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Abstract: We present a review of the Semi-Symmetric Metric Gravity (SSMG) theory, representing a
geometric extension of standard general relativity, based on a connection introduced by Friedmann
and Schouten in 1924. The semi-symmetric connection is a connection that generalizes the Levi-
Civita one by allowing for the presence of a simple form of the torsion, described in terms of a
torsion vector. The Einstein field equations are postulated to have the same form as in standard
general relativity, thus relating the Einstein tensor constructed with the help of the semi-symmetric
connection, with the energy–momentum tensor tensor. The inclusion of the torsion contributions
in the field equations has intriguing cosmological implications, particularly during the late-time
evolution of the Universe. Presumably, these effects also dominate under high-energy conditions,
and thus SSMG could potentially address unresolved issues in general relativity and cosmology, such
as the initial singularity, inflation, or the 7Li problem of the Big-Bang Nucleosynthesis. The explicit
presence of torsion in the field equations leads to the non-conservation of the energy–momentum
tensor tensor, which can be interpreted within the irreversible thermodynamics of open systems as
describing particle creation processes. We also review in detail the cosmological applications of the
theory, and investigate the statistical tests for several models, by constraining the model parameters
via comparison with several observational datasets.

Keywords: modified gravity with torsion; particle creation; Newtonian limit; observational constraints;
statistical analysis

1. Introduction

The advent of general relativity [1,2], a geometric theory of gravity, essentially based
on Riemann geometry [3], had a profound effect, not only on gravitational physics but also
on various branches of mathematics, and especially on differential geometry. The develop-
ments in mathematics also deeply influenced the understanding and the approaches for
the description of gravity, thus leading to a creative and dynamic interplay between mathe-
matics and physics, the two fundamental sciences offering together the most fundamental
tools for the investigation of natural phenomena. The Riemann geometry, used by Einstein
and Hilbert to build general relativity, is metric, with the metric tensor gµν satisfying the

condition
◦
∇λgµν = 0, where

◦
∇λ is the covariant derivative defined with the help of the

Levi-Civita connection.
A few years after the field equations of general relativity were obtained, Weyl [4–6]

proposed an extension of Riemann geometry in which the metric condition is abandoned
and a new geometric concept, the non-metricity Qλµν, is introduced. Weyl geometry is
non-metric, with the metric tensor satisfying the condition ∇̃gµν = Qλµν, where ∇̃ is the
covariant derivative defined with respect to the Weyl connection Γ̃λ

µν.
The generalizations and applications of Weyl geometry, and of the related idea of

conformal invariance, were considered by Dirac [7,8], and by Penrose [9,10]. An interesting
approach to non-metric geometries was developed by Schrödinger [11,12], in which the

Universe 2024, 10, 419. https://doi.org/10.3390/universe10110419 https://www.mdpi.com/journal/universe

https://doi.org/10.3390/universe10110419
https://doi.org/10.3390/universe10110419
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/universe
https://www.mdpi.com
https://orcid.org/0000-0002-6376-0707
https://orcid.org/0009-0000-3792-4475
https://orcid.org/0000-0002-1990-9172
https://doi.org/10.3390/universe10110419
https://www.mdpi.com/journal/universe
https://www.mdpi.com/article/10.3390/universe10110419?type=check_update&version=2


Universe 2024, 10, 419 2 of 41

length of vectors is conserved under autoparallel transport. For the physical applications of
Schrödinger geometry, see [13,14]. The role of Weyl geometry in physics, astrophysics, and
cosmology has been intensively investigated. In particular, it represents the mathematical
foundation of the f (Q)-type generalized gravity theories, and of its extensions [15–19].
For a recent review of f (Q) theories, see [20].

Another remarkable development in mathematics, closely related to general relativity,
was the introduction of the concept of torsion by Cartan [21–24]. Cartan introduced torsion
as the antisymmetric part of an asymmetric affine connection, so that Tλ

µν = Γλ
νµ − Γλ

µν.
He also realized the tensor character of the torsion, and he developed the differential
geometric formalism necessary to describe it.

Cartan proposed a physical interpretation of the torsion of space–time, suggesting that
it may be related to the intrinsic angular momentum (spin) of matter, and that it vanishes
in the matter-free regions of space–time. Cartan’s ideas were forgotten later on, but they
were reconsidered and extended in the 1960s, leading to the formulation of the so-called
Einstein–Cartan theory (see [25] for a detailed review of the early developments in this
field), in which the spin of matter couples to a non-Riemannian geometric structure, namely,
the torsion tensor. For discussions on the cosmological applications and mathematical
foundations of the Einstein–Cartan theory, see [26–28].

From a cosmological point of view, one of the attractive features of the Einstein–Cartan
theory is the absence of the initial singularity, and the possibility of inflation in the early
stages of the evolution of the Universe.

A theory of gravity with a propagating massive vector field arising from a quadratic
curvature invariant, in which the Einstein–Cartan formalism and a partial suppression
of torsion lead to the absence of ghost and strong-coupling problems, was considered
in [29]. By assuming a propagating torsion vector, one arrives at a purely gravitational
origin of the Einstein–Proca models, and one could also constrain their parameter space.
The reflection and transmission problem for a beam travelling across a spin-polarized target
was considered in the non-relativistic limit in [30]. Deviations in the spin polarizations
on the reflected and transmitted beams could distinguish Einstein–Cartan from general
relativity, and, if detected, they would represent strong evidence for a non-trivial space–
time torsion.

In the development of the physically related mathematical concepts, an important role
is played by the Weitzenböck spaces [31]. A Weitzenböck space is characterized by the
geometric properties ∇λgµν = 0, Tλ

µν ̸= 0, and Rλ
σµν = 0, respectively, where Rλ

σµν is the
Riemann curvature tensor.

Weitzenböck-type geometries were used by Einstein [32] for the unification of the
electromagnetic and the gravitational fields in the framework of a teleparallel theory.
As the basic geometric quantity in the teleparallel formulation of gravity, the torsion tensor,
generated by the tetrad fields, is adopted, with the curvature being replaced by the torsion.
This description of the gravitational interaction is called the Teleparallel Equivalent of
General Relativity (TEGR), and it was developed initially in [33–35].

TEGR is also known as the f (T) theory of gravity, where T is the torsion scalar.
The basic property of the f (T) type theories of gravity is that torsion exactly cancels
curvature, and therefore the curved space–time of general relativity reduces to a flat
manifold. Moreover, instead of the metric, the basic dynamical variables are the tetrad
fields, and the gravitational Lagrangian density is constructed from the torsion scalar T
only. The corrections corresponding to higher energy scales can be represented with the
help of the higher-order terms in torsion.

The f (T) theory has been extensively used in cosmology, for the explanation of
inflation [36], of the late-time cosmic acceleration [37], and for obtaining the exact charged
black hole solution, which contains, together with the monopole term, a quadrupole term,
having its origin in the quadratic form f (T) ∝ T2 [38]. Matter and geometry couplings
were considered in [39]. The f (T) gravity theories have the major advantage that the



Universe 2024, 10, 419 3 of 41

gravitational field equations are of second order. For an in-depth description of teleparallel
theories and their applications, see [40–42].

Gravitational theories in a Weyl–Cartan space–time, in which the Weitzenböck condi-
tion of the vanishing of the sum of the curvature and torsion scalar is also imposed, were
considered in [43,44], with a kinetic term for the torsion also included in the gravitational
action. The field equations of the theory, obtained by varying the action with respect to
the metric tensor, lead to a complete description of the gravitational field in terms of two
fields, the Weyl vector and the torsion, respectively. Within this theory, a large variety of
dynamic evolutions can be obtained, ranging from inflationary/accelerated expansions to
non-inflationary behaviors.

In 1924, at around the same time Cartan was developing the concept of torsion, by also
considering its applications to general relativity, Friedmann and Schouten [45] introduced
a new geometrical concept, the semi-symmetric transport, in which they assumed that
S..ν

λµ = (1/2)
(

Γν
λµ − Γν

µλ

)
= S[λ Aν

µ]
, where Aν

λ = 1, λ = ν, and Aν
λ = 0, λ ̸= ν. Fried-

mann and Schouten did not mention in their work the previous investigations by Cartan,
or the concept of torsion. In their work, they also mentioned that a connection can be
completely characterized by the so-called covariant differential quotient (nowadays known
as non-metricity) and the covariant antisymmetric parameters (nowadays known as the
components of torsion). This characterization in modern terminology is known as the post-
Riemannian decomposition. Although mostly of mathematical interest, they also obtained
autoparallel equations of a semi-symmetric connection. As for physical applications, they
considered a special affine connection with semi-symmetric type of torsion and claimed it
could perhaps incorporate electromagnetism into the geometric framework, although this
was not explicitly shown in the article.

The connection introduced by Friedmann and Schouten, one hundred years ago,
achieved prominent mathematical applications. The work of Hayden [46], in which he
studied submanifolds with torsion, raised interest in finding submanifolds with semi-
symmetric metric connections. Such submanifolds were found and presented for the
first time in [47]. The foundational work of Kentaro Yano [48], in which he computed,
for the first time, the curvature tensors of the semi-symmetric metric connection in a
coordinate-free manner, raised the interest of mathematicians for this connection. Since
then, many studies have been conducted, both assuming metric compatibility [49–52]
and metric incompatibility [53] on statistical manifolds [54]. Non-metric semi-symmetric
connections have also been lifted to the tangent bundle [55], giving preliminary steps for
the application of semi-symmetric connections in Finsler geometry, whose central object is
the slit tangent bundle TM \ {0}. It is still an open problem to find a complex structure on
a Kähler manifold with respect to a newly constructed connection from a semi-symmetric
metric connection [56].

General relativity is an extremely successful physical theory, which gives an almost
perfect description of the gravitational physics at the level of the Solar System. However,
presently the theory of general relativity faces a number of important challenges. First
of all, from a fundamental theoretical point of view, it cannot explain the quantum prop-
erties of the gravitational interaction, or provide a consistent view on the gravitational
effects at a quantum scale. Secondly, gravitational collapse can result in the formation of
singularities, due to the geodesic incompleteness, and under some specific assumptions on
the matter energy–momentum tensor tensor. An important consequence of these results
is the appearance of cosmological singularities during the Big Bang and the existence of
black holes.

An important challenge for general relativity did appear after the discovery of the
late-time cosmic accelerated expansion of the Universe. Important evidence provided by
the observations of type Ia supernovae (SN Ia) [57–59], large-scale structure observations,
as well as the determinations of the Cosmic Microwave Background (CMB) anisotropies by
the Wilkinson Microwave Anisotropy Probe (WMAP) [60], and by the Planck satellite [61],
strongly highlighted the limitation of general relativity’s theoretical potential to describe
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and understand the evolution of the Universe at cosmological scales during its recent phases.
To explain the accelerating expansion of the Universe, inferred from the observations of the
luminosity distance of the SN Ia, one must extend general relativity by adding new terms
in the Einstein field equations, representing either a cosmological constant or a dark energy.
The combination of the Planck satellite observations with the SN Ia data has led to different
predictions on the present-day numerical values of the basic cosmological parameters.

The failure of general relativity when confronted with the latest observations led to
the necessity of exploring alternative theories of gravity, and of introducing new terms
or physical components into the gravitational field equations, such as dark energy and
dark matter, or the addition of a cosmological constant Λ in the Hilbert–Einstein action.
To explain the observations within a theoretical framework, the Λ Cold Dark Matter
(ΛCDM) model was developed, which is based on the reconsideration in the gravitational
field equations of the cosmological term Λ, proposed by Einstein in 1917 [62] to obtain
a static cosmological model of the Universe. After the discovery of the expansion of the
Universe, Einstein rejected the possibility of the existence of Λ and suggested its removal
from the gravitational field equations.

The ΛCDM Model provides a very good description of the observational data at
low redshifts, and thus it has been adopted as the standard cosmological paradigm of
present times. Nevertheless, the ΛCDM Model is confronted with an important problem
associated with its basis. No satisfactory explanation of the physical or geometrical nature
of Λ is presently known, and thus the theoretical foundations of the ΛCDM Model are
rather questionable.

The ΛCDM Model is also faced with several other challenges, which follow from the
increase in the accuracy of cosmological measurements and observations. An important
problem present-day cosmology faces is the significant difference between the expansion
rate of the Universe as determined from the Planck satellite observations and the numerical
values obtained from the local determinations [63]. This discrepancy is usually known as
Hubble tension [64,65]. As measured by the Planck satellite, the Hubble constant (H0) has
the numerical value of 66.93 ± 0.62 km/s/Mpc [66]. From the SH0ES collaboration, the
value of 73.24 ± 1.74 km/s/Mpc [66] is obtained for H0. There is a difference of more than
3σ [66] between these values. If indeed the Hubble tension does exist, it strongly highlights
the demand for investigating alternative gravitational theories and generalizing, or even
completely superseding, the ΛCDM model.

