed with a Schwarzschild solid-angle element.
SchwarzschildNairiai spacetimes, Schwarzschild spacetimes with a linear term, and Schwarzschild
spacetimes with a linear term and a cosmological constant are studied. The infinite-redshift surfaces
are analytically written. To this aim, the parameter spaces of the models are analytically investigated,
and the conditions for which the analytical radii are reconducted to the physical horizons are used to
set and to constrain the parameter spaces. The coordinate-singularity-avoiding coordinate extensions
are newly written. Schwarzschild spacetimes with a linear term and a cosmological constant termare
analytically studied, and the new singularity-avoiding coordinate extensions are detailed. The new
roles of the linear term and of the cosmological constant term in characterizing the Schwarzschild
radius are traced. The generalized Schwarzschild–deSitter case and generalized Schwarzschild–anti-
deSitter case are characterized in a different manner. The weak field limit is newly recalled. The
embeddings are newly provided. The quantum implementation is newly envisaged. The geometrical
objects are newly calculated. As a result, for the Einstein field equations, the presence of quintessence
is newly excluded. The Birkhoff theorem is newly proven to be obeyed.

Keywords: general relativity; generalized Schwarzschild black hole spacetimes; cosmological constant;
linear term

1. Introduction

The linearized perturbation problem of deSitter background spacetimes is solved in [1]
for field perturbations.

The study of the quantum nature of generalized Schwarzschild–deSitter spacetimes
and that of generalized Schwarzschild–anti-deSitter ones are required after the pioneering
approach to the quantum perturbative description of the difference between the analytical
radii (i.e., the surfaces of infinite redshift) of these spacetimes and their physical horizons af-
ter the implementation of the Schroedinger equation within the Regge–Wheeler formalism,
as taken from [2].

The study of the parameter space of generalized Schwarzschild–deSitter spacetimes
is required after the pioneering work of [2], in which some of the features of the duty of
the cosmological constant term slightly modifying the Schwarzschild radius are par-
tially presented.

The initial studies of generalized Schwarzschild spacetimes with a positive-valued cos-
mological constant term are accredited to Nariai [3–5]. In detail, the disposed Schwarzschild–
deSitter spacetimes are found to be compatible with the position of singularity-avoiding co-
ordinate extensions whose analytical expressions are set and whose remainder calculations
are demonstrated straightforwardly to hold independent of the sign of the cosmological
constant term.

A spherically symmetric generalized spacetime containing a Schwarzschild-like term,
a linear term, and a cosmological constant term was introduced by [6] as an exact solution
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for locally conformal invariant Weyl gravity, which is apt at investigating galaxy rotation
curves. Generalized spacetimes read as follows:

ds2 = c2
(

1 − β(2 − 3βγ)

r
− 3βγ + γr − kr2

)
magentadx2

0+

− 1(
1 − β(2−3βγ)

r − 3βγ + γr − kr2
) dr2 − r2dθ2 − r2(sin θ)2dϕ2. (1)

The aim of this introductory example is the verification of nonrotating spherically
symmetric spacetimes whose infinite-redshift surfaces can be studied with success [7], i.e.,
spacetimes in which the parameters involved in the generalization of the Schwarzschild
spacetime are not independent, but are constrained from an analytical point of view.
Furthermore, in the presented instance, further characterizations are present, arising from
observational evidence.

The further implications of a linear term added to a Schwarzschild spacetime are
studied in [8].

A more recent parameterization of spherically symmetric Schwarzschild spacetimes is
discussed in [9], for which the characterizations are discussed in [10]. The allowed ranges of
the parameters defining the exponents of the generalization addends are estimated in [11].
Further examination of the spacetime schemes is presented in [12].

Kottler spacetimes were introduced in [13]. Minnkowski spacetimes with a cosmologi-
cal constant were investigated in [14] based on the motivations presented in [15]. The aim
of the present work is to newly investigate some possible generalizations of Schwarzschild
spacetimes endowed with a Schwarzschild solid-angle element in some pertinent instances
for which the comparison with the phenomenological evidence is newly demonstrated and
holds. In particular, the presence of a cosmological constant, that of a linear term, and that
of both a cosmological constant term and a linear term are newly taken into account.

In all the instances, the infinite-redshift surfaces of the models are studied. The param-
eter spaces of the models are set and constrained. As results, the conditions required for the
analytical radii to be reconducted to the physical horizons are newly analytically proven.
The experimental validation techniques are introduced. The quantum implementation
is approached.

In the case of generalized Schwarzschild spacetimes with a cosmological constant
term, both the Schwarzschild–deSitter case and the Schwarzshild–anti-deSitter one are
newly taken into account. The pioneering results of [2] were derived for the Schwarzschild–
deSitter case only; the case of a negative value of the cosmological constant was considered
in [16]. In the present paper, the cases are newly considered and newly completed in the
study of the new constraints on the cosmological constant term, as well as for the new
role of the cosmological constant in the new modifications of the Schwarzschild radius.
The new constraints on the parameter space of the model are defined. Furthermore, the
same new studies are applied to the (unexplored) Schwarzschild–anti-deSitter case. The
newly found analytical expressions of the radii are scrutinized for the obtention of the new
analytical expressions of the physical horizons from which the new parameter space is
further newly investigated. The examined generalized spacetimes are newly demonstrated
to exhibit different properties in the Schwarzschild–deSitter case and in the Schwarzschild–
anti-deSitter one. The singularity-avoiding coordinate extensions are demonstrated to
be compatible with the Nairai transformations [5] in a comparison with the case of a
generalized Schwarzschild spacetime with a linear term and a cosmological constant, after
which it is newly proven that, after the (well-posed) limit to a vanishing linear term, the
sign of the value of the cosmological constant does not modify the orders of the remainders
as far as the cosmological constant term is concerned.

Generalized Schwarzschild spacetimes with a linear term are newly prospected. The
analytical radii are written, and the conditions for the position of the physical horizons
are assessed. The character of the linear term in modifying the representations of the
Schwarzschild radius is newly qualified. The coordinate-singularity-avoiding coordinates
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extensions are newly found; from this, the parameter space is newly further stamped. In
particular, the new features of the linear term in constraining the parameter space of the
model are newly typified.

Generalized Schwarzschild spacetimes with a linear term and with a cosmological-
constant term are newly surveyed. The role of the linear term and that of the cosmological-
constant term in defining the parameter space of the scheme are newly portrayed. The
analytical expressions of the four radii are newly found and newly discussed; the analytical
expressions of the two physical horizons are newly found and newly discussed, from which
new constraints on the parameter space of the scheme are established. The coordinate-
singularity-avoiding coordinates extensions are newly written and newly reconnoitered;
from this analysis, the remainders are newly proven not to be affected after the sign of
the cosmological-constant term. The parameter space of generalized spacetime is newly
researched. The aspects of the linear term and those of the cosmological-constant term
are newly read as far as their tasks in modifying the Schwarzschild radius are concerned.
The results are newly proven to hold in a different manner in the case of a positive sign
of the cosmological constant and in that of a negative sign of the cosmological constant,
i.e., such that generalized spacetimes exhibit new different properties. The limit of a
vanishing value of the linear term is considered in a new manner for the comparison with
the cases of a generalized Schwarzschild spacetime with a cosmological-constant term is
newly considered; such a limit is newly probed to be well posed.

