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Abstract: In this paper, we investigate the vacuum bosonic current density induced by a carrying-
magnetic-flux cosmic string in a (D + 1)-de Sitter spacetime considering the presence of two flat
boundaries perpendicular to it. In this setup, the Robin boundary conditions are imposed on the scalar
charged quantum field on the boundaries. The particular cases of Dirichlet and Neumann boundary
conditions are studied separately. Due to the coupling of the quantum scalar field with the classical
gauge field, corresponding to a magnetic flux running along the string’s core, a nonzero vacuum
expectation value for the current density operator along the azimuthal direction is induced. The two
boundaries divide the space in three regions with different properties of the vacuum states. In this
way, our main objective is to calculate the induced currents in these three regions. In order to develop
this analysis we calculate, for both regions, the positive frequency Wightman functions. Because the
vacuum bosonic current in dS space has been investigated before, in this paper we consider only
the contributions induced by the boundaries. We show that for each region the azimuthal current
densities are odd functions of the magnetic flux along the string. To probe the correctness of our
results, we take the particular cases and analyze some asymptotic limits of the parameters of the
model. Also some graphs are presented exhibiting the behavior of the current with relevant physical
parameter of the system.

Keywords: cosmic string; magnetic flux; de Sitter spacetime; flat boundaries

1. Introduction

De Sitter (dS) space is solution of the Einstein equation in the presence of positive
cosmological constant. Although being a curved spacetime it enjoys the same degree of
symmetry as the Minkowski one [1], so several physical problem can have exact solutions
on this background; in addition, the relevance of these theoretical analysis has received
great attention due to the appearance of the inflationary cosmology scenario [2]. In many
inflationary models, an approximate de Sitter (dS) spacetime is used to address relevant
problems in standard cosmology. During an inflationary epoch, quantum fluctuations in the
inflaton field generate inhomogeneities that can influence the transition to the true vacuum.
These fluctuations play a crucial role in the formation of cosmic structures originating
from inflation. Specifically the problem of particle creation in the inflationary phase of the
Universe, was analyzed in [3] considering de Sitter space. There it is was calculated the
energy momentum of the created particles during the inflation, by computing the difference
between the in- and out-vacuum states

Cosmic strings are linear gravitational topological defects which may have been
formed in the early Universe as consequence of phase transitions in the context of the
standard gauge field theory of elementary particle physics [4–6]. Although the observations
of anisotropies in the Cosmic Microwave Background Radiation by COBE, WMAP and
more recently by the Planck Satellite have ruled out cosmic strings as the primary source for
primordial density perturbations, they give rise to a number of interesting physical effects
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such as the emission of gravitational waves and the generation of high-energy cosmic rays
(see, for instance, [7–9]).

The geometry of the spacetime produced by an idealized cosmic string, i.e., infinitely
long and straight, is locally flat, but topologically conical. It presents a planar angle deficit
on the two-surface orthogonal to the string. This object was first introduced in the literature
as solution of the Einstein equation in the presence of a Dirac-delta type distribution of
energy and axial stress along a straight infinity line. However this spacetime can also
be obtained in the context of Classical Field Theory, by coupling the energy-momentum
tensor associated with a vortex field configuration proposed by Nielsen and Olesen in
[10], with the Einstein’s equation, as investigated in [11,12]. In both publications, the
authors have shown that a planar angle deficit arises on the two-surface perpendicular
to a string, as well as a magnetic flux running through its core. The conical geometry
in the spacetime produced by a cosmic string has been considered in different lines of
research, since the 80′s of the last century. Gott III in [13], proposed that cosmic strings can
produce double images serving as gravitational lens. Also Linet [14] has showed that a test
charged particle place at rest in the region outside the cosmic string becomes subjected to
repulsive electrostatic self-interaction. In addition, Smith in [15], also has found a similar
phenomenon considering gravitational effect in the Newtonian limit. He sowed that a test
massive particle place at rest in the neighborhood of a cosmic string becomes subjected to
an attractive self-interaction. The reason for the last two phenomena resides in the fact that
the conical topology produced by a cosmic string distorts the particles fields.

The analysis of the combined effects of the curvature of the dS background and the
conical topology produced by the cosmic string in the vacuum expectation value (VEV) of
the induced azimuthal current, ⟨jϕ⟩, associated with a charged scalar field was presented
in [16]. Another type of vacuum polarization arises when boundaries are considered
in the system. The imposition of boundary conditions on quantum fields changes the
vacuum fluctuations, and result in additional shifts in the VEV of physical quantities,
such as the energy-momentum tensor. In this sense, the investigation of the VEV of the
energy-momentum tensor and the field squared, associated with a charged massive scalar
quantum field in the dS background considering the presence of a cosmic string and just
one flat plate perpendicular to it, has been developed in [17].

In [18], the authors have calculated the VEV of the energy-momentum tensor and the
field squared, associated with a massive scalar quantum field propagating in dS spacetime
considering the presence of two parallel flat plates. The authors imposed that on the
plates, the scalar field obeys Robin boundary condition. Considering this approach they
calculated the contributions to these observables, energy-momentum tensor and field
squared, induced by the presence of the plates in the region between them. With the
objective to extend these analyses, we decided to consider in this present work the presence
of a carrying-magnetic-flux cosmic string in dS spacetime perpendicular to the two flat
plates, and calculate the induced vacuum current associated with a quantum massive
charged scalar field propagating in this manifold. Because the analysis of vacuum bosonic
current induced by a cosmic string in the dS spacetime in absence of flat plates has been
developed previously, our focus here is to investigate the contributions induced by the
plates. In order to develop these analyses we calculate the Wightman function in this
manifold, considering that the bosonic modes are prepared in Bunch-Davies vacuum.
Following a procedure similar to [18], we decompose this Wightman function in three
distinct contributions. One corresponding to the function induced by the cosmic string
in dS in absence of plates, plus other two terms induced by the presence of one plate
and two plates, separately. As explained previously, our focus here is to consider the
contributions induced by the plates. In this sense we analyze in detail, considering some
limiting situations, the only non-vanishing azimuthal components of the boundary induced
currents in the three different regions of the space: considering first the Wightman function
induced by each plate separately, we obtain the induced current for the corresponding
regions outside the plates, and considering the Wightman function induced