The ΛCDM paradigm naturally incorporates the Big Bang concept, which is based on
three fundamental observational facts: the Hubble expansion of the Universe, the Cosmic
Microwave Background Radiation (CMBR), and the Big Bang Nucleosynthesis (BBN). Be-
cause of the precise determinations of the baryon-to-photon ratio obtained from the studies
of the anisotropies of CMBR, the standard BBN is a parameter-free theory. The theoretically
computed abundances of light elements formed during primordial nucleosynthesis and
those determined from observations are in good agreement throughout a range of nine
orders of magnitude.

However, there is still an important disparity between theory and observation in the
7Li abundance, which is overestimated by a factor of ∼2.5 when calculated theoretically.
This problem is called the cosmological lithium problem [67]. In order to solve it, going
beyond the standard model of cosmology may be necessary [68].

The late-time cosmic acceleration, as well as other observational evidence including
the problem of the structure formation, has led to the question of whether or not general
relativity is the correct relativistic theory of gravitation. Presently, general relativity is
facing many challenges, like, for example, the difficulty of explaining a large number of
observations, the incompatibility with quantum mechanics, and the lack of uniqueness.

These observational/theoretical facts naturally point towards the necessity for new
gravitational physics, and for the formulation of a new fundamental theory of gravity.

An ideal testing ground for general relativity is represented by cosmology, through
the investigation of the cause and characteristics of the recent cosmic acceleration. A
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promising approach to solve this problem is to consider that at large, astrophysical or
cosmological scales, general relativity breaks down, and a more general theory describes
the gravitational interaction.

The physical or mathematical motivations for the extension of general relativity also
include the possibility of a realistic description of gravitational physics near curvature singu-
larities, as well as obtaining some simple first-order effective approximations for the elusive
quantum theory of gravitational fields. Hence, by taking into account the present-day situ-
ation in gravitational physics, one needs to consider, or reconsider, alternative approaches
to gravity, which could at least give a better description of the observational data.

It is the goal of the present work to consider in detail the general physical, astro-
physical, and cosmological implications of Friedmann–Schouten geometry [45], which
was considered for the first time in a gravitational context in [69]. After a brief review of
the mathematical formalism, the gravitational field equations are presented. They gen-
eralize the standard Einstein equations through the inclusion of the contributions of the
torsion vector.

The Newtonian limit of the theory leads to the generalized Poisson equation, which
explicitly includes the effects of the torsion and allows us to obtain the corrections to the
Newtonian potential, and to the Newtonian force. The applications of these results to the
solution of the dark-matter problem are also briefly discussed.

The cosmological implications of the theory are investigated in detail, for a flat and
homogeneous geometry. After obtaining the Friedmann equations in a general form, we
consider the cosmological tests of the theory by analyzing two specific models, obtained by
imposing two particular equations of state on the effective dark energy and pressure, which
appear as an extra contribution in the Friedmann equations. The theoretical predictions are
then compared to a set of Cosmic Chronometer (CC), supernovae, and Baryon Acoustic Os-
cillation (BAO) measurements. We also discuss in detail the behavior of the cosmographic
parameters, and a full comparison with the predictions of the standard ΛCDM Model is
also provided.

Our results suggest that the Semi-Symmetric Metric Gravity (SSMG) cosmology has
the potential of explaining cosmological dynamics without the need of introducing a cos-
mological constant in the theory, by means of a geometrically generated dark energy term.

The present paper is organized as follows. The field equations of the theory, the conser-
vation equation, the Newtonian limit, and the thermodynamic interpretation of the matter
non-conservation are discussed in Section 2. Two particular cosmological models, as well
as their cosmological tests, are presented in Section 3. Finally, we discuss and conclude our
results in Section 4.

2. Semi-Symmetric Metric Gravity

In this section, we review the recently developed gravitational theory with arguably the
simplest form of torsion, completely determined by a vectorial degree of freedom. Instead
of focusing on the mathematical aspects and the coordinate-free approach developed in [69],
we derive everything in coordinates.

2.1. Semi-Symmetric Metric Geometry

The semi-symmetric metric connection belongs to the class of metric-compatible
connections with torsion. This connection was first introduced by Friedmann and Schouten
in 1924 [45], and its connection coefficient functions are given by

Γµ
νρ = γ

µ
νρ − πµgρν + πνδ

µ
ρ , (1)

where πν is a four-vector and γ
µ

νρ are the Christoffel symbols defined as

γ
µ

νρ =
1
2

gµλ
(
∂νgρλ + ∂ρgλν − ∂λgνρ

)
. (2)
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Hence, one can observe that the Semi-Symmetric metric connection differs by the
Levi-Civita connection by a vectorial degree of freedom, π. This specific type of torsion
has also been considered in a recent extension of the singularity theorems to geometries
with torsion [70]. Its simplicity allows one to draw new conclusions, which are not obvious
at all when the torsion tensor has non-diagonal components as well. Moreover, such a
type of torsion can be naturally obtained as a solution to the connection field equations
in interacting hyperhydrodynamical models [71]. Some bounds on the torsion vector π
have been obtained in [72] by considering a so-called steady-state approximation (for more
details, consult [72]). The theory proposed has also been investigated from a dynamical
systems perspective [73].

Recall that, in non-metric torsion-free geometries, there is also a special type of non-
metricity, which is fully determined by a vectorial degree of freedom. This is the Weyl
geometry, given by

∇µgνρ = wµgνρ. (3)

In metric-affine f (R) theories, there is a duality between the semi-symmetric type of
torsion and Weyl-type non-metricity [74].

Note that the connection coefficient functions of the semi-symmetric metric connection
can be obtained as a special case from the general post-Riemannian expansion of a metric-
compatible torsionful connection, which reads

Γµ
νρ = γ

µ
νρ −

1
2

gλµ(Tρνλ + Tνρλ − Tλρν), (4)

where the torsion tensor is twice the antisymmetric part of the connection coefficient
functions,

Tµ
νρ = 2Γµ

[ρν]
. (5)

To recover (1), the semi-symmetric type of torsion

Tµ
νρ = πρδ

µ
ν − πνδ

µ
ρ (6)

has to be substituted in (4). It is easily seen that, in this special case, the torsion is com-
pletely determined by a four-vector as well. Hence, in the literature, this type of torsion is
sometimes called vectorial torsion [75,76]. Arguably, this is the simplest form of torsion one
could consider, as it has only diagonal components.

The Riemann tensor of a general affine connection is given by

Rµ
νρσ = Γλ

νσΓµ
λρ − Γλ

νρΓµ
λσ + ∂ρΓµ

νσ − ∂σΓµ
νρ, (7)

while the Ricci tensor and scalar are its contractions,

Rνσ = Rµ
νµσ, R = gνσRνσ. (8)

To obtain a compact formula using the post-Riemannian expansion, let us recall the
distortion tensor [69]:

Nµ
νρ = Γµ

νρ − γ
µ

νρ. (9)

The Ricci tensor can then be expressed as

Rνσ =
◦
Rνσ +

◦
∇αNα

νσ −
◦
∇σ Nα

να + Nα
ρα Nρ

νσ − Nα
ρσ Nρ

να , (10)

where
◦
Rνσ denotes the Ricci tensor of the Levi-Civita connection and

◦
∇ denotes the Levi-

Civita covariant derivative. In the case of the semi-symmetric metric connection, for the
distortion tensor we have

Nµ
νρ = −πµgνρ + πνδ

µ
ρ . (11)
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Consequently, we get

Rνσ =
◦
Rνσ − gνσ

◦
∇απα +

◦
∇σπν − 3

◦
∇σπν − 3πρπρgνσ + 3πσπν − πνπσ + gνσπαπα, (12)

or equivalently

Rνσ =
◦
Rνσ − gνσ

◦
∇απα − 2

◦
∇σπν − 2πρπρgνσ + 2πνπσ. (13)

The Ricci scalar is readily obtained:

R =
◦
R − 6

◦
∇απα − 6παπα. (14)

2.2. The Gravitational Field Equations

We postulate that the field equations take the form [69]

R(νσ) −
1
2

gνσR = 8πTνσ. (15)

Substituting the post-Riemannian expansions (13), (14) yields

◦
Rνσ −

1
2

gνσ
◦
R − gνσ

◦
∇απα −

◦
∇σπν −

◦
∇νπσ − 2πρπρgνσ + 2πνπσ

+3gνσ

◦
∇απα + 3gνσπαπα = 8πTνσ. (16)

The above equation can be separated to directly see the contributions of the torsion
vector πρ as

◦
Rνσ −

1
2

gνσ
◦
R + 2gνσ

◦
∇απα −

◦
∇σπν −

◦
∇νπσ + πρπρgνσ + 2πνπσ = 8πTνσ. (17)

By taking the trace of Equation (17), we obtain

−
◦
R + 6

◦
∇απα + 6πρπρ = 8πT, (18)

and thus we obtain for the field equations the alternative form

◦
Rνσ = 8π

(
Tνσ −

1
2

Tgνσ

)
+

◦
∇απαgνσ + 2πρπρgνσ +

◦
∇σπν +

◦
∇νπσ − 2πνπσ. (19)

The Divergence of the Matter Energy–Momentum Tensor

In the mixed representation, the gravitational field equations take the form

◦
Rσ

ν −
1
2

δσ
ν

◦
R + 2δσ

ν

◦
∇απα −

◦
∇σπν −

◦
∇νπσ + πρπρδσ

ν + 2πνπσ = 8πTσ
ν (20)

By taking the divergence of Equation (20), and since
◦
∇σ

( ◦
Rσ

ν − 1
2 δσ

ν

◦
R
)
≡ 0, we obtain

the relation

−
◦
∇σ

◦
∇σπν +

◦
∇ν

◦
∇σπσ +

( ◦
∇ν

◦
∇σ −

◦
∇σ

◦
∇ν

)
πσ + πσ

◦
∇νπσ + πσ

◦
∇νπσ

+2πσ
◦
∇σπν + 2πν

◦
∇σπσ = 8π

◦
∇σTσ

ν .
(21)

The Riemann curvature tensor is defined according to( ◦
∇ν

◦
∇σ −

◦
∇σ

◦
∇ν

)
πλ = −πα

◦
Rλ

ανσ. (22)
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Contracting with λ = σ, we obtain( ◦
∇ν

◦
∇σ −

◦
∇σ

◦
∇ν

)
πσ = −πα

◦
Rσ

ανσ = πα
◦
Rσ

ασν = πα
◦
Rαν = πσ

◦
Rνσ. (23)

From Equation (19), we find

πσ
◦
Rνσ = 8π

(
πσTνσ −

1
2

Tπν

)
+ πν

◦
∇σπσ + πσ

◦
∇σπν + πσ

◦
∇νπσ. (24)

Hence, by substituting Equations (24) and (23) into Equation (21), we obtain the
expression of the divergence of the matter energy–momentum tensor tensor as

8π
◦
∇σTσ

ν = −
◦
∇σ

◦
∇σπν +

◦
∇ν

◦
∇σπσ + 8π

(
πσTνσ −

1
2

Tπν

)
+3πν

◦
∇σπσ + 3πσ

◦
∇σπν + 3πσ

◦
∇νπσ ≡ 8π fν. (25)

By imposing the condition 8π
◦
∇σTσ

ν ≡ 0, fν = 0, Equation (25) provides an evolution
equation for the torsion vector πµ. However, non-conservative models with 8π

◦
∇σTσ

ν ̸= 0
can also be constructed within the framework of the present theory.

2.3. Semi-Symmetric Einstein Manifolds

Before moving to the cosmological applications of Semi-Symmetric Metric Gravity
theory, we present a recent result on the existence of generalized Einstein manifolds with
torsion. As is well known, in the Riemannian setting, Einstein manifolds provide solutions
to the vacuum field equations with a cosmological constant λ. They are characterized by
the property

◦
Rµν = λgµν, (26)

where λ is a constant and
◦
Rµν is the Ricci tensor of the Levi-Civita connection. Hence, in the

Riemannian setting, condition (26) is a system of partial differential equations for the metric
gµν. This system of partial differential equations has been thoroughly studied, and exact
solutions have been found [77]. However, most of the solutions are static, meaning that the
metric does not depend on time.