As a further new result, the study of the Einstein field equations allows one to exclude
that the presence of the linear term in the metric tensor can be interpreted as mimicking
quintessence matter.

The paper finds direct applications in the analytical study of the infinite-redshift
surfaces of generalized Schwarzschild spacetimes. The paper is organized as follows.

In Section 1, generalized Schwarzschild spacetimes are introduced.
In Section 2, some of the possible generalizations of the Schwarzschild spacetimes

are proposed.
In Section 3, the geometrical objects are written and the Einstein field equations (EFEs)

are calculated from the Eisntein–Hilbert action according to [17]. As a further new result,
the possibility of the presence of quintessence is ruled out after the analysis of the Einstein
field equations.

In Section 4, generalized Schwarzschild spacetimes with a cosmological constant
are newly analyzed. As results, the analytical radii are newly written; the role of the
cosmological-constant term in modifying the Schwarzschild radius is newly defined; the
Nariai coordinate-singularity-avoiding coordinates extensions are newly demonstrated to
be well posed also in the Schwarzschild–anti-deSitter case.

In Section 5, generalized Schwarzschild spacetimes with a linear term are newly
explored. The analytical expressions of the radii are found, and the analytical expressions
of the physical horizons are written; the parameter space of the model is newly assessed.
The coordinate-singularity-avoiding coordinates extensions are newly written and newly
probed, form which new constraints on the parameter space of the scheme are learned.

In Section 6, generalized Schwarzschild spacetimes with a linear term and a cosmologi-
cal constant are newly scrutinized. The analytical radii and the physical horizons are newly
written, from which the parameter space of the spacetimes is newly set. The analytical
expressions of the physical horizons are newly written, from which the new constraints on
the parameter space of the scheme are newly obtained. The coordinate-singularity-avoiding
coordinates transformations are newly implemented, after which the nontrivial initial value
of the radial variable is newly calculated. From these analyses, the comparison with gener-
alized Schwarzschild spacetimes with a cosmological constant is newly conducted as far as
the pertinent aspects are concerned.

In Section 7, the embedding diagrams are newly analytically demonstrated, from
which the new behaviors are exhibited from the R1212 of the embedding manifold; and the
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weak-field limit is newly addressed, from whose analyses the different roles of the linear
term and that of the cosmological constant are newly spelled out.

In Section 8, the quantum features of generalized spacetimes are newly prospec-
tively envisaged.

In Section 9, the concluding remarks are given.

2. About Some Generalizations of the Schwarzschild Spacetimes
In the present paper, the following specification of generalized Schwarzschild space-

times is considered:

ds2 = c2
(

1 − rs

r
− k1

r1+3w1
− k2

r1+3w2

)
magentadx2

0+

− 1(
1 − rs

r − k1
r1+3w1

− k2
r1+3w2

) dr2 − r2dθ2 − r2 sin2 θdϕ2 (2)

according to specific values of the exponents w1 and w2.
In [9], two particular spacetimes of generalized Reissner–Nordstrom–deSitter black

hole spacetime, i.e.,

ds2 = c2

(
1 − rs

r
+

r2
Q

r2 − kr2

)
magentadx2

0+

− 1(
1 − rs

r +
r2

Q
r2 − kr2

)dr2 − r2dθ2 − r2(sin θ)2dϕ2, (3)

which, in their turn, correspond to a Reissner–Nordstrom–deSitter spacetime, i.e.,

ds2 = c2

(
1 − rs

r
+

r2
Q

r2 +
k1

r1+3w

)
magentadx2

0+

− 1(
1 − rs

r +
rQ
r2

k1
r1+3w

)dr2 − r2dθ2 − r2(sin θ)2dϕ2 (4)

were explored; as a result, an outer horizon (of deSitter type) at r = rQ with −1 < w <
−1/3 was investigated, and an inner horizon (of the black hole type) was found at r = rQ
within the choice − 1

3 < w < 0.
The physically relevant ranges of the parameters wi of generalized metrics were

studied in [11] as
−1 ≤ wi ≤≃ 0.6 (5)

and further scrutinized in [18–20].
The geometrical features and effects presented in the spacetimes are juxtaposed in [10].
A generalized Kiselev spacetimes endowed with a Schwarzschild solid-angle element

is proposed in [9] as

ds2 = c2

(
1 − rs

r
+

r2
Q

r2 −
n=N

∑
n=1

knrn

)
magentadx2

0+

− 1(
1 − rs

r +
r2

Q
r2 − ∑n=N

n=1 knrn
)dr2 − r2dθ2 − r2(sin θ)2dϕ2. (6)

Particular values from the summations Equation (6) are to be picked up.
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In [21], the spacetimes

ds2 = c2
(

1 − rs

r
− Λ

3
r2 − K

r3ω+1

)
magentadx2

0+

− dr2(
1 − rs

r − Λ
3 r2 − K

r3ω+1

) − r2dθ2 − r2(sinθ)2dϕ2 (7)

are studied.
The cosmological constant is parameterized after the methods exposed in [22,23] as a

function of ω, of the positive normalization factor of the density of the fluid, and of r. The
different qualities of the physical horizons are hinted at but not parameterized; in particular,
no constraints on the phase space are investigated for the merging of the analytical radii.
Particular cases of ω are considered. The interaction between incident plane wave and
black hole are studied at the classical level and at the semiclassical one after the analysis of
the scattering cross section, of the absorption section, and of the polarization. The tools of
geometric optics are applied. The study of the Ljapunov exponents is performed.

In the present work, generalized Schwarzschild spacetimes with a cosmological constant,
generalized Schwarzschild spacetimes with a linear term, and generalized Schwarzschild
spacetimes with a linear term and with a cosmological-constant term are further studied,
for which the constraints on the parameter space are refined as far as the inequalities
connecting the Schwarzschild radius, the coefficient of the linear term, and the cosmological
constant are concerned. In particular, the conditions to obtain the physical horizons
after the definitions of the analytical radii are newly set. The coordinate-singularity-
avoiding coordinates extensions are newly written; from the expressions of the coordinates
extensions, the roles of the parameters in modifying the features of the Schwarszchild
radius are newly described analytically.