An interesting generalization of Einstein manifolds to non-Riemannian geometries,
in which torsion and non-metricity are present, was proposed by Klemm and Ravera [78].
In this work, a generalized Einstein manifold is defined by

R(µν) = λgµν, (27)

where Rµν is the Ricci tensor of the full connection and λ is a function, not necessarily a
constant. Note that, in general, this is not symmetric, and we do not put any constraint
on the antisymmetric part of it for the sake of this definition. As noted in [79], this
equation basically gives a constraint equation for the connection, since the Ricci tensor is
not necessarily described solely by the metric in this generalized setting. Consequently,
given a fixed metric gµν, Equation (27) is a system of partial differential equations for the
components of the connection.

We shall present an example of a generalized Einstein manifold with torsion, but first,
let us mention two possibilities of solving the constraint equation (27):

1. Considering a metric, which is Einstein, in the sense that

◦
Rµν = λgµν (28)

is satisfied.
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2. Considering a metric, which is not Einstein, i.e.,

◦
Rµν = λgµν (29)

is not satisfied.

Hence, this generalization could allow for a non-static metric if there exists a connec-
tion, which solves Equation (27). In the following, we will present the recently obtained
results in this direction for the semi-symmetric metric connection. In [79], it is shown that
condition (27) for a semi-symmetric connection is equivalent to

◦
Rµν −

◦
∇µπν −

◦
∇νπµ + 2πνπµ +

1
2

gµν

◦
∇λπλ − 1

2
gµνπλπλ =

1
4

gµν

◦
R. (30)

In addition, if the metric gµν is an Einstein metric, the equation can be simplified to

−
◦
∇µπν −

◦
∇νπµ + 2πνπµ +

1
2

gµν

◦
∇λπλ − 1

2
gµνπλπλ = 0, (31)

which gives an alternative evolution equation for the torsion vector π, in a given back-
ground Einstein metric gµν.

Cosmology of the Semi-Symmetric Einstein Manifolds

For a semi-symmetric metric connection, considering a flat Friedmann–Lemaître–
Robertson–Walker (FLRW)-type Universe, described by the metric

ds2 = dt2 − a(t)2δijdxidxj, (32)

assuming that ȧ(t)
a(t) = const, in accordance with the cosmological principle [80], the torsion

vector has only one non-vanishing component:

πµ = (ψ(t), 0, 0, 0). (33)

Consequently, in this non-static background metric, Equation (30) becomes a differen-
tial equation for ψ(t). In [79], it is shown that it admits an analytical solution, given by

ψ(t) = − H0eH0(t0+t)

eH0(t0+t) − 1
, (34)

where t0 is an arbitrary integration constant fixed by the initial condition ψ(0).
Hence, semi-symmetric connections provide a first explicit example of a generalized

non-static Einstein manifold with torsion.

The Newtonian Limit

In order to obtain the Newtonian limit of the Semi-Symmetric Metric Gravity theory,
we assume, similarly to the standard general relativistic case, that in the limit of small
velocities and weak gravitational fields the expression of the g00 metric tensor component
can be approximated as

g00(r) = 1 + 2ϕ(r), (35)

and g00 ≈ 1, where ϕ is the Newtonian potential. Moreover,
√−g ≈ 1. In the following, we

will neglect the time dependence of all physical and geometrical quantities. Furthermore,
for the components of the energy–momentum tensor tensor we adopt the expressions
Tσ

ν = ρuνuσ, where ρ is the matter energy density. For the case of slow motion, we
can neglect, in the expression of the four-velocity, all space components and keep only
the time component. Hence, the components of the four-velocity are uµ = (1, 0, 0, 0),
giving for the only non-zero component of the matter energy–momentum tensor tensor the
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expressions T0
0 = ρ(r) and T = ρ(r), respectively. We also represent the torsion vector as

πρ ≈ πρ =
(

π0(r), Π⃗(r)
)

, where Π⃗(r) = (π1(r), π2(r), π3(r)).
The only field equation of interest is thus Equation (19) for ν = σ = 0, which leads to

◦
R0

0 = 4πρ +
◦
∇απαδ0

0 + 2πρπρδ0
0 + 2

◦
∇0π0 − 2π0π0. (36)

To obtain the expression of
◦
R0

0, we neglect the products of the terms containing the
products of the Christoffel symbols. Moreover, the terms containing the time deriva-
tive can also be neglected. Hence, the only non-zero terms in the expression of

◦
R0

0 are
◦
R00 ≈

◦
R0

0 = ∂
◦
Γµ

00/∂xµ. As for the expressions of the Christoffel symbols, we obtain
◦
Γµ

00 ≈ −(1/2)gµν∂g00/∂xν = ∂ϕ/∂xµ. Hence, we obtain
◦
R0

0 ≈ ∆ϕ, where ∆ is the three-
dimensional Laplace operator defined in the Newtonian–Galilean geometry.

For the term
◦
∇απα, we find

◦
∇απα =

1√−g
∂

∂xα

(√
−gπα

)
≈ ∂πα

∂xα
= ∇⃗ · Π⃗, (37)

where by ∇⃗ we have denoted the three-dimensional divergence operator. For the term
◦
∇0π0, we obtain

◦
∇0π0 ≈

◦
∇0π0 =

∂π0

∂x0 −
◦
Γµ

00πµ ≈ 1
2

gµν ∂g00

∂xν
πµ = ∇⃗ϕ · Π⃗. (38)

Hence, we obtain the generalized Poisson equation in the Semi-Symmetric Metric
Gravity in the form

∆ϕ = 4πρ + ∇⃗ϕ · Π⃗ + ∇⃗ · Π⃗ + 2Π⃗2. (39)

As a simple illustrative example of the effect of the torsion on the gravitational field,
we consider the case in which the torsion vector has only one non-zero component, which,
for simplicity, we assume to be constant. Hence, Π⃗ = (Πr(r), 0, 0), with Πr = constant.
In vacuum, with ρ = 0, in spherical symmetry, the generalized Poisson equation (39) then
takes the form

1
r2

d
dr

(
r2 dϕ

dr

)
= Πr

dϕ

dr
+ 2Π2

r , (40)

with the general solution given by

ϕ(r) = Πrc1Ei(Πrr)− c1eΠrr

r
− 2Πrr +

4
Πrr

+ c2 − 4 ln(r), (41)

where c1 and c2 are arbitrary constants of integration and Ei(z) is the exponential function,
defined as Ei(z) = −

∫ ∞
−z e−tdt/t. In the limit Πr → 0, we obtain the expression of the

Newtonian potential ϕ(r) = −c1/r + c2, which allows us to interpret c1 as the mass of the
gravitating object, c1 = GM. For small values of Πr, we obtain

ϕ(r) ≈ − c1

r
+

4
Πrr

+ [c2 − 4 ln(r)] + Πr[c1 ln(Πrr) + (γ − 1)c1 − 2r] + O
(

Π2
r

)
, (42)

where γ is Euler’s constant, γ = 0.577. As for the expression of the Newtonian force FN ,
we obtain

FN(r) =
c1eΠrr

r2 − 4
Πrr2 − 2Πr −

4
r

. (43)

Hence, the presence of the corrections to the Newtonian potential, and to the grav-
itational force, may allow the possibility of experimental or observational testing of the
existence of the torsion of space–time.
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2.4. Keplerian Velocity and the Dark Matter Problem

An important physical parameter in astrophysics and astronomy is the Keplerian
velocity, vK, which is obtained in standard Newtonian mechanics by requiring the equality
of the centripetal and of the gravitational force, v2

K(r)/r = GM/r2, giving vK(r) = (GM/r),
with the property limr→∞ vK(r) = 0. By equating the expression of the force as given by
Equation (43) with the centripetal acceleration, we obtain

v2
K ≈ GMeΠrr

r
− 4

Πrr
− 2Πrr − 4. (44)

In the presence of torsion in the large r limit, the Keplerian velocity does not tend to
zero, due to the presence of the exponential factor in the first term. However, a large number
of precise astrophysical investigations of the galactic rotation curves [81–84] have shown
that Newton’s theory of gravitational interaction, as well as standard general relativity,
cannot explain the galactic dynamics of massive test particles rotating around the centers
of galaxies. To describe and interpret the observational properties of the galactic rotation
curves, and to also solve the missing mass problem in clusters of galaxies, the existence of a
dark constituent of the Universe, called dark matter, is postulated. Dark matter forms a
static, spherically symmetric halo around galaxies, and its interaction with baryonic matter
is only gravitational.

The behavior of the rotation curves of spiral galaxies [81–84] is an important problem
Newtonian gravity and/or standard general relativity faces at the galactic/intergalactic
scales. In spiral galaxies, neutral hydrogen clouds are detected at large distances from the
galactic center, beyond the presence of the luminous matter. The clouds gravitate in circular
orbits with velocity vK(r), and thus in the framework of Newtonian mechanics the mass
profile of the galaxy is given by M(r) = rv2

K/G.
A large number of astrophysical observations have shown that the tangential Keplerian

velocities increase near the galactic center, as required by the Newtonian theory, but after
that they become nearly constant, with values of the order of v2

K∞ ∼ 200–300 km/s [81–84],
leading to a mass profile M(r) = rv2

K∞/G. Hence, the mass of a galaxy increases linearly
with r, even at distances where no or very little luminous matter is observed.

But, as shown by Equation (44), in the presence of semi-symmetric torsion, the Keple-
rian velocity of massive test particles does not tend to zero, even in the absence of baryonic
matter. Thus, the presence of torsion may explain the galactic dynamics without resorting
to the mysterious and not detected dark matter, which may prove to be a purely geometric
effect induced by the torsion vector πµ.

The second fundamental evidence for dark matter, after the behavior of the galactic
rotation curves, comes from the virial mass discrepancy in clusters of galaxies [82]. A clus-
ter of galaxies is an astrophysical system formed of hundreds to thousands of galaxies,
bounded together by their own gravitational interaction. Around 1% of the mass of the
clusters is represented by galaxies; the high temperature intracluster gas represents around
9% of the cluster mass, while the dominant component is represented by dark matter,
representing 90% of the cluster mass [85].

By measuring the velocity dispersions of the galaxies, one arrives at the result that the
total mass of the cluster is larger than the total masses of the stars in the cluster by factors
of the order of ∼200–400 [85]. Another strong evidence for the presence of dark matter is
represented by the measurement of the temperature of the intracluster medium. This is due
to the fact that, in order to explain the depth of the gravitational potential of the clusters, a
supplementary mass component is necessary [85]. Therefore, since clusters of galaxies are
dark-matter dominated objects, they represent ideal testing grounds for the properties of
dark matter, or of modified gravity theories.

The extra geometric terms in the field equations of the Semi-Symmetric Metric Grav-
ity theory generate an effective contribution to the gravitational potential, as given by
Equation (42). One possibility to study the effects of the Semi-Symmetric Metric Gravity
theory on clusters of galaxies is via the virial theorem 2K + Ω = 0, where K is the total
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kinetic energy of the galaxies and Ω, the total gravitational potential energy of the clus-
ter, can be represented as Ω = ΩB + ΩG, where ΩB is the baryonic matter contribution,
while ΩG denotes the contribution due to the presence of the torsion. The expressions
of these terms can be obtained explicitly by using, for example, the approach developed
in [86], which requires the use of the relativistic collisionless Boltzmann equation describing
galactic motion.

Hence, the study of the clusters of galaxies via the generalized virial theorem can
become an efficient method in observationally testing the viability of the Semi-Symmetric
Metric Gravity theory.

2.5. Thermodynamic Interpretation of the Semi-Symmetric Metric Gravity Theory

We will briefly discuss in the following the physical and thermodynamical properties
of the non-conservative Semi-Symmetric Metric Gravity theory.