The main results in the analysis of the particular spacetime

ds2 =

(
1 − rs

r
+ β̃r +

Λ̃
3

r2
)

magentadx2
0 −

1

1 − rs
r + β̃r + Λ̃

3 r2
dr2 − r2sinθdϕ2 + r2dθ2 (8)

were scrutinized in [12]. It is recalled to be a solution of the EFEs of several models,
i.e., conformal gravity [6,24,25], de Rham–Gabadadze–Tolley (dRGT) massive gravity [26],
and modified gravity [27,28].

As stressed in [12], the relevance of studying the metric is being outlined in the new
era of the LIGO experiment [29] and in the Event Horizon experiment [30,31]; more in
detail, in the latter case, the possibility of comparing the shadow of the black hole in the
Sagittarius A∗ is being considered in the case of a Kerr–Newman black hole and in the case
of other spacetimes, as far as the difficulties in the fitting of the parameters are concerned.

The roles of the linear terms are recapitulated in [12] from a geometrical point of
view. It is the aim of the present paper to convey the geometrical meaning of the pa-
rameters, as they are on the left-hand-side of the EFEs. In this case, the parameter β̃
imposes algebraic constraints between the curvature invariants at any generic spacetime
point [32]. The procedures followed in [12] are based on tracing the local approach; more
in detail, the scalar polynomial curvature invariants, the Cartan curvature invariants, and
the Newman–Penrose curvature scalars are reported.

The local measurements of the parameters is performed as far as the size of the area of
the horizon [33]. Before proceeding further, it is the aim of the present paper to estimate
the values of the physical radii of the horizons as a function of the Schwarzschild radius,
the parameter of the linear term, and that of the cosmological constant before continuing
with the research lines proposed in [12] in order to define the infinite-redshift surfaces.

It is, nevertheless, possible to infer form the EFEs that the geometrical aspects of the β̃
parameter can mimic matter features (i.e., features which are due to the addends on the
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right-hand-side of the EFEs): in [12], it is inferred that this addend can mimic the aspects of
the Kerr black hole as far as the accretion is concerned.

Similarly, the effects of the β̃ term on the shadow of the black hole are also inferred.
As determined in [34], the geometrical features of the β̃ term do not mimic any dark energy
component interacting with the black hole.

The extensive items of the bibliography are provided within [12].
Some of the main differences in the models of which the metric is solution are outlined

in [12] as the features after the evaporation.

3. Methodologies

In the present approach, the guidelines of [17] are followed. In particular, the Einstein–
Hilbert action is taken. The matter content is never placed into the metric tensor, not even in
the ultra-relativistic limit; this way, the addends in the components of the metric tensor do
not refer to matter fields, but the geometrical qualities of the spacetime. Furthermore, the
addends qualifying the geometrical properties give rise to further addends in the left-hand
side of the EFEs and do not refer to matter content as follows.

The relevant geometric objects for a spherically symmetric metric generalizing the
Schwarzschild metric, endowed with a Schwarzschild solid angle, whose line element is
spelled as

ds2 = c2(1 − rs

r
+ ψ(r))magentadx2

0+ (9)

− 1
(1 − rs

r + ψ(r))
dr2 − r2dθ2 − r2(sinθ)2dϕ2, (10)

where (1 − rs
r + ψ(r)) is the generalization of the Schwarzschild term, qualified after the

functional dependence on the function ψ(r) and after the parameters qualifying it are here listed.
The Ricci tensor Rµν is written as

Rtt =
1
r2 [r − rs + rψ]

[
r

d2ψ

dr2 + 2
dψ

dr

]
, (11a)

Rrr = − 1
2[r − rs + rψ]

[
r

d2ψ

dr2 + 2
dψ

dr

]
, (11b)

Rθθ = −ψ + r
dψ

dr
, (11c)

Rϕϕ =

[
−ψ + r

dψ

dr

]
(sinθ)2. (11d)

The Ricci scalar R is written as

R =
1
r2

[
r2 d2ψ

dr2 + 4r
dψ

dr
+ 2ψ

]
. (12)

The geometrical objects therefore contain the terms corresponding to the linear term
and those corresponding to the cosmological-constant term.

The terms arising due to the linear term have the qualities of a fluid.
The cosmological-constant terms are qualified after the sign of the value of the cosmo-

logical constant as generalized deSitter model or generalized anti-deSitter model.
The geometrical objects can be expanded as series of the parameters qualifying the

modifying function ψ only if the parameters are infinitesimal; even though the role of
the parameters is to modify the Schwarzschild radius only slightly, this duty can be ac-
complished also within the portions of the parameter spaces, where the parameters are
not infinitesimal.

The EFEs are written as
Gab −

1
2

gabR = 0 (13)
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Indeed, the presence of matter is not placed in the metric tensor, as from [17].
The EFE Equation (13) can be spelled out according to Equations (11) and (12). The

following constraints on the modification addend ψ are obtained.
From the tt component of the EFEs and from the rr component of the EFEs, the new

constraints are found:

r
[

r
d2ψ

dr2 + 2
dψ

dr

]
≡ 1

2

[
r2 d2ψ

dr2 + 4r
dψ

dr
+ 2ψ

]
. (14)

From the θθ component of the EFEs and from the ϕϕ component of the EFEs, the new
constraint are found:

−ψ + r
dψ

dr
=

1
2

[
r2 d2ψ

dr2 + 4r
dψ

dr
+ 2ψ

]
(15)

The constraints Equations (14) and (15) ensure that the Birkhoff theorem is obeyed, to
which the condition

1 − rs

r
+ ψ(r) ̸= 0 (16)

must be imposed. The surfaces

1 − rs

r
+ ψ(r) = 0 (17)

individuate the infinite-redshift surfaces of the models, which are investigated in the
present work.

3.1. Geometrical Qualities of a Linear Term

It is possible to inquire about the geometrical qualities of the the addends possibly
obtained in ψ(r).

More in detail, as an example, it is possible to inquire about the geometrical interpreta-
tion of a linear addend as ψ(r = k1/r). In particular, it is possible to investigate whether
a linear term modifying the EFEs can mimic (in the sense that the addends due to the
geometric term are on the left-hand side of the EFEs, while the addends referring to matter
contributions should be on the right-hand side of the EFEs) the presence of quintessence: it
is straightforwardly calculated that, in general, the radial and transverse pressures differ;
for this reason, the linear term in the metric tensor is, thus, not mimicking quintessence.
It might be interpreted as mimicking some kind of anisotropic fluid matter: therefore,
quintessence can be excluded as “geometrically” mimicked as a source since the equation
of state p = ωρ assumes that the pressure is isotropic.

Methodologies to Investigate the Role of the Linear Term

In [24], some aspects of conformal gravity are studied. The Birkhoff theorem in con-
formal gravity is enunciated: “the most general spherically symmetric (electrovacuum)
solution is stationary, i.e., “absolutely stable” with respect to spherically symmetric pertur-
bations”. Furthermore, the conjecture is taken that any field theory in which the linearized
spin-0 modes are absent will let the Birkhoff theorem hold even in the case in which
the solution is not asymptotically flat. It is our aim to provide one of the possible most
straightforward examples of the corresponding Bach gravity model as follows.

The spacetime is taken

gtt = c1r2 + c2r + c3 +
c4

r
, (18a)

Ã = Ãµdxµ (18b)

with

3c2c4 − c2
3 + 3

q2

2β
= 0 (19)
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Ibidem, there proves that a spherically symmetric solution of the Bach–Maxwell
equation always admits at least the fourth Killing vector ξ; given ξ nonnull and timelike,
the diagonalized line element is written as

ds2 = e2υ(dx0)2 + e2w(dx1)
2, (20)

with

υ ≡ υ(x0, x1), (21a)

w ≡ w(x0, x1), (21b)

ξ ≡ ξ(x0, x1). (21c)

The corresponding Killing equations brings

w = w(x1), (22a)

υ = α1(x0) + α2(x1). (22b)

with w(x1), α1 and α2 arbitrary functions.
From Equation (18), the Buchdal solution [35] is taken as

c2 = q = 0, (23a)

c3 = 1 (23b)

The Bach gravity [36] is based on the extension of the Weyl gravity and about the Weyl
extension of the concept of curvature tensor; it is based on the investigation of the invariant I as

I = gαβΞαΞβeF̃γdxγ
(24)

under the need of Ξµ an arbitrary vector.
The new example provided here is of Bach gravity from Equation (18), with

c1 = c3 = 0 (25)

which is a first straightforward example of Bach gravity comprehending the linear term
(and a “Schwarzschild-like” term), which exemplifies one of the schemes proposed for
investigation in the present paper.

The absence of spin-0 model provides one with motivation of a conjecture according
to which the linearized theory might contain a mass-less spin-2 ghost which corresponds
to quadrupole radiation emission.

In [6], the action corresponding to the same-indices saturation of two conformal Weyl
tensors is taken. The Einstein–Hilbert (part of the) action is absent. The theory is strictly
conformally invariant, i.e., the masses of the particles are due to dynamical effects only.
The solution is found as the metric Equation (1). The deSitter solution is recalled to be
a vacuum solution. The lienar term γ is placed in correspondence with the inverse of
the Hubble length. The linear terms are also ibidem described within the framework of
galactic dynamics. The γ term can be described as due to the effects of some “background
geometry” on star trajectories.

The linear term is ibidem also commented to be referring to the effect of “other galaxies”
on a test particle.

The homogeneity of distribution of galaxies implies the shaping of the linear term.
The dimensionless product γβ is used for fitting galaxy rotation curves.
In [25], topological black holes are studied, for which the curvature at infinity is

calculated after a line element compatible with one of Equation (1), and the spacetimes are
compared with topological black hole spacetimes in anti-deSitter gravity.
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The case of spacetimes with nonnegative curvature at infinity is also presented
ibidem. The thermodynamical properties of the found black holes are discussed as
“induced phenomena”.

The linear term is ibidem used to discriminate the lapse function of the spherical black
hole from that of a black hole in anti-deSitter gravity.

The analytical continuations of the line element are considered, in which the linear
term plays a role.

The possibility of such gravity having “consistent interaction with massless higher
spin fields” is considered ibidem from [37].

In [26], nonlinear theories of “massive gravity” are considered. The metric tensor is
taken as

gµν = ηµν + hµν, (26)

with ηµν being the Minkowski metric and hµν the perturbations; the metric Equation (26) is
expanded as a function of the Stueckelberg field Φa (which transforms as a scalar) as

Φa → xa − ηaµ∂µπ (27a)

gµν = H̃µν + ηµν∂µΦa∂νΦb (27b)

with π being the helicity-0 mode of the graviton.
As a methodology, quartic orders of the metric perturbations are considered. Lorentz

invariance is not broken.
In [27], within a generalized scheme, the line element is taken as

ds2 = −B̃(r)magentadx2
0 + Ã(r)dr2 + r2(sinθ)2dϕ2 + r2dθ2. (28)

After [38], in [27], the component of the metric tensor B̃(r) is considered as

B̃(r) = 1 − 2m
r

+
α̃

d̃
r; (29)

in Equation (29), ˜alpha was a “small dimensionless constant” qualifying the general model,
and d̃ was a “characteristic length scale” of the order of galactic scales. At the Solar System
m scales, r << d, Equation (29) was apt at describing the “Pioneer anomaly”.

In [28], the spherically symmetric line element is considered from Equation (28),
i.e., one with Ã(r) ≡ B̃(r), where a cosmological-constant term is added in Equation (29);
the numerical value of α̃ is taken as α̃ ≃ 10−6, and d̃ ≃ 10 kpc; the choice is motivated after
the analysis of [27]. The analysis of [27] is effective in describing flat rotation curves of
spiral galaxies.

In [12], the linear-term parameter of the redshift function is written as a function of
the scalar polynomial curvature invariants. The calculations of the accretion and that of the
shadow are hinted.

Ibidem, the photon sphere of the black hole spacetime whose gtt component of the
metric tensor contains a linear term is found to be of a radius small than that of the
Schwarzschild spacetime.

Ibidem, the comparison of the black hole spacetime containing a linear term in the
redshift function and the Kerr spacetime are compared. The linear-term parameter is
expressed as a function of the radii of the innermost stable orbits which depend on spin
parameter of the Kerr black hole spacetime, as delineated in the analysis of [39]. Accordingly,
the cosmological constant is also expressed as a function of these variables: the effects of
the linear term of the redshift function on the definition of the black hole mass is defined as
still under study. The calculations of the geodesics are proposed, after which the possibility
of a degeneracy in the chosen definition arises. Further investigation is ibidem proposed
about which degeneracies are to be solved after evaporation. Ibidem, more investigation is
reported to be needed after the findings of [40–42].
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More in detail, the definition of the mass of the black hole spacetimes with a linear
term in the redshift functions is remarked to be of novel aspects.

It is one of the purposes of the present paper to analyze and to constrain the parameter
space of the black hole spacetimes that also contain a cosmological constant term as a
function of the linear-term parameter for the purposes indicated in [12].

3.2. Applications of Methodologies

The infinite-redshift surfaces are studied as obeying the equations gtt ≡ 0; the results
are the geometrical radii, on which the physical implementation of the model is performed;
as a result of the study of the functions, the physical horizons are found.

The coordinate-singularity-avoiding coordinates extensions are newly analytically
written. The Schwarzschild–Nairiai spacetime is taken as an example. The further cases are
newly studied. More in detail, the coordinate-singularity-avoiding coordinates extensions
are written in order to avoid the coordinate singularity; their role is apt to remove the
coordinates singularity in a physical manner analogous to that interpreted for the metric to
become regular. The methodologies followed for these purposes are the series expansions
of the measures which take into account the orders of the parameters of the series (which
are the linear-term parameter and the cosmological constant); indeed, for the analysis
of the physical horizons, the role of these terms is understood as modifying the role of
the Schwarzschild radius only slightly: this way, each of the addends of the orders of
magnitude in the series expansions are kept under control directly.