2.5.1. Energy and Momentum Balance Equation

We will consider the matter content as consisting of a perfect fluid, whose thermody-
namic properties can be described by two quantities only, the energy density, ρ, and the
thermodynamic pressure, p, respectively. Thus, for the energy–momentum tensor tensor of
the fluid, we adopt the form

Tµν = (ρ + p)uµuν − pgµν, (45)

where the four-velocity is normalized according to the relation uµuµ = 1. To obtain the
energy balance equation in Semi-Symmetric Metric Gravity, we multiply both sides of
Equation (25) by uµ. For the left hand side, we obtain

uµ

◦
∇νTµν = uµ

◦
∇ν(ρ + p)uµuν + uµ(ρ + p)

◦
∇ν(uµuν)− uµ

◦
∇µ p

= uν
◦
∇ν(ρ + p) + (ρ + p)(uµuν

◦
∇νuµ + uµuµ

◦
∇νuν)− ṗ

= ρ̇ + (ρ + p)
◦
∇νuν, (46)

where we have defined ρ̇ = uµ
◦
∇µρ = dρ/ds, and we have used the relations uµuµ = 1

and uµuν
◦
∇νuµ = 0, respectively. Therefore, the energy balance equation in the Semi-

Symmetric Metric Gravity theory is obtained in the non-conservative case as

ρ̇ + (ρ + p)
◦
∇µuµ = uµ f µ. (47)

By denoting
◦
∇µuµ = 3H, we can rewrite the energy-balance equation as

ρ̇ + 3(ρ + p)H = uµ f µ. (48)

The projection operator hν
λ is defined as

hν
λ ≡ δν

λ − uνuλ, (49)

and it has the properties
uνhν

λ = 0, hν
λ

◦
∇µuν =

◦
∇µuλ, (50)

and
hνλ

◦
∇ν =

(
gνλ − uνuλ

) ◦
∇ν =

◦
∇λ − uλuν

◦
∇ν, (51)
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respectively. We now multiply Equation (25) with hν
λ, and thus we find the momentum

balance equation of the Semi-Symmetric Metric Gravity theory, which shows that the
equation of motion of massive test particles is nongeodesic, and it is given by

uν
◦
∇νuλ =

d2xλ

ds2 + Γλ
µνuµuν =

hνλ

ρ + p
[ fν −∇ν p] := Qλ. (52)

The term Qλ can be interpreted physically as an extra force acting on massive test
particles in the presence of torsion. The extra force is perpendicular to the four-velocity,
Qλuλ = 0. Hence, in the presence of torsion, the dynamical motion of massive test particles
is more complex than in standard general relativity.

2.5.2. Particle Creation Processes in Semi-Symmetric Metric Gravity

The non-conservation of the matter energy–momentum tensor tensor in Semi-Symmetric
Metric Gravity, as suggested by Equation (25), may be interpreted as pointing towards the
existence of particle generation processes taking place on a microscopic scale. These pro-
cesses could take place locally, at the scale of the Solar System, and during the cosmological
evolution. Particle creation effects also appear in the formulation of quantum field theories
in curved space–times, as shown in the pioneering studies [87–90].

In quantum field theory, particle creation in a curved space–time is a direct conse-
quence of the variation in time of the gravitational field. An important result related to
the finite regularized average value of the energy–momentum tensor tensor of a quantum
scalar field in anisotropic geometries, which describes both particle creation and vacuum
polarization, was presented in [89]. However, in the non-conservative version of Semi-
Symmetric Metric Gravity, particle creation is a general phenomenon, which is not related
to the time variability of the fields.

Thus, Semi Symmetric Metric Gravity, which can consistently describe matter creation,
could also help in obtaining an effective semiclassical description of quantum field processes
in curved space–times. In the description of particle creation processes in the following, we
use the formalism introduced in [91].

Thermodynamic quantities in the presence of particle creation. Particle creation in
classical field theory is the theoretical result of the nonconservation of the matter energy–
momentum tensor tensor, whose covariant divergence does not vanish identically. Conse-
quently, the particle number, energy density, and entropy fluxes also do not vanish. In the
presence of particle creation, the thermodynamic equilibrium equations must be extended
so that they specifically contain, in the fundamental evolution equations, matter creation
processes [92–94]. In the presence of matter creation from the gravitational field, due to
the energy transfer from geometry to particles, the particle flux Nµ ≡ nuµ, where n is the
particle number density, balance equation takes the form

∇µNµ = ṅ + 3Hn = nΨ, (53)

where by Ψ we have denoted the particle creation rate. Assuming that matter is in the form
of dust, with the energy density ρ = m0n, where m0 is the particle mass, Equation (53) can
be reformulated in terms of density as

ρ̇ + 3Hρ = Ψρ. (54)

If Ψ ≪ H ≡
◦
∇µuµ/3, matter creation can be neglected in any physical or cosmological

model. The entropy flux vector Sµ is defined as Sµ ≡ s̃uµ = nσuµ, where s̃ denotes the
entropy density and σ denotes the entropy per particle. In the presence of particle creation,
the divergence of the entropy flux is given by

∇µSµ = nσ̇ + nσΨ ≥ 0. (55)
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For Ψ = 0, the total entropy is conserved, leading to an adiabatic thermodynamic
process. If the entropy per particle σ is constant, we obtain

∇µSµ = nσΨ = s̃Ψ ≥ 0. (56)

Hence, if σ is constant, the variation of the entropy is determined by the gravitational
particle production processes only. Since s̃ > 0, from Equation (56) we obtain the funda-
mental result that the matter creation rate Ψ must always be positive, Ψ ≥ 0. Consequently,
matter can be produced from the curved geometry, or the gravitational fields; however,
the inverse process is not allowed.

The creation pressure. The energy–momentum tensor tensor of matter must also be
generalized to obtain consistency with the second law of thermodynamics. This is generally
done by extending the equilibrium component Tµν

eq of the energy–momentum tensor tensor
by adding a new term, ∆Tµν, leading to [95]

T(tot)µν = Tµν
eq + ∆Tµν, (57)

where ∆Tµν represents the extra contribution due to matter creation. Assuming a simple
isotropic and homogeneous geometry, ∆Tµν can be described by a scalar quantity. Therefore,
we generally obtain [95]

∆T0
0 = 0, ∆T j

i = −Pcδ
j
i, i, j = 1, 2, 3, (58)

where Pc represents the creation pressure, a physical quantity phenomenologically describ-
ing the effects of matter creation via the gravitational field on macroscopic thermodynamic
processes and systems. In a covariant formulation, we have [95]

∆Tµν = −Pchµν = −Pc(gµν − uµuν). (59)

From the above relation, we obtain uµ∇ν∆T(tot)µν = 3HPc. Thus, in the presence
of particle creation, the total energy balance equation uµ∇νT(tot)µν = 0, following from
Equation (57), can be written as

ρ̇ + 3H(ρ + P + Pc) = 0. (60)

The Gibbs law, which is given by [93]

nT̃d
(

s̃
n

)
= nT̃dσ = dρ − ρ + p

n
dn, (61)

where T̃ is the thermodynamic temperature of the system, must also be satisfied by all
thermodynamic quantities.

Semi-Symmetric Metric Gravity and irreversible thermodynamics. The energy
balance Equation (48) of the Semi-Symmetric Metric Gravity theory can be reformulated,
after some simple algebraic transformations, as

ρ̇ + 3H(ρ + P + Pc) = 0, (62)

where we have introduced the creation pressure Pc associated with the theory and defined
it as

Pc = − 1
32H

uµ f µ. (63)
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The generalized energy balance Equation (62) can also be derived from the divergence
of the generalized total energy momentum tensor Tµν of the matter, defined as

Tµν = (ρ + P + Pc)uµuν − (P + Pc)gµν. (64)

From the Gibbs law, by assuming that matter production is an adiabatic process, with
σ̇ = 0, we obtain

ρ̇ = (ρ + p)
ṅ
n
= (ρ + P)(Ψ − 3H). (65)

By using the energy balance equation, we find the relation giving the particle produc-
tion rate as a function of the creation pressure and the divergence of the matter energy–
momentum tensor tensor as

Ψ =
−3HPc

ρ + p
=

uµ f µ

ρ + p
. (66)

The condition Ψ ≥ 0 imposes an important constraint on the physical parameters of
the Semi-Symmetric Metric Gravity theory, which can be formulated as

uµ f µ

ρ + p
≥ 0. (67)

In terms of the creation pressure, the divergence of the entropy flux vector is found as

∇µSµ =
−3nσHPc

ρ + p
=

γ2

ξ2
nσ

ρ + p
uµQµ. (68)

The temperature evolution. To obtain the evolution of the temperature in the presence
of particle creation in a thermodynamic system, we introduce the equation of state for the
matter density and pressure in the general form ρ = ρ(n, T̃) and p = p(n, T̃), respectively.
Then, for the variation of the energy density, we obtain

ρ̇ =

(
∂ρ

∂n

)
T̃

ṅ +

(
∂ρ

∂T̃

)
n

˙̃T. (69)

By using the energy and particle balance equations, we find

−3H(ρ + p + Pc) =

(
∂ρ

∂n

)
T̃

n(Ψ − 3H)

+

(
∂ρ

∂T̃

)
n

˙̃T.
(70)

With the help of the following thermodynamic identity [95],

T̃
(

∂p
∂T̃

)
n
= ρ + p − n

(
∂ρ

∂n

)
T̃

, (71)

from Equation (70) we obtain, for the temperature evolution of a thermodynamic system in
the presence of matter production, the equation

˙̃T
T̃

=

(
∂p
∂ρ

)
n

ṅ
n
= c2

s
ṅ
n
= c2

s (Ψ − 3H) = −3Hc2
s

(
1 +

Pc

ρ + p

)
= 3Hc2

s

[
uµ f µ

3H(ρ + p)
− 1
]

, (72)

where, by c2
s = (∂p/∂ρ)n, we have denoted the sound speed in the matter medium. If the

condition (∂p/∂ρ)n = c2
s = constant is satisfied, the temperature evolution in the presence

of particle creation is given by T̃ ∼ nc2
s .

The case w = −1. In our previous analysis of particle creation from the geometry
and gravitational fields, we have assumed that particles are generated in the form of bary-
onic matter, satisfying the condition w = p/ρ ≥ 0. However, matter creation processes
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in the Semi-Symmetric Metric Gravity theory can be generalized to the case w < 0, corre-
sponding to the creation of exotic forms of matter, like, for example, dark energy. In the
following, we will show that the thermodynamic formalism presented in the previous
sections can be applied even in the case of w = −1, that is, for exotic matter satisfying the
equation of state ρ + p = 0. In this case, one also obtains well-defined and regular results.
As a first step in our analysis, we consider the temperature evolution equation,

˙̃T
T̃

=

(
∂p
∂ρ

)
n

ṅ
n

, (73)

and we will prove that it is valid for w = p/ρ = −1. The perfect fluid energy–momentum
tensor balance equation

ρ̇ + 3(ρ + p)H = uµ f µ. (74)

becomes, for w = −1,
ρ̇ = uµ f µ ≡ −3HPc. (75)

If the particle creation processes are adiabatic, with σ̇ = 0, from the Gibbs law we find

ρ̇ = (ρ + P)
ṅ
n
= 0, (76)

and thus the above two equations give ρ̇ = Pc = 0. Since ρ = ρ
(
n, T̃

)
, for the variation of

the energy density we obtain

ρ̇ =

(
∂ρ

∂n

)
T̃

ṅ +

(
∂ρ

∂T̃

)
n

˙̃T = 0. (77)

From the thermodynamic identity (71) with ρ + p = 0, we find

T̃
(

∂P
∂T̃

)
n
= −n

(
∂ρ

∂n

)
T̃

. (78)

Thus, we have shown that Equation (73) with (∂p/∂ρ)n < 0 can also be applied for
w = −1, as well as for any negative values of w. In the case w = −1, Equation (73) shows
that nT̃ is a constant, or T̃ ∼ 1/n. Hence, if the energy density of the dark energy particles is
very small, their temperature must be very high. On the other hand, high-density systems
composed of dark energy particle have a very low temperature. If n → ∞, the dark energy
particle systems have zero limiting temperature.