As results, the spacetimes examined are described as endowed with the proper physi-
cal horizons, and with the proper coordinate-singularity-avoiding coordinate extensions;
furthermore, the parameters involved in the schemes are physically implemented: from the
study of the parameter spaces available for the models, the linear term and the cosmological-
constant term are proven to be admitted as modifying the role of the Schwarzschild radius
only slightly.

4. The Schwarzschild Spacetimes with a Cosmological Constant
4.1. The Schwarzschild–deSitter Spacetimes

The spherically symmetric Schwarzschild–deSitter (Nariai) spacetimes, endowed with
a Schwarzschild solid-angle element, are defined after the gtt element gtt = 1 − rs

r − Λ
3 r2 as

ds2 = c2
(

1 − rs

r
− Λ

3
r2
)

magentadx2
0 −

dr2(
1 − rs

r − Λ
3 r2
) − r2dθ2 − r2(sinθ)2dϕ2 (30)

An upper bound of the mass M of a black-hole solution of a Schwarzschild–deSitter
spacetimes from the value of the cosmological-constant term was found in [2] as a function
of Λ as M ≤

√
1/9Λ.

Selected qualitative characterizations of the horizons of a black-hole solution of
Schwarzschild–deSitter spacetimes are explored in [43].

4.1.1. Schwarzschild–deSitter Radii

The Schwarzschild–deSitter radii are recalled in [43] as

R1 =
2√
Λ

cos
θ̃

3
, (31a)

R2 =
2√
Λ

cos
[

θ̃

3
+

2π

3

]
, (31b)

R3 =
2√
Λ

cos
[

θ̃

3
+

4π

3

]
, (31c)

with θ̃ = −3
√

ΛM, after the parameterization recalled in [43].
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4.1.2. Schwarzschild–deSitter Coordinate-Singularity-Avoiding Coordinates Extension

The results of [5] are recalled here for comparison with the further findings of the
present paper, and opportunely commented upon.

The Kruskal coordinates allow one to rewrite the maximal extension of the metric
Equation (30). The coordinates singularity is shown to be avoided in [5] after the choice of
the coordinates (u, v) obeying the system

∂v
∂t

=
∂u
∂ρ

, (32a)

∂u
∂t

=
∂v
∂ρ

, (32b)

with the radial variable defied after the differential dρ as

dρ ≡ dr
1 − rs

r − λ
3 r2

, (33)

therefore with ρ0 = 0, r0 = 0.
The Nariai coordinates Equation (32) are written as

u = ekρ/Tch
kt
T

, (34a)

v = ekρ/Tsh
kt
T

, (34b)

where the variable ρ is obtained after Equation (33) as

ρ = r + 2Mln
( r

2M
− 1
)

, (35)

with the initial values of the variables already fixed.
The quantity T from Equation (34) is hypothesized as

T−1 =
√

Λ/3 (36)

for the modification of the Schwarzschild radius to be small, i.e., for the demonstration of
the integration of Equation (33) as Equation (34) within the chosen order(s) of infinitesimals.

k is calculated after the equality

u2 − v2 = e2kρ/T ; (37)

The different orders of infinitesimals can also be calculated for the purpose of the modifica-
tions of the Schwarzschild radius to be small.

The latter condition is reflected after

Λ
k
= 32M2. (38)

4.2. Generalized Schwarzschild Spacetimes with a Cosmological Constant

The generalized spherically symmetric Schwarzschild spacetimes with a cosmological-
constant term, endowed with a Schwarzschild solid-angle element, are written as

ds2 = c2
(

1 − rs

r
− k2r2

)
magentadx2

0+

− 1(
1 − rs

r − k2r2
)dr2 − r2dθ2 − r2(sin θ)2dϕ2. (39)
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4.2.1. Analytical Study of the Solutions: The Radii
The gtt = 0 equation is solved after the radii

r1 =
1
6
(βk2

2)
(1/3)

k2
+

2
(βk2

2)
1/3

, (40a)

r2 = − 1
12

(βk2
2)

(1/3)

k2
− 1

(βk2
2)

1/3
+ i

√
3

2

[
1
6
(βk2

2)
1/3

k2
− 2

(βk2
2)

1/3

]
, (40b)

r3 = − 1
12

(βk2
2)

(1/3)

k2
− 1

(βk2
2)

1/3
− i

√
3

2

[
1
6
(βk2

2)
1/3

k2
− 2

(βk2
2)

1/3

]
, (40c)

where the functions

β ≡ 12
√

3
√

α

k2
− 108rs (41)

and
α ≡ 27k2r2

s − 4 (42)

are defined. The choice of this parameterization, and, in particular, the choice of the pa-
rameterization Equation (42), are made for comparison of the new general results obtained
here with the result in [2].

The existence of the radii Equation (40) is analytically discussed after the realness of
the square root of the function α/k2

27k2r2
s − 4

k2
≥ 0 (43)

from which the result of [2] is refined and extended; in particular, r1 is found to be well
defined in the new intervals

− ∞ < k2 < 0, (44a)

k2 >
4

27r2
s

. (44b)

The conditions on k2 are found, as well as the new conditions on the modifications of
the Schwarzschild radius.

The request that the denominators be different from zero yields

12
√

3

√
27k2r2

s − 4
k2

− 108rs ̸= 0. (45)

The request of the denominator of the function multiplying the imaginary unit be
different from zero requires

k2
2

√3

√
27k2r2

s − 4
k2

− 9rs

 ̸= 0. (46)

4.2.2. Merging of Two of the Three Radii

The two radii r2 and r3 of Equation (40) are identified as function multiplying the

imaginary unit vanishes, i.e., 121/3k2 −
[(√

3
√

27k2r2
s−4

k2 − 9rs

)
k2

2

]
= 0.
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The two radii are found as

ra =
1
6
(βk2

2)
(1/3)

k2
+

2
(βk2

2)
1/3

, (47a)

rb = − 1
12

(βk2
2)

(1/3)

k2
− 1

(βk2
2)

1/3
. (47b)

The coordinates singularity is removed after the choice of the coordinates [5].
The new constraints on the Schwarzschild radius imposed after the cosmological-

constant term are therefore summoned.

4.3. Comparison with Generalized Schwarzschild Spacetimes with a Linear Term and a
Cosmological Constant

The parameterization of the three analytical radii can be also achieved in the equivalent
manner as the equation gtt = 0 is solved by the three radii

r1 =
1
6

B1/3

k2
+

2
3

+3k2
2

k2B1/3 , (48a)

r2 = − 1
12

B1/3

k2
− 1

3
3k2

k2B1/3 + i
√

3
2

(
B1/3

6k2
− 2

3
3k2

k2B1/3

)
, (48b)

r3 = − 1
12

B1/3

k2
− 1

3
3k2

B1/3 − i
√

3
2

(
B1/3

6k2
− 2

3
3k2

k2B1/3

)
, (48c)

where the function B is defined as

B ≡ 12
√

3
√
+27k2rs − 4k2k2 − 108k2

2rs. (49)

The analysis of Equation (48) is analogous to the study of Equation (68), from which
the qualifying features of the Schwarzschild spacetimes with a cosmological-constant term
can be appreciated to lead to the analysis of two very different geometries in the deSitter
case and in the anti-deSitter case.

Furthermore, the constraints obtained also compare with those obtained after
Equation (40), as needed.

4.4. Coordinate-Singularity-Avoiding Coordinates Extensions of Generalized Schwarzschild
Spacetimes with a Cosmological-Constant Term

From the calculations of the orders of the remainders in Equation (33), it is here newly
probed that the sign of the cosmological constant does not affect the series expansion of the
denominator of Equation (33).

As a new result, the sign of the cosmological constant does not affect the choice of the
coordinate-singularity-avoiding coordinates extension. Differently stated, the choice of [5]
for a Schwarzschild–deSitter spacetime holds also in the case of Schwarzschild–anti-deSitter
spacetimes because also in this case there are no powers with even-denominator exponent
of the cosmological-constant term.

5. The Schwarzschild Spacetimes with a Linear Term

The generalized spherically symmetric Schwarzschild spacetimes, endowed with a
Schwarzschild solid-angle element, are specified after the gtt element

gtt = 1 − rs

r
− k1r (50)

as
ds2 = c2

(
1 − rs

r
− k1r

)
magentadx2

0+
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− 1(
1 − rs

r − k1r
)dr2 − r2dθ2 − r2(sin θ)2dϕ2, (51)

Some aspects of generalized metric have been investigated in [44,45].
The two distinct radii are analyzed at the condition

k1 =
1
rs

; (52)

the two radii are found to merge as

r± ≡ rh =
1

2k1
= 2rs. (53)

The coordinates for the spacetimes were analyzed after [46] in the cases

k1 <
1

4rs
, (54)

which leads to

r± =
1
2

1 ±
√

1 − 4k1rs

k1
(55)

and in the case of the naked singularity

k1 >
1

4rs
. (56)

5.1. Generalized Schwarzschild Spacetimes with a Linear Term
5.1.1. The Two Radii

The solution of the equation grr = 0 is found as the two radii

r1 =
1
2

1 +
√

1 − 4k1rs

k1
, (57a)

r2 =
1
2

1 −
√

1 − 4k1rs

k1
. (57b)

5.1.2. Coordinate-Singularity-Avoiding Coordinates Extension

The coordinates extension (u, v) able to avoid the coordinates singularity are defined
with new radial coordinate ρ

ρ − ρ0 ≃
r + rs ln

(
r
rs
− 1
)

(1 − k1r)
(

1 − r
rs

)
(1 + k1r)

. (58)

The radial coordinate ρ is rewritten as

ρ = r + rs ln
(

r
rs

− 1
)
+ O(r2) + O(k2

1) + R3 + R4, (59)

with +O(r2) + O(k2
1) as the remainders of the series expansions of Equation (59). The

remainder R3 is

R3 = O

(
r6

s
ln r−rs

rs

r − rs

)
; (60)

the remainder R4 is

R4 = O
(

r5
s ln

r − rs

rs

)
. (61)
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Thus, from Equation (58), the initial value of the new radial coordinate ρ is newly
calculated as

ρ0 = 0. (62)

The new expression of T is found from Equation (59) as

T−1 =
1
2

r2
s k2

1
1 − k2

1r2
s

(63)

i.e., such that its expansions respect the orders of infinitesimals of r2 in Equation (59).
The new further constraint on the linear r from Equation (58) is found as

k1rs

1 − k112r2
s
≡ 1. (64)

The new expression of k is fixed here after the request Equation (37). The extensions
Equation (34) therefore holds with the definition Equation (58), after having provided that
the modification(s) of the Schwarzschild radius are small, i.e., from Equations (60) and (61).

The set of coordinates extension allows one to merge the two solutions without posing
k1 = 0. From zero − th order in r of the coordinates extension, the new condition

(r − rs)(1 − k1r) ̸= 0 (65)

is found.

6. Generalized Schwarzschild Spacetimes with a Linear Term and a Cosmological Constant

The generalized spherically symmetric Schwarzschild spacetimes with a linear term
and a cosmological constant are specified after the gtt element

gtt = 1 − rs

r
− k1r − k2r2 (66)

as
ds2 = c2

(
1 − rs

r
− k1r − k2r2

)
magentadx2

0+

− 1(
1 − rs

r − k1r − k2r2
)dr2 − r2dθ2 − r2(sin θ)2dϕ2. (67)

6.1. The Three Radii
The equation grr = 0 is solved by the three radii

r1 =
1
6

b1/3

k2
+

2
3

k2
1 + 3k2

2
k2b1/3 − 1

3
k1
k2

, (68a)

r2 = − 1
12

b1/3

k2
− 1

3
k2

1 + 3k2

k2b1/3 − 1
3

k1
k2

+ i
√

3
2

(
b1/3

6k2
− 2

3
k2

1 + 3k2

k2b1/3

)
, (68b)

r3 = − 1
12

b1/3

k2
− 1

3
k2

1 + 3k2

b1/3 − 1
3

k1
k2

− i
√

3
2

(
b1/3

6k2
− 2

3
k2

1 + 3k2

k2b1/3

)
, (68c)

where the function b is defined as

b ≡ 12
√

3
√

4rsk3
1 − k2

1 + 18k1k2rs + 27k2rs − 4k2k2+

−8k3
1 − 108k2

2rs − 36k1k2. (69)
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The request for the denominator to be different from zero b ̸= 0 implies the new
constraints of the Schwarzschild radius

rs ̸=
1

54k2
2

(
4

35

√
3
√
−105k2

1 − 315k2

(
k2

1 + 3k2
2

3

)
− 4k3

1 − 18k1k2

)
, (70a)

rs ̸=
1

54k2
2

(
− 4

35

√
3
√
−105k2

1 − 315k2

(
k2

1 + 3k2
2

3

)
− 4k3

1 − 18k1k2

)
, (70b)

with the new condition on the parameters

k2 ̸= −1
3

k2
1. (71)

Merging of Two of the Three Solutions

The expressions of the two radii r2 and r3 are discussed as(
12
√

3
√

4rsk3
1 − k2

1 + 18k1k2rs + 27k2rs − 4k2k2+

−8k3
1 − 108k2

2rs − 36k1k2

) 2
3 − 4k2

1 − 12k2 = 0, (72)

for which the new constraint on the Schwarzschild radius is found:

rs = − 1
27

2(k2
1 + 3k2)

3/2 + 2k3
1 + 9k1k2

k2
2

. (73)

A solution with no real roots of of r1 = 0 is found only at the (hypothesized, not taken
into account) value only at rs = 0.