3. Semi-Symmetric Metric Gravity Cosmology

In the framework of Semi-Symmetric Metric Gravity, the late-time acceleration could
be explained through cosmological models, which do not directly involve the cosmological
constant. The accelerated expansion is entirely due to the presence of torsion, and hence
has a geometric origin. To present these models, let us assume an isotropic, homogeneous,
and spatially flat FLRW metric,

ds2 = −dt2 + a(t)2δijdxidxj, i, j = 1, 3, (79)

where i, j = 1, 3 means that i, j are spatial indices, i.e., they take values in the set {1, 2, 3}.
The matter in the universe is assumed to be composed of a perfect fluid, which appears

in the Einstein equations in the form

Tµν = ρuµuν + p(uµuν + gµν), (80)
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where the four-velocity in a frame is given by

uµ = (−1, 0, 0, 0), uµ = (1, 0, 0, 0). (81)

In accordance with the cosmological principle, as pointed out by Tsamparlis [80],
the torsion vector reads

πµ = (ω(t), 0, 0, 0). (82)

The Friedmann equations of Semi-Symmetric Metric Gravity contain additional,
torsion-dependent terms [69],

3H2 = 8πρ − 3ω2 + 6Hω = 8π
(

ρ + ρe f f

)
= 8πρtot, (83)

2Ḣ + 3H2 = −8πp + 4Hω − ω2 + 2ω̇ = −8π
(

p + pe f f

)
= −8πptot, (84)

where we have introduced the Hubble parameter H = ȧ
a and

ρe f f =
1

8π

(
6Hω − 3ω2

)
, pe f f = − 1

8π

(
4Hω − ω2 + 2ω̇

)
(85)

respectively, while ρtot = ρ + ρe f f and ptot = p + pe f f .
In this theory, as previously pointed out, the energy–momentum tensor tensor is

generally not conserved, leading to the modified continuity equation

ρ̇ + 3H(ρ + p) + ρ̇e f f + 3H
(

ρe f f + pe f f

)
= 0, (86)

which can be rewritten in the equivalent form

ρ̇ + 3H(ρ + p) +
3

8π

[
d
dt

(
2Hω − ω2

)
+ 2H

(
Hω − ω2 − ω̇

)]
= 0. (87)

As an indicator of the accelerating/decelerating nature of the cosmological evolution,
we consider the deceleration parameter q, defined according to

q =
d
dt

1
H

− 1. (88)

For p = 0, Equation (87) can be reformulated as

ρ̇ + 3Hρ = Ψρ, (89)

where the particle creation rate Ψ is given by

Ψ = − 3
8π

1
ρ

[
d
dt

(
2Hω − ω2

)
+ 2H

(
Hω − ω2 − ω̇

)]
. (90)

The thermodynamic condition Ψ ≥ 0 imposes on the cosmological quantities the
constraint Ψ ≥ 0, which gives, for the cosmological quantities of the models, the restriction

ω

(
Ḣ
H2 + 1 − ω̇

H2 − ω

H

)
≤ 0. (91)

In terms of the deceleration parameter, we obtain the restriction

ω

(
q +

ω̇

H2 +
ω

H

)
≥ 0. (92)
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As for the creation pressure, we obtain the general expression

Pc = −ωH
4π

(
q +

ω̇

H2 +
ω

H

)
. (93)

3.1. Specific Cosmological Models

In the following, we will consider two simple cosmological models in the Semi-
Symmetric Metric Gravity theory, obtained by imposing an equation of state on the effective
dark geometric pressure. With this assumption, the set of the cosmological field equations
can be closed, and their solution can be obtained using numerical methods.

However, as the purpose of the cosmological models is to compare with observational
data, let us rewrite the Friedmann equations in two steps, first in dimensionless variables
then in redshift variables. We introduce dimensionless parameters as

H = H0h, τ = H0t, ω = H0Ω, ρ =
3H2

0
8π

r, p =
3H2

0
8π

P. (94)

With the help of these, we can rewrite the Friedmann equations in the form

h2 = r − Ω2 + 2hΩ, (95)

2
dh
dτ

+ 3h2 = −3P + 4hΩ − Ω2 + 2
dΩ
dτ

, (96)

while the effective energy density and pressure become

re f f = 2hΩ − Ω2, (97)

Pe f f = −1
3

(
4hΩ − Ω2 + 2

dΩ
dτ

)
, (98)

where ρe f f =
(
3H2

0 /8π
)
re f f and pe f f =

(
3H2

0 /8π
)

Pe f f .
The redshift parametrization is defined by 1 + z = 1

a , which directly implies

d
dτ

= −(1 + z)h(z)
d
dz

. (99)

Hence, in the redshift parametrization, the Friedmann equations are given by

h2(z) = r(z) + 2h(z)Ω(z)− Ω2(z), (100)

−2(1 + z)h(z)
dh(z)

dz
+ 3h2(z) = −3P(z) + 4h(z)Ω(z)− Ω2(z)− 2(1 + z)h(z)

dΩ
dz

. (101)

3.1.1. Linear Cosmological Model

So far, the torsion field π is not provided with dynamics. To provide dynamics to
the field, we assume two equations of state, one for the ordinary matter and one for the
effective components. As a first cosmological model, we assume p = 0, that is, ordinary
matter is a pressureless dust. For the effective components, an equation of state of the form

Peff(z) = −σ0ρeff(z). (102)

is proposed. Given these, the system of differential equations governing the evolution of
the Universe in redshift representation is given by

dh(z)
dz

=
3h2(z)− 3σ0(2h(z)Ω(z)− Ω2(z))

2(1 + z)h(z)
(103)
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dΩ(z)
dz

=
−2(3σ0 − 2)h(z)Ω(z)− (1 − 3σ0)Ω2(z)

2(1 + z)h(z)
(104)

The system of equations has to be solved with initial conditions h(0) = 1, Ω(0) = Ω0.
Then, from the closure relation, the matter density can be obtained as

r(z) = h2(z)− 2h(z)Ω(z) + Ω2(z) = (h(z)− Ω(z))2, (105)

or
Ω(z) = h(z)∓

√
r(z). (106)

Estimating the matter density at the present time gives

r(0) = (1 − Ω0)
2, (107)

or
Ω(0) = 1 ∓

√
r(0). (108)

Hence, the present-day value of the torsion vector is fully determined by the present-day
value of the matter density.

3.1.2. Polytropic Cosmological Model

As a second cosmological model, we keep the assumption of p = 0 but consider a
different equation of state for the effective components, namely, a polytropic EoS,

Pe f f = K
(

ρe f f

)(1+ 1
n ). (109)

where K is a constant and n is the polytropic index. It is important to note that, for matter,
we still consider it a pressureless dust, and we impose the polytropic equation of state
only for the effective components. In this model, the evolution equations in the redshift
representation take the form

dΩ(z)
dz

=
1

2(1 + z)h(z)

(
4h(z)Ω(z)− Ω2(z) + 3K

(
2h(z)Ω(z)− Ω2(z)

)(1+ 1
n )
)

(110)

dh(z)
dz

=
3h2(z)− 4h(z)Ω(z) + Ω2(z) + 2(1 + z)h(z) dΩ(z)

dz
2(1 + z)h(z)

(111)

They have to be integrated with the initial conditions h(0) = 1, Ω(0) = Ω0. In this
particular case, the polytropic index is chosen to be n = 3

5 . The first Friedmann equation
again yields the expression for the matter density:

r(z) = h2(z)− 2h(z)Ω(z) + Ω2(z) = [h(z)− Ω(z)]2. (112)

3.2. Observational Constraints

In this study, we use a Markov Chain Monte Carlo (MCMC) approach to estimate
the optimal parameters of the proposed cosmological models. The Hubble parameter is
derived from a system of differential equations in both cases: in the linear case, this system
is explicitly (103)–(104), while in the polytropic case, the system is given by (110)–(111).

The numerical solutions are obtained using the solve_ivp function from SciPy [96,97].
We apply the Radau method [98], a fifth-order implicit Runge–Kutta technique, particularly
suited for the stiff differential equations that frequently occur in cosmological modeling due
to the wide range of scales and rapid variations across different epochs. The Radau method
ensures numerical stability, especially over large redshift intervals, where the equations
exhibit stiff behavior.
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To balance computational efficiency and accuracy, we set the relative tolerance to 10−3

and absolute tolerance to 10−6. These tolerance levels allow stable and accurate integration
across the redshift range z ∈ [0, 3], guaranteeing that the solution captures both large and
small variations in the variables. Having obtained the numerical solutions, in terms of the
model parameters, we use a Markov Chain Monte Carlo (MCMC) algorithm to estimate
the best-fit values of the parameters, with respect to several datasets [99]. The MCMC
algorithm explores the parameter space by sampling from the posterior distribution,

P(θ|D) =
L(D|θ)P(θ)

P(D)
, (113)

where P(θ|D) is the posterior probability of the parameters θ given the data D, L(D|θ)
is the likelihood of the data given the parameters, P(θ) represents the prior distribution,
and P(D) is the evidence, acting as a normalization constant.

It is important to note that the MCMC method not only identifies the most probable
or optimal parameters but also takes into account the uncertainties in the model (this is not
the case here) and in the data.

Data Description

To find the optimal parameters, the following datasets were used: a set of 31 Cos-
mic Chronometer (CC) observations; Type Ia Supernovae (SNe Ia) data without SHOES
calibration; and Baryon Acoustic Oscillation (BAO) measurements from observations of
galaxies, quasars, and Lyman-α tracers. This includes data from the first year of the Dark
Energy Spectroscopic Instrument (DESI) and the completed SDSS-IV extended Baryon
Oscillation Spectroscopic Survey. Additionally, the Hubble constant, as estimated by the
SH0ES team, is H0 = 73.04 ± 1.04 km s−1 Mpc−1. In the following, we briefly describe each
dataset, together with the corresponding likelihoods used in our analysis.

Cosmic Chronometer (CC). The 31 Cosmic Chronometer (CC) measurements cover
a redshift range of approximately z ≲ 2. These measurements were obtained using the
differential age method [100], which involves passively evolving galaxies observed at small
redshift intervals. This technique allows for the direct calculation of the Hubble parameter
by measuring the rate of change of redshift with respect to cosmic time, ∆z/∆t. By focusing
on galaxies that are not actively forming stars, this method provides a model-independent
estimate of the Universe’s expansion rate at different epochs. In this study, we incorporate
31 data points from various independent sources, as outlined in Table 1 of [101]. For our
MCMC analysis, we evaluate the goodness-of-fit using the χ2

CC statistic,

χ2
CC(θ) = ∆HT(z)C−1∆H(z), (114)

where ∆H(z) is the vector of residuals, defined as ∆H(z) = Hmodel(θ) − Hobs. Here,
Hmodel(θ) is the vector of theoretical Hubble parameter values at redshifts zi for the model
parameters θ, and Hobs is the vector of observed Hubble parameter values. C is the
covariance matrix of the observational data, with diagonal elements representing the
variances σ2

H(zi) of the observed Hubble parameters. Since the data points are assumed
to be uncorrelated, the covariance matrix is diagonal. C−1 is the inverse of the covariance
matrix, used to account for the measurement uncertainties.

Type Ia supernova (SNe Ia). The Pantheon+ dataset includes light curves for 1701
Type Ia Supernovae (SNe Ia) from 1550 distinct supernovae, spanning a redshift range of
0 ≤ z ≤ 2.3 [102]. The observable quantity for SNe Ia is the apparent magnitude,

m(z) = 5 log10

(
dL(z)
Mpc

)
+M+ 25, (115)

where M denotes the absolute magnitude of SNe Ia. The luminosity distance dL in a flat
Friedmann–Lemaître–Robertson–Walker (FLRW) Universe is given by [102]
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dL(z) = c(1 + z)
∫ z

0

dz′

H(z′)
, (116)

with c representing the speed of light in km/s. For SNe Ia, the χ2 statistic is computed using

χ2
SNe Ia = ∆DTC−1

total∆D, (117)

where Ctotal = Cstat + Csys combines the statistical and systematic covariance matrices,
and ∆D is the vector of 1701 SNe Ia distance moduli, calculated as

∆D = µ(zi)− µmodel(zi, θ). (118)

Here, µ(zi) = m(zi)−M is the distance modulus of SNe Ia.
Baryon Acoustic Oscillations (BAO). The BAO scale is determined by the sound

horizon at the drag epoch zd, which marks the decoupling of photons and baryons. This
scale is defined by the integral

rd =
∫ ∞

zd

cs(z)
E(z)

dz. (119)

In this context, the speed of sound in the baryon-photon fluid, cs, is approximated

by cs ≈ c
(

3 + 9ρb
4ργ

)−0.5
, where ρb(z) and ργ(z) are the baryon and photon densities, re-

spectively [103]. The function E(z) is defined as the product of H(z) and the present-day
Hubble parameter H0, incorporating cosmological model parameters. The drag epoch,
when baryons decouple from photons, occurs at approximately zd ≈ 1060. In a flat ΛCDM
cosmology, [61] estimates the sound horizon at drag as rd = 147.09 ± 0.26 Mpc. In [104],
the value rd = 143.9 ± 3.1 Mpc is obtained.

Additionally, [105] employs binning and Gaussian methods on 2D BAO and supernova
data to estimate the absolute BAO scale, finding ranges of 141.45 Mpc ≤ rd ≤ 159.44 Mpc
(binning) and 143.35 Mpc ≤ rd ≤ 161.59 Mpc (Gaussian). Furthermore, independent of
CMB data, [106] finds rd = 144+5.3

−5.5 Mpc (from θBAO + BBN + HoLiCOW), while [107]
reports rd = 143.7 ± 2.7 Mpc.

In the present analysis, we remove the rd prior from the CMB Planck satellite data and set rd
as a free parameter. This approach provides the advantage of model-independence by avoiding
specific assumptions about the early Universe and recombination processes [108–111].

We then determine the transverse distance DH(z) for each model, defined as follows,

DH(z) =
c

H0h(z)
, (120)

where c is the speed of light in vacuum, H0 is the present-day Hubble constant, and h(z)
is the numerical solution of the differential equation obtained using the initial conditions.
We also calculate the co-moving angular diameter distance DM(z), which depends on the
expansion history and curvature, as

DM(z) =
c

H0
Sk

(
DC(z)
c/H0

)
. (121)

Here, the line-of-sight co-moving distance DC(z) is given by

DC(z) =
c

H0

∫ z

0

dz′

h(z′)
. (122)
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The function Sk(x) is defined as

Sk(x) =


sin(

√
−Ωk x)√
−Ωk

if Ωk < 0,

x if Ωk = 0,
sinh(

√
Ωk x)√

Ωk
if Ωk > 0.