6.2. Coordinate-Singularity-Avoiding Coordinates Extension

The coordinate-singularity-avoiding coordinates extension (u, v) is found after the
hypotheses that the cosmological-constant term should modify the Schwarzschild term not
strongly, and that the the k1 term induce a modification of next order after choosing the
new differential

dρ ≡ dr
(1 + k1r + k2r2)

(
1 − rs

r
)
(1 + k1r − k2r2)

. (74)

The new differential Equation (74) is integrated as

ρ − ρ0 ≃ 1
4

rs(k1 + 2k2rs)(k2
1 − k2 + k1k2rs)

k2(k2r2
s + k1rs + 1)2

+ r+

+rsln
(

r
rs

− 1
)
+ R1(k1, k2, rs) + R2(k1, k2, rs). (75)

In Equation (75) R(k1, k2, rs) is the remainder of the series of the ln term function of
the Schwarzschild-related term, and R2(k1, k2, rs) is the remainder of the series of the term
containing the contributions related to the parameters k1 and k2 ones, in the vicinity of r ≃ rs.

Thus, the initial value of the new radial coordinate ρ0 in Equation (75) is set. The
remainder R1(k1, k2, rs) is of order R1(k1, k2, rs) ≡ O(k2

2). The remainder R2 is of order

R2 ≃ ∑
i

fi

k1, k2, rs,
1√

k2
1 − 4k2

O(r2) (76)

with fi being the pertinent set of functions.
The remainder R2 encounters the conditions requested in [5]. The new further condi-

tion is found:
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k2
1 − 4k2 ≥ 0. (77)

As the calculation Equation (75) is spelled in O(r2) term, the following orders are
calculated in even powers of the k2 term. The zero − th order in r of Equation (75), i.e., the
constant term, implies the new condition k2r2

s + k1rs + 1 ̸= 0, that is

k2 ̸= −1 + k1rs

r2
s

. (78)

More in detail, from Equation (74), the following new constraint is found:

1
4

rs
k1
k2

k2
1 − k2 + rsk1k2

1 + k1rs + k2r2
s

= 1; (79)

the new definition of T is found as

T−1 = 8
k2

rs

1 + rsk1 + r2
s k2

(k2
1 − 2k2)(k2

1 − k2 + rsk1k2)
. (80)

The new constraint of the parameter space of the model is learned from Equation (79);
it is straightforwardly newly demonstrated to hold in different manners according to the
values of the linear term k1 and to those of the cosmological-constant term k2.

7. Outlook
7.1. Embeddings

For the spherically symmetric considered spacetimes, the segment dσ2 = grr(r)dr2 +
gφφ(r)dϕ2 is rewritten in a three-dimensional Euclidean space coordinatized in the cylindri-

cal coordinates as dσ2 =

[
1 +

(
dz
dϱ

)2
]

dϱ2 + ϱ2dφ2 with ϱ(r2) = gφφ(r) ≥ 0. The embedding

functions z(ϱ)ki
are found as

gϱϱ = [1 +
1
4
(

1
ϱ
− rs

ϱ3/2 − k1√
ϱ
− k2)], (81)

for which the limits of vanishing k1 and k2 are well posed (Figure 1).

Figure 1. The φ = 0 sections of the embedding surfaces σ for the Schwarzschild spacetime (yellow–
light gray) and for the spacetime k1 = 1/4rs, k2 = 0 (green–gray) after Equation (81) in units M = 1;
the difference in the two R1212(σ)s is appreciated. The role of the linear term in the modification of
the Schwarzschild radius is therefore outlined.
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7.2. Weak-Field Limit

For static spherically symmetric spacetimes, the weak-field limit depends on the
weak-field limit (w-fl) of the Christoffel symbol Γr

00 in the linearized regime as for from
the weak-field-limit of generalized potential Φ(r) defined after gtt = 1 + ϕ as Γr

00 |w− f l=
−Φ(r) |w− f l ,r, Φ(r) being a gravitational potential; the Schwarzschild terms lead to the
Newtonian potential, the k2 term is higher orders, while the k1 term is kept and accounted,
i.e., for helping the galaxy rotation curve.

More in detail, the weak-field limit is considered for the Christoffel symbol from the
spherically symmetric metric

gtt ≡ 1 − rs

r
+ ψ(r) (82)

as defined and specified in Section 3

Γr
00 ≡ 1

2
(1 − rs

r2 + ψ(r))(
rs

r
+

dψ

dr
). (83)

When specified for the here-considered generalizations of the Schwarzschild spacetimes,
i.e., gtt = 1 − rs

r − k1r − k2r2, one obtains that the Newtonian gravitational potential Φ(r)
descends from the rs addends, the nonnegligible modification terms descend from the k1
addends, and the addends containing the k2 are negligible. The analysis of the addend
containing k1 · k2 is achieved.

8. Prospective Studies

The understanding of the mechanisms underlying the appearance of the linear term
and of the cosmological-constant term can be tentatively drawn from a host of disciplines,
aimed at fixing the pertinent possible values of these term for the generalizations of the
Schwarzschild spacetimes.

8.1. Experimental Validation: Data Analyses

The study of the allowed values of the linear term and of that of the cosmological
constant term have widely been very recently from a data analysis point of view throughout
the literature.

The features of the terms corresponding to the fluid, which are worked out from the
linear-term effects, have been scrutinized within the experimental framework of COBE-
Planck in [47] for the deSitter case.

The potentiality of the determinations of the values of the linear term and of that of
the cosmological constant have been recently envisaged in the observational analyses of
CMB, gravitational waves, dark matter, and dark radiation from string cosmology [48].

An attempt to constrain the values of the (positive) cosmological constant and that of the
linear term for a generalized Schwarzschild–deSitter spacetime was proposed in [49] from a
data analysis point of view.

8.2. Experimental Validation: Geometry Methods

The null geodesics in an cosmological-constant-driven expanding universe were
studied only in [50], in which the black hole shadows could be envisaged.

The effects of the dilaton in reducing the size of innermost stable circular time-like or-
bits with respect to the Schwarzschild scheme were compared in [51] within the framework
of the generalization of the flat-curve-condition spacetime with the tools of the Einstein
field equations with respect to gravitational lensing.

From [44], broader investigations about the strong gravitational lensing of the Kiselev
blackhole are available.