(123)

For a flat Universe (as considered by us), the curvature parameter vanishes, i.e., Ωk = 0,
and the function Sk(x) simplifies to Sk(x) = x. Thus, the formula for the co-moving angular
diameter distance DM(z) in a flat Universe takes the simplified form

DM(z) =
c

H0
· DC(z)

c/H0
= DC(z) =

c
H0

∫ z

0

dz′

h(z′)
, (124)

The value of rd can be determined by constraining the ratios DM(z)
rd

and DH(z)
rd

. We also
consider the spherically averaged distance DV(z), defined as

DV(z) ≡
[
zD2

M(z)DH(z)
]1/3

. (125)

Additionally, we constrain the quantity DV(z)
rd

. In this expression, the exponent 1
3

accounts for the radial dimensions, while the factor z ensures conventional normalization.
To compute the χ2

BAO function for the Baryon Acoustic Oscillation (BAO) data, we use the
following equations,

χ2
DX/rd

= ∆DT
X · C−1

DX
· ∆DX , (126)

where ∆DX = DX/rd ,Model − DX/rd ,Data for X = H, M, V and C−1
DX

is the inverse covariance
matrix corresponding to each X.

The inverse covariance matrix, C−1
DX

, is computed by inverting the covariance matrix
CDX , which is typically constructed by incorporating the observational uncertainties, σDX ,
along the diagonal, i.e., CDX = diag(σ2

DX
). The BAO chi-square is defined as

χ2
BAO = χ2

DH/rd
+ χ2

DV /rd
+ χ2

DM/rd
. (127)

In our analysis, we incorporate the latest Baryon Acoustic Oscillation (BAO) data
from the Dark Energy Spectroscopic Instrument (DESI) Year 1 observations, as detailed
in Table 1 of [112]. Additionally, we include data from the completed SDSS-IV extended
Baryon Oscillation Spectroscopic Survey, presented in Table 3 of Section 4 in [113].

Hubble Constant Measurements. We also incorporate the Hubble constant value
(H0), as estimated by the SHOES collaboration [114]. The SHOES collaboration reports a
Hubble constant value of HR22

0 = 73.04 ± 1.04 km s−1 Mpc−1 [115]. Using Type Ia super-
novae as standard candles, the SHOES collaboration infers distances to galaxies, providing
a robust estimate of the Hubble constant.

We employ the R22 prior to demonstrate the tension between our model and the
observed value. To incorporate the R22 prior, we define the χ2

R22 statistic as

χ2
R22 = −0.5

(
HR22

0 − HModel
0

σR22

)2

Here, HR22
0 = 73.04, HModel

0 is the theoretical Hubble constant value computed for
each model using a numerical analysis and σR22 = 1.04 is the error associated with HR22

0 .
To incorporate all the information from each dataset, we define the total chi-squared

statistic, χ2
tot, as the sum of the individual chi-squared contributions from each dataset:

χ2
tot = χ2

CC + χ2
SNe Ia + χ2

BAO + χ2
R22.
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When we consider the combination of CC + SNe Ia + BAO, we label it as (JOINT).
When the R22 prior is included, we refer to it as (JOINT + R22). The MCMC analysis is
performed using the emcee library [116].

For visualizing and plotting the results, we use the publicly available GetDist pack-
age [117], which offers a comprehensive toolkit for generating 1D and 2D posterior distri-
bution plots.

3.3. Analysis of the Cosmological Models Using the MCMC-Inferred Optimal Parameters

Having obtained the optimal parameter values from the MCMC algorithm, we com-
pare our cosmological models with both the observational data (in the figures, only the 31
CC are considered) and the standard ΛCDM Model. We do this in several steps, comparing
the Hubble parameters, distance moduli, and several key cosmographic quantities.

3.3.1. Comparative Evolution of the Hubble Parameter H(z)

For the ΛCDM Model, we use the expression

HΛCDM(z, Ωm, H0) = H0

√
Ωm(1 + z)3 + (1 − Ωm), (128)

where Ωm0 = 0.322 and the present-day Hubble constant H0 = 68.0 km/s/Mpc, as derived
from the MCMC analysis using the joint data.

In our differential equation system analysis, we obtain the model parameter h(z) by
numerically integrating the system of differential equations using appropriate initial condi-
tions. Once the solution h(z) is obtained, we interpolate it using ‘interp1d’ to determine
the values of h(z) at specific redshift points corresponding to the observational data.

Finally, we scale the interpolated solution h(z) by the present-day Hubble constant
H0 to compute the model Hubble parameter Hmodel(z), which is then compared with the
observational data.

3.3.2. Comparative Evolution of the Hubble Difference ∆H(z)

After obtaining the Hubble parameter H(z) from our model, we compute a quantity
called the Hubble difference, denoted as ∆H(z). This is given by the formula
∆H(z) = Hmodel(z)− HΛCDM(z), where Hmodel(z) is the Hubble parameter predicted by
our model and HΛCDM(z) is the Hubble parameter predicted by the standard ΛCDM
Model. To calculate ∆H(z) for the ΛCDM Model itself, we need to take the difference
between the observed Hubble parameter H(z) and HΛCDM(z) at the corresponding redshift
points. This provides a measure of how much the model’s predictions deviate from the
standard ΛCDM predictions and from the observed data.

3.3.3. Comparative Evolution of the Distance Modulus µ(z)

The calculation of µ(z) involves several steps: First, we calculate the co-moving
distance as a function of redshift z. The co-moving distance DC(z) is given by the integral
DC(z) =

∫ z
0

c
H(z′) dz′, where c is the speed of light and H(z′) is the Hubble parameter at a

given redshift z′. This integral is evaluated from the present time (z = 0) to the redshift
z of the object. Next, we compute the luminosity distance, DL(z), which is related to the
co-moving distance by DL(z) = (1 + z)DC(z).

The factor (1 + z) accounts for the redshift of the light as it travels from the source to
the observer, with DC(z) represents the co-moving distance to the object. Finally, the dis-
tance modulus µ(z), which relates the luminosity distance to the observed magnitude,
is computed using the formula µ(z) = 5 log10(DL(z)) + 25. Here, DL(z) is expressed in
megaparsecs (Mpc).

Using the best-fit values obtained from the MCMC algorithm, we calibrated µΛCDM(z)
and µModel(z) and plotted them against the dataset of 1701 Type Ia supernovae (SNe Ia).
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3.4. Cosmographic Analysis

As there are many modified gravitational theories, which could reproduce the ob-
servational data of the Hubble parameter, cosmography [118–121] is used to differentiate
between these models. Even if a model fits the Hubble observational data, the derived
quantities, usually expressed in terms of series expansions of the Hubble parameter, could
differentiate between the models. Such derived quantities include the deceleration, jerk,
and snap parameters. These go beyond measuring the expansion rate and offer insights
into the dynamics and variations in the Universe’s evolution over time. In the following,
we briefly describe these derived quantities.

3.4.1. Deceleration Parameter q(z)

The deceleration parameter q(z) is essentially used to decide whether the expansion of
the Universe is accelerating or decelerating at a particular redshift. When q(z) is negative,
it indicates that the Universe is accelerating, while a positive value means the expansion is
slowing down. Formally, it is defined as

q(z) = − 1
H2(z)

dH(z)
dz

− 1,

where the term dH(z)
dz represents the rate of change of the Hubble parameter with respect

to redshift. Since the sign of q(z) describes the accelerating/decelerating phases of the
cosmic evolution, a change of sign in q(z) signals a transition between two phases. In the
decelerating phase, matter dominates, while the accelerating phase is usually driven by
dark energy (or the cosmological constant), but in our models, this is entirely due to the
presence of torsion.

3.4.2. Jerk Parameter j(z)

The jerk parameter j(z) [122] measures the rate of change of the acceleration over
redshift. It essentially tells us whether the acceleration is increasing, decreasing, or staying
the same. Mathematically, it can be expressed as

j(z) =
1

H3(z)
d2H(z)

dz2 .

In the ΛCDM Model, a key feature is that the jerk parameter is a constant value,
namely j(z) = 1, throughout the Universe’s evolution. This constancy is a distinctive
characteristic of ΛCDM, helping to differentiate it from other cosmological models where
the jerk parameter might vary due to different underlying physics (as also happens in
our models).

3.4.3. Snap Parameter s(z)

The snap parameter s(z) [122] could differentiate between modified gravity models,
in which the first two derivatives of the Hubble parameter agree. Essentially, it is related to
the third derivative of the Hubble function, or formally,

s(z) =
1

H4(z)
d3H(z)

dz3 =
j(z)− 1

3
(

q(z)− 1
2

) .

From the second equality, we can see that it could be expressed through the jerk and
deceleration parameters in a quite simple form.

Though the snap parameter is less commonly referenced than the deceleration or jerk
parameters, it plays a crucial role when testing more complex or modified cosmological
models that may go beyond the standard ΛCDM framework.
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In the ΛCDM Model, one of the defining features is that the snap parameter takes
the constant value 0, indicating that the rate of acceleration remains stable over redshift.
This constancy of the snap parameter in ΛCDM helps distinguish it from other models that
predict different dynamics.

3.5. Om(z) Diagnostic

To compare Semi-Symmetric Metric Gravity models with the standard ΛCDM Model,
we also use a key diagnostic tool known as the Om(z) diagnostic [123–126]. This diagnostic
is particularly useful for distinguishing between different cosmological models, which have
quintessence-like, phantom-like evolutions.

The Om(z) diagnostic is defined as

Om(z) =
H2(z)/H2

0 − 1
(1 + z)3 − 1

=
h2(z)− 1

(1 + z)3 − 1
.

For the ΛCDM Model, Om(z) is constant and equal to the present-day matter density,
Ωm0 = 0.322. This constancy reflects the model’s predictable and steady evolution. How-
ever, in alternative gravity theories that differ from ΛCDM, Om(z) may evolve over redshift.

A changing Om(z) can reveal different types of cosmic behavior, as we mentioned be-
fore: if Om(z) increases with redshift (positive slope), it suggests a phantom-like evolution,
where dark energy becomes increasingly dominant.

On the other hand, if Om(z) decreases over time (negative slope), it indicates quintessence-
like dynamics, where dark energy is less dominant, and the Universe’s expansion may
slow down. If there are periods in which the slope is positive, then it becomes negative;
this indicates a transition from a phantom-like to a quintessence-like evolution.

3.6. Matter Density r(z) and the Torsion Vector Ω(z)

The dimensionless matter density represents an important cosmological parameter
that allows a powerful check of the consistency of the cosmological models.

In the present approach, matter is considered together in both its forms (baryonic
and dark), and its present-day value determines the initial conditions for the cosmological
evolution. In this sense, the models do not predict the present-day matter density but give
a description of its evolution in the earlier stages of the evolution of the Universe.

The torsion vector is a basic geometrical (and physical) component of the present
models, and its cosmological evolution provides important hints regarding the nature of
the torsion, and of the overall geometry of the Universe, as well as on the way it has evolved.

3.7. Particle Creation Rate Ψ and Creation Pressure Pc

When the energy–momentum tensor tensor is not conserved, as mentioned earlier,
the particle number can vary. In our concrete case, the creation/annihilation processes are
mostly influenced by the presence of the torsion vector.

The quantities Pc and Ψ provide consistency conditions for the proposed models as, if
the particle creation pressure would be positive, the models would not be consistent with
the second law of thermodynamics. Thus, for a model to be valid, it must hold that Pc < 0
and Ψ > 0 throughout the entire cosmic evolution.

3.8. Statistical Analysis

To differentiate between various models in the Semi-Symmetric Metric Gravity frame-
work relative to the reference ΛCDM Model, we begin by examining the minimum chi-
squared values, χ2

min, which quantify the fit quality for each model.
The reduced chi-squared, χ2

red, is a statistical measure used to assess the goodness of
fit for a model compared to the observed data. It is defined as

χ2
red =

χ2
tot

DOF
(129)
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where χ2
tot is the total chi-squared value and DOF (degrees of freedom) is the number of

data points minus the number of fitted parameters. A value of χ2
red ≈ 1 suggests a good fit

between the model and the data. If χ2
red < 1, it might suggest overfitting. If χ2

red ≫ 1, it
indicates a poor fit, meaning the model does not describe the data well. In addition to χ2

red,
we use statistical metrics derived from log-likelihood values to further evaluate the models.

The maximum log-likelihood, log Lmax = max(log Li), is obtained from the log-
probability values and represents the maximum likelihood of the data being considered.
In this analysis, the full dataset is used without incorporating the R22 prior. The Akaike
Information Criterion (AIC) [127–132] is then calculated as

AIC = −2 log Lmax + 2Ptot, (130)

where Ptot represents the number of free parameters in the model. The Bayesian Information
Criterion (BIC) [127,133] is computed using

BIC = −2 log Lmax + Ptot ln(Ntot), (131)

with Ntot being the total number of data points. To assess the relative performance of each
model, we calculate the differences in AIC and BIC with respect to the ΛCDM Model:

∆AIC = AICmodel − AICΛCDM, (132)

∆BIC = BICmodel − BICΛCDM. (133)

Additionally, the chi-squared value is derived from the log-probability values as
χ2 = −2 lnL. According to Jeffreys’ scales, if 0 < |∆AIC| ≤ 2, the models are considered
comparable; if |∆AIC| ≥ 4, the model with the higher AIC is less favored. For BIC,
0 < |∆BIC| ≤ 2 indicates weak disfavor, 2 < |∆BIC| ≤ 6 indicates strong disfavor,
and |∆BIC| > 6 indicates very strong disfavor. A negative value of ∆AIC and ∆BIC
indicates that the model is preferred over the ΛCDM Model.

3.9. Results

Description of best-fit values and triangle plot. Figures 1 and 2 show the triangle
plot, also known as a corner plot, which is a visualization tool frequently used in Bayesian
statistics. These plots correspond to the ΛCDM, Linear, and Polytropic Models, respectively.
They provide a compact way to display the posterior distributions of multiple parameters
and their correlations.

The Diagonal Elements (1D Histograms) are the marginalized posterior distributions
for individual parameters. They provide insights into the spread and peak of the distribu-
tion, indicating the most probable values for each parameter. The Off-Diagonal Element (2D
Contours) plots represent the joint probability distributions between pairs of parameters.
The contours visualize the correlation between two parameters, showing how the uncer-
tainty in one parameter might influence the other. Table 1 presents a comparative analysis of
the optimal values for cosmological parameters within the framework of Semi-Symmetric
Metric Gravity across two models: the Linear Model and the Polytropic Model.

A key focus is on the Hubble constant H0 and the sound horizon at drag epoch rd,
as these parameters are critical in understanding the Universe’s expansion rate and the
scale of Baryon Acoustic Oscillations (BAO). In the ΛCDM framework, the estimated values
of the Hubble constant H0 and the sound horizon rd are aligned with those reported by
Planck 2018 [61].

When incorporating the R22 prior for H0, the fit gives H0 = 71.48± 0.87 km s−1 Mpc−1,
which is consistent with the value reported by the SH0ES collaboration [115]. This model
also estimates the sound horizon as rd = 139.2 ± 1.8 Mpc, which is lower than the Planck
value. The Linear Model predicts H0 = 66.9 ± 1.6 km s−1 Mpc−1, closely matching the
Planck estimate. It also yields rd = 146.8 ± 3.4 Mpc, consistent with values reported in
studies such as [105].
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Figure 1. The confidence contours at the 1σ and 2σ levels based on constraints for the Linear Model
within the Semi-Symmetric Metric Gravity framework.
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Figure 2. The confidence contours at the 1σ and 2σ levels for the polytropic model within the
Semi-Symmetric Metric Gravity framework.
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Table 1. Summary of the optimal values for the cosmological parameters within the framework of
Semi-Symmetric Metric Gravity.

Cosmological Models Parameter Prior JOINT JOINT + R22

ΛCDM Model

H0 [50., 100.] 68.0 ± 1.6 71.48 ± 0.87

Ωm0 [0, 1.] 0.322 ± 0.011 0.296 ± 0.011

M [−20,−18] −19.415 ± 0.051 −19.306 ± 0.027

rd [100, 300] 146.4 ± 3.4 139.2 ± 1.8

Linear Model

H0 [50., 100.] 66.9 ± 1.6 71.28 ± 0.89

Ω0 [0., 1.] 0.3914 ± 0.0095 0.3955 ± 0.0091

σ0 [0., 2.] 0.950 ± 0.047 0.979 ± 0.046

M [−20,−18] −19.302 ± 0.027 −19.435 ± 0.051

rd [100, 300] 146.8 ± 3.4 138.8 ± 1.9

Polytropic Model

H0 [50., 100.] 66.8 ± 1.6 71.25.8 ± 0.88

Ω0 [0., 1.] 0.3808 ± 0.0083 0.3867 ± 0.0080

K [−3,−1.] −1.91+0.15
−0.17 −1.97+0.18

−0.14
M [−20,−18] −19.432 ± 0.051 −19.296 ± 0.027

rd [100, 300] 146.8 ± 3.4 138.6 ± 1.9

When the R22 prior is included, the Linear Model’s Hubble constant shifts to
H0 = 71.28± 0.89 km s−1 Mpc−1, again aligning with the SH0ES result. However, the corre-
sponding sound horizon decreases to rd = 138.8± 1.9 Mpc, differing from the Planck prediction.
Similarly, the Polytropic Model, without the R22 prior, finds H0 = 66.8± 1.6 km s−1 Mpc−1,
in agreement with the Planck value. It estimates the sound horizon at rd = 146.8 ± 3.4 Mpc,
consistent with previous studies, including [105,106].

When the R22 prior is added, the numerical value of the Hubble constant increases to
H0 = 71.25 ± 0.88 km s−1 Mpc−1, aligning with the SH0ES measurement, while the sound
horizon decreases to rd = 138.6 ± 1.9 Mpc, further diverging from the Planck value. These
results highlight the persistent tension between early- and late-Universe measurements of
H0 and rd.

The values of H0 inferred from models using the R22 prior align with local mea-
surements by SH0ES but deviate from the Planck-based inference, which relies on early-
Universe observations.

Conversely, the corresponding estimates of rd in models incorporating R22 are system-
atically smaller than the Planck values, further reinforcing the discrepancy between early-
and late-Universe cosmological parameters.

The Linear and Polytropic Models use Ω0 as the initial condition for their differential
equation systems. For the Linear Model, Ω0 is estimated to be 0.3914 ± 0.0095, while for
the Polytropic Model Ω0 is estimated to be 0.3808 ± 0.0083. In the Linear Model, the free
parameter σ0 is estimated to be 0.950± 0.047, while in the Polytropic Model the parameter K
is estimated to be −1.91+0.17

−0.15. The absolute magnitude of Type Ia supernovae, M, remains
consistent across all models, with values ranging from −19.424 ± 0.055 to −19.453 ± 0.053.

Hubble Parameter H(z). The comparative analysis between the ΛCDM paradigm
and each model against the CC data is presented in Figure 3. The ΛCDM Model is shown
as a black line, the Linear Model as a red line, and the Polytropic Model as a blue line.
The CC measurements are represented by blue dots with magenta error bars. Notably,
for redshifts z > 1.75, a clear deviation between the models emerges.
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Figure 3. Evolution of the Hubble parameter H(z) as a function of redshift z, using the joint data
best-fit values, and compared with the CC dataset.

Although these deviations are not substantial for low redshifts, they become apparent
as redshift increases. However, for lower redshifts, z < 1.75, all models exhibit close
agreement with each other and the observational data.

Hubble difference ∆H(z). Figure 4 shows the Hubble difference ∆H(z) between
the Linear, Polytropic, and ΛCDM Models compared to cosmic chronometer (CC) mea-
surements. The plot illustrates the deviations of both models from the ΛCDM Model at
redshifts z > 1.5. These deviations are relatively minor, and as the redshift decreases to
z < 1.5 the deviations become less pronounced, and all models align more closely with the
observational data in this regime.
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Figure 4. Evolution of the Hubble difference ∆H(z) as a function of redshift z, using the joint data
best-fit values, and compared with the CC dataset.

Distance Modulus µ(z). Figure 5 illustrates the evolution of µ(z) as a function of
redshift. Both models exhibit close agreement with the Type Ia supernova (SNe Ia) mea-
surements and the ΛCDM Model. Although the differences are subtle and may not be
immediately apparent due to the large number of data points, we have included an addi-
tional figure to highlight the variations more clearly. This additional figure demonstrates
the deviations between the ΛCDM, Linear, and Polytropic Models, allowing for a more
detailed comparison of their respective evolutions.
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Figure 5. Evolution of the distance modulus µ(z) as a function of redshift z, using the joint data
best-fit values and compared with the SNe Ia dataset.

Cosmographic results. Figure 6 illustrates the evolution of the deceleration pa-
rameter q(z). At high redshifts, the ΛCDM, Linear, and Polytropic Models show similar
behavior. As redshift decreases toward the present-day (z = 0), the ΛCDM Model pre-
dicts q0 = −0.506, the Linear Model q0 = −0.401, and the Polytropic Model q0 = −0.288.
The redshift ztr, where q(z) = 0, represents the point at which the expansion of the Universe
transitions from decelerating to accelerating. The ΛCDM Model predicts this transition
at ztr = 0.601, implying that this shift occurred relatively recently. In contrast, the Linear
Model predicts a later transition at ztr = 0.642, while the Polytropic Model forecasts an
even later transition at ztr = 0.711.
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Figure 6. Evolution of the deceleration parameter q(z) as a function of redshift z, using the joint data
best-fit values.

Figure 7 shows the redshift variation of the jerk parameter j(z) with respect to redshift
z. At high redshifts, the ΛCDM, Linear, and Polytropic Models align closely, all exhibiting a
value of j(z) = 1, which means that the jerk parameter of our models asymptotically tends
to the constant value of 1, but for lower redshifts we have different dynamics. The ΛCDM
Model predicts j(z) = 1 throughout the entire evolution, including at z = 0. In comparison,
the Linear Model predicts j0 = 0.662, while the Polytropic Model predicts j0 = −0.432.
The value of j0 at z = 0 is particularly important because it characterizes the present-
day cosmic expansion. The fact that the ΛCDM Model maintains j0 = 1 reinforces its
consistency with a Universe dominated by a cosmological constant, while the deviation of
j0 in the other models suggests alternative dynamics in the current expansion rate, driven
by torsion.
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Figure 7. Evolution of the jerk parameter j(z) as a function of redshift z, using the joint data best-
fit values.

Figure 8 depicts the dependence of the snap parameter s(z) on redshift z. At high
redshifts, the ΛCDM and Polytropic Models are closely aligned, both exhibiting s(z) = 0.
In contrast, the Linear Model shows a slight deviation, with s(z) = 0.228 at high redshifts.
Although this deviation is minor, it is still noticeable. At lower redshifts, particularly
at z = 0, the present-day value of the snap parameter, s0, is of particular interest as it
characterizes the current cosmic expansion. The ΛCDM Model predicts s0 = 0, reflecting
its consistent behavior throughout the evolution of the Universe. In contrast, the Linear
Model predicts s0 = 0.143, while the Polytropic Model predicts s0 = 0.602.
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Polytropic Model

Figure 8. Evolution of the snap parameter s(z) as a function of redshift z, using the joint data
best-fit values.

Om(z) Diagnostic. Figure 9 presents the evolution of the Om(z) diagnostic as a func-
tion of the redshift. In both the Linear and Polytropic Models, Om(z) exhibits a monotonic
decrease with increasing redshift. This behavior is characteristic of a quintessence-like
evolution.

Variation of matter density and of the torsion vector. Figures 10 and 11 depict
the evolution of Ω(z) and r(z) as a function of redshift. In both models, the matter
density predictions align with those of the ΛCDM Model up to z ≈ 1. However, at higher
redshifts both models (Linear and Polytropic) predict a lower matter density compared
to the standard ΛCDM Model. Notably, the Polytropic Model predicts a higher matter
density than the Linear Model at these higher redshifts. On the other hand, in both models
the torsion vector decreases monotonically as the redshift increases.
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Figure 9. Evolution of the Om(z) diagnostic as a function of redshift z, using the joint data best-
fit values.
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Figure 10. Evolution of the dimensionless torsion vector Ω(z) as a function of redshift z, using the
joint data best-fit values.
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Figure 11. Evolution of the dimensionless matter density r(z) as a function of redshift z, using the
joint data best-fit values.

Particle creation rate Ψ and Creation Pressure Pc. In Figure 12, the dimensionless
particle creation rate Ψ(z) is illustrated for the two proposed cosmological models. In both
cases, the creation rate is positive and monotonically decreasing as a function of redshift
throughout the evolution. The numerical values of Ψ(z) for the two models are close to
each other for small redshifts, 0 < z < 0.5, and a more substantial difference can only be
observed at higher redshifts.
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Figure 12. Evolution of the dimensionless particle creation rate Ψ(z) as a function of redshift z, using
the joint data best-fit values.