The phenomenon of gravitational lensing from quasi-periodic flares of star–accretion
disc collisions was studied in the Schwarzschild case and in the Kerr case in [52].
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Time-like geodesics of generalized Schwarzschild black holes were studied in [53–55] also
in comparison with other types of black holes, from a quantum viewpoint, and in comparison
with the naked singularity.

Schwarzschild–deSitter spacetimes, Reissner–Nordstrom–de Sitter spacetimes, and
Kerr–deSitter spacetimes were compared in [56] as far as the influence of the duty of the
cosmological constant is concerned regarding the properties of accretion discs orbiting
black holes for quasars and for the active galactic nuclei.

The time-like geodesics and the geodesic deviation within the framework of a two-
dimensional “stringy” black hole spacetime in the Schwarzschild gauge were studied
in [55], from which the low-energy limit should be derived for a comparison with the
present result of the paper.

8.3. Quantum Implementation

The quantum features of generalized spacetimes can be investigated, as indicated from [9].
The Gibbons–Hawking temperature is defined as TGH(r∗) ≡ 1

4π

[
dgtt
dr

]
r=r∗

, i.e., to be
evaluated ate the coordinate point r = r∗.

The entropy of the Schwarzschild–deSitter black holes was calculated in [57]; the
thermodynamics of asymptotically anti-deSitter black holes was determined in [58]. The
thermodynamical features of Schwarzschild–anti-deSitter black holes in various spacetime
dimensions was defined in [59].

The chosen generalized Schwarzschild spacetimes can be demonstrated to be a low-
energy limit of other structures.

The Schwarzschild–deSitter black holes and the Schwarzschild–anti-deSitter ones are
studied in the loop-quantum-gravitational regime [60].

The Schwarzschild–deSitter black holes and the Schwarzschild–anti-deSitter ones are
established to constitute the low-energy limit of a supersymmetric scheme in [61].

The understanding of the quantum features of generalized Schwarzschild spacetimes
might lead to a better insight if its modes spectrum analysis. In [62], the analysis was
performed regarding generalized Schwarzschild spacetimes with a cosmological constant.

The quasinormal modes and the Hawking radiation of a Schwarzschild spacetime
were studied after assuming Bardeen-inspired terms as the quantum corrections in [63].

The perturbation methods can also be used to investigate the features of generalized
Schwarzschild spacetimes, and the results should be recast to be used as far as the clas-
sical description is concerned. As an example, in [2], generalized Schwarzschild deSitter
spacetimes and generalized Schwarzschild–anti-deSitter spacetimes were investigated with
perturbative methods within the Regge–Wheeler formalism for the use of the Schroedinger
equation. The Gibbons–Hawking coordinate system was analyzed. The results learned
from the perturbative point of view are that there exist regions of the parameter space of
the models, for which the Kruskal coordinates are regular, from Equation (A10) from [2].

The study of the parameter space for the regularity of the Kruskal coordinates opens
the way to the study of the further generalizations of the Schwarzschild spacetimes with the
perturbative method of the Schroedinger equation in the quantum regime and comparison
with the results found in the present work.

More in detail, the study of the tasks of the linear term from the quantum-perturbative
methods point of view and the low-energy limit of the opportune Christoffel symbol should
be compared.

9. Remarks

The aim of this paper was to study some of the possible generalizations of the
Schwarzschild spacetimes, which find agreement with the confrontation of phenomenolog-
ical evidence.

In particular, three instances of those were newly investigated from an analytical
point of view: generalized Schwarzschild spacetime, endowed with a Schwarzschild solid-
angle element, with a cosmological-constant term; generalized Schwarzschild spacetime,
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endowed with a Schwarzschild solid-angle element, with a linear term; and generalized
Schwarzschild spacetime, endowed with a Schwarzschild solid-angle element, with a linear
term and with a cosmological-constant term. From the analytical point of view, the new
analytical expressions of the analytical radii were newly found and discussed, i.e., such
that the parameter spaces of the models were newly delineated as far as the allowed sets
of values of the cosmological-constant term and of those of the linear term are concerned.
From the analytical expression of the radii, the new conditions to write down the analytical
expressions of the new physical horizons were newly worked out: the new apt conditions
further frame the parameter space.

In the case of generalized Schwarzschild spacetime, endowed with a Schwarzschild
solid-angle element, with a cosmological-constant term, the analytical radii were found,
and the conditions to obtain the physical horizons were framed. In [2], the relation between
the Schwarzschild radius and the positive value of the cosmological-constant term in the
deSitter case only were hinted at. Within the present new analysis, the results of [2] are
newly exhaustively completed; furthermore, the new exploration of the context is extended
newly to the negative values of the cosmological-constant term in the anti-deSitter case. As
a result, the new generalized Schwarzschild–deSitter spacetimes and the new generalized
Schwarzschild–anti-deSitter spacetimes were newly demonstrated to be characterized in
a different manner after the presence of the cosmological-constant term; more in detail,
the presence of the cosmological constant was newly proven to be allowed to modify the
role of the Schwarzschild radius only slightly in the Schwarzschild–deSitter case and in
the Schwarzschild–anti-deSitter case; moreover, the modification was newly proven to
happen in a different manner in the two cases. The Nariai coordinate-singularity-avoiding
coordinates extensions was newly proven to hold also in the anti-deSitter case: indeed, the
calculations of the orders of the remainders were newly proven, not modified, after the
sign of the cosmological-constant term.

Generalized Schwarzschild spacetimes, endowed with a Schwarzschild solid-angle
element, modeled after the presence of a linear term, were newly examined. The ana-
lytical expressions of the analytical radii and those of the physical horizons were newly
constrained in order to set the newly-discovered qualities of the parameter space of the
model. The new coordinate-singularity-avoiding coordinates extensions were found; the
new initial values of the new variables were newly found; the new role of the linear term in
the modification of the Schwarzschild radius was newly focused; the new constraints on
the parameter space of the model were newly assessed.

Generalized Schwarzschild spacetimes, endowed with a Schwarzschild solid-angle
element, with a cosmological constant and a linear term, were newly analyzed. The
new analytical expressions of the analytical radii were newly written, from whose well-
posedness the parameter space was newly constrained; the analytical expressions of the
physical horizons were newly worked out, from which the parameter space of the scheme
was newly investigated and newly constrained. The new coordinate-singularity avoiding
coordinates extensions were newly provided; the new role of the linear term and those of
the cosmological term in generalized deSitter case and in generalized anti-deSitter case were
newly outlined as modifying the qualities of the Schwarzschild radius; the new initial values
of the new coordinates were newly calculated. The remainders were newly calculated, in
which the sign of the value of the cosmological constant was newly discovered not to alter
the orders of the remainders; the expansions of the integrand functions were newly found
to hold in both the generalized deSitter case and the generalized anti-deSitter case.

The results are of interest for the comparison with Lemaitre–Tolman–Bondi spacetimes
features [64,65].
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