As the creation rate does not cross zero for either of the models, particle annihilation
processes do not take place. This is in accordance with the second law of thermodynamics,
and with the fact that the creation pressure, as depicted in Figure 13, takes negative values
throughout the evolution. The pressure of the created particles is also monotonically
decreasing as a function of z, hence reaching its maximum value at z = 0.

0 0.5 1.0 1.5 2.0 2.5

-0.20

-0.15

-0.10

-0.05
Linear Model
Polytropic Model

Figure 13. Evolution of the dimensionless particle creation pressure Pc(z) as a function of redshift z,
using the joint data best-fit values.

The Polytropic Model shows a tendency to converge to a constant negative creation
pressure for large redshifts (z > 2), while in the Linear Model the pressure keeps heav-
ily decreasing.

Statistical results. Table 2 offers a detailed comparison of the ΛCDM Model, the Lin-
ear Model, and the Polytropic Model based on several key metrics: minimum chi-squared
(χ2

min), reduced chi-squared (χ2
red), Akaike Information Criterion (AIC), Bayesian Informa-

tion Criterion (BIC), and their respective differences (∆AIC and ∆BIC).

Table 2. Summary of χ2
tot,min, χ2

red , AIC, ∆AIC, BIC, and ∆BIC for the ΛCDM Model, Linear Model,
and Polytropic Model.

Models χ2
tot,min Ptot Ntot χ2

red AIC ∆AIC BIC ∆BIC

ΛCDM 1801.11 4 1758 1.026 1809.11 0 1831.00 0

Linear 1790.07 5 1758 1.021 1800.07 −9.04 1827.43 −3.57

Polytropic 1787.79 5 1758 1.019 1797.79 −11.32 1825.15 −5.85



Universe 2024, 10, 419 34 of 41

The (χ2
min) values for the models are 1801.11 for the ΛCDM Model, 1790.07 for the

Linear Model, and 1787.79 for the Polytropic Model. The reduced chi-squared (χ2
red) values,

which account for the degrees of freedom, are quite similar across the models: 1.026 for
ΛCDM, 1.021 for Linear, and 1.019 for Polytropic. Since all the χ2

red values are close to 1,
this suggests that each model fits the data reasonably well.

The Polytropic Model, with the lowest χ2
red value, indicates a slightly better fit com-

pared to the others, though the difference is minimal. All models show reduced chi-squared
values close to 1, indicating that they fit the data reasonably well, with the Polytropic Model
having the smallest reduced chi-squared value, suggesting a marginally better fit among
the three. The AIC values are 1809.11 for the ΛCDM Model, 1800.07 for the Linear Model,
and 1797.79 for the Polytropic Model. The differences in AIC (∆AIC) relative to the ΛCDM
Model are −9.04 for the Linear Model and −11.32 for the Polytropic Model. Negative
values of ∆AIC indicate that both the Linear and Polytropic Models are preferred over the
ΛCDM Model according to AIC, with the Polytropic Model being the most favored.

The BIC values are 1831.00 for the ΛCDM Model, 1827.43 for the Linear Model,
and 1825.15 for the Polytropic Model. The differences in BIC (∆BIC) relative to the ΛCDM
Model are −3.57 for the Linear Model and −5.85 for the Polytropic Model. According to
BIC, the Polytropic Model is again preferred over the Linear and ΛCDM Models, with the
largest ∆BIC suggesting the strongest support for the Polytropic Model.

While all three models exhibit similar reduced chi-squared values, indicating similar
goodness of fit, the AIC and BIC metrics reveal a preference for the Linear and Polytropic
Models over the ΛCDM Model. Among these, the Polytropic Model shows the most
favorable results in both AIC and BIC, suggesting that it provides the best balance between
fit quality and model complexity. The Linear Model also performs well but is slightly less
favored compared to the Polytropic Model according to both criteria.

4. Discussions and Final Remarks

In the present paper, we have briefly reviewed an interesting geometric extension of
general relativity, based on a concept of torsion that was introduced one hundred years ago
in mathematics by Friedmann and Schouten [45]. In this approach, torsion is essentially
a vectorial quantity, and it is described by a single four-vector πµ, a description that
significantly reduces the number of the torsion components to four. Moreover, the torsion
tensor takes the very simple and elegant form of Equation (6), which also leads to a
significant decrease in the calculation complexity of the geometry, and of the physical
models. By analogy with the Einstein equations, we have postulated a set of field equations,
in which the Einstein tensor, constructed in semi-symmetric geometry, is proportional to
the matter energy–momentum tensor tensor. In this way, we obtain a set of gravitational
field equations in which the torsion tensor, as well as its derivatives, explicitly appear as a
geometric contribution, expressed in terms of a single vector field. The extra terms thus
generated geometrically can be interpreted physically as corresponding to dark energy, dark
matter, or both. In the present investigation, we have considered that the extra geometric
part of the field equations can be interpreted only as dark energy, and we have assumed
the existence of a single matter component, consisting of both dark and baryonic matter.

The Newtonian limit of the relativistic gravitational models offers not only the possibil-
ity of comparing the theory with the Newtonian gravity but also provides some important
possibilities of testing its predictions. We have obtained the corrections to the Newtonian
potential induced by the presence of the torsion, as well as the corrections to Newton’s
law of force in the presence of a torsion vector having only a radial non-zero component
Πr. The 1/r2 terms in Newton’s law are corrected by a term proportional to exp(Πrr)
and by a term of the form −4/Πrr2, respectively. A term proportional to Πr, as well as one
proportional to −1/r, also appears in the gravitational force equation. These terms could
induce some physical effects at the Solar System level that could allow the testing of the
presence of torsion in the Universe. However, the role of these terms may be dominant at
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the galactic level, and they could provide an explanation for the behavior of the galactic
rotation curves without any need for the presence of a dark-matter component.

We have also investigated in detail the cosmological implications of the Semi-Symmetric
Metric Gravity models by considering two simple models obtained by imposing some
specific equations of state for the effective geometric dark pressure. The presence of the
torsion naturally generates supplementary terms in the cosmological Friedmann equations,
which can be interpreted as an effective dark energy and pressure. By imposing some
relations between these two quantities, representing a specific equation of state, we can
build consistent cosmological models, which can well describe the observational data, at
least in the redshift range z ∈ (0, 3). All models describe an initially decelerating phase,
followed by a transition to an accelerated one.

The possible presence of torsion in the Universe has been extensively investigated in
various theoretical frameworks. In particular, the Einstein–Cartan-type theories [25–27]
have attracted significant attention. In the Einstein–Cartan theory, torsion is directly related
to a physical property of matter, with the torsion proportional to the spin tensor. Hence,
in these models, rotation is the source of the torsion. On the other hand, in the present
approach of the Semi-Symmetric Metric Gravity, torsion is interpreted as an intrinsic
property of space–time, coexisting together with the metric as an independent variable.

Of particular interest in the Friedmann–Schouten geometry is the form of the torsion
tensor, which is purely vectorial. This leads to a significant simplification of the mathemati-
cal formalism, with the field equations taking a (relatively) easily tractable form. This form
of the torsion does appear naturally (in its specific mathematical framework), and it is not
related to any particular condition imposed on the tensor Tµ

νρ. For example, in [134], it
was shown that the torsion tensor can be decomposed as Tabc = ϕ(habuc − hacub), where
uc is the four-velocity and hab = gab + uaub. The generalized Friedmann equations of the
Semi-Symmetric Metric Gravity theory contain the extra contributions coming from the
torsion vector, and they naturally lead to the possibility of building dark energy models
that could provide a good description of the observational data.

One of the interesting features of the present theory is that it does not introduce novel
coupling parameters and arbitrary coefficients. The dynamical evolution of the Universe
is determined only by the present-day values of the torsion vector, fully determined by
the matter density, which is known from observations. Hence, the entire cosmological
dynamics can be described with the help of a single parameter, the value at z = 0 of the
dimensionless function r.

In our analysis, we have restricted our investigations to the case of flat FLRW geometry.
Curvature effects may play an important theoretical role in the cosmological evolution of the
considered models. The effect of the spatial curvature k in the evolution of the Universe is
described by the curvature density parameter Ωk, defined according to Ωk = −kc2/a2H2 [135].
Ωk can take positive, zero, or negative values, depending on the values of k, k = −1, 0,+1,
corresponding to open, flat, or closed geometries.

The cosmic curvature density parameter Ωk has been constrained in [135], indepen-
dently of any background cosmological model, by adopting nonparametric Gaussian
processes, with the only assumption that the Universe is homogeneous and isotropic,
and described by the FLRW metric. The results of the investigations in [135] show that
a spatially flat Universe is consistent in 2σ within the redshift range 0 < z < 2 for the
background data. By also taking into account the Redshift Distorsion (RSD) data, the results
are consistent with a spatially flat Universe mostly within 2σ, and always within 3σ in
the redshift range 0 < z < 2. These results indicate that the assumption of the geometric
flatness, implemented via the ΛCDM Model, is well supported by the observational data.

Since the models we have considered are very close to the ΛCDM paradigm, and even
reproducing it almost exactly for a specific range of model parameter values, the effects
of the curvature density parameter Ωk can be ignored in our analysis, which also extends
only to the redshift range 0 < z < 2.
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On the other hand, at higher redshifts, curvature effects may have a more impor-
tant impact on the overall cosmological evolution, even that the inflationary evolution is
expected to drastically reduce the presence of curvature.

The analysis of the cosmological models of the Semi-Symmetric Metric Gravity theory
has been performed under the simplifying assumption of a Universe filled with a perfect
cosmological fluid. But in many astrophysical and cosmological configurations the ideal-
ized perfect fluid model of matter may not be suitable, especially in the case of matter at
very high densities and pressures.

Such possible situations are the classical description of the (quantum) particle pro-
duction phase, quark and gluon plasma viscosity, mixtures of cosmic elementary particles,
evolution of cosmic strings due interaction with matter, relativistic transport of photons,
interaction between matter and radiation, etc. (see [136] and references therein).

There are two basic theories of bulk viscosity: the Eckart and the Israel–Stewart
theories [137]. The bulk viscosity effects can be generally described by means of an effective
pressure pbulk, which can be formally added to the thermodynamic pressure to generate an
effective pressure pe f f = P + pbulk [137], leading to an effective energy–momentum tensor
tensor with components T0

0 = ρ, Ti
i = −pe f f , i = 1, 2, 3.

In the simplest approach to bulk viscous phenomena, the Eckart theory, and in the
cosmological context, the bulk viscous pressure is assumed to have the form pbulk = −3ξH,
where ξ is the coefficient of the bulk viscosity. Hence, in the case of matter creation in the
presence of bulk viscosity, in the co-moving frame the energy–momentum tensor tensor
has the components T0

0 = ρ, Ti
i = −(P + Pc − 3ξH), i = 1, 2, 3. As one can see from the

form of the energy–momentum tensor tensor, the bulk viscous pressure acts as a creation
pressure, with the opposite interpretation also possible, the creation pressure being related
to an effective viscosity of the medium in which particle creation takes place.

As for the energy balance equation for a viscous fluid, and in the presence of matter
creation, it takes the form

ρ̇ + 3H(ρ + P + Pc) = 3ξH2, (134)

showing again that the bulk viscous term can also be interpreted as describing an effective
particle creation process, even in the absence of the creation pressure introduced via the
thermodynamics of irreversible processes.

In the present approach, we have considered that the newly created matter behaves as
an ideal fluid, and we have neglected the viscous effects. This assumption is physically
motivated by the fact that we expect the particle creation effects to generate matter at a
very low density and pressure, and thus the bulk viscous effects can be considered as
negligibly small.

Another possible application of Semi-Symmetric Metric Gravity would be to consider
inflation in the presence of torsion, an approach that could lead to a novel perspective on
the cosmological, gravitational, and astrophysical processes that significantly influenced
and modeled the early dynamics of the Universe after the Big Bang.

Consequently, the predictions of the present model could introduce major differences,
as compared to those of standard general relativity, or its extensions and generalizations,
which ignore the role of torsion. These differences could also have a significant impact
on several current areas of present-day physics, which are being intensively investigated,
including astrophysics, cosmology, the study of gravitational collapse, and the properties
of the gravitational waves.

To conclude, in the present investigation we have introduced a novel torsion-based
gravitational theory, and we have explicitly shown its theoretical and observational con-
sistency. This novel approach also encourages, and strongly motivates, the theoretical
investigation of further extensions of the families of gravitational theories that go beyond
the framework of the standard Riemannian geometry.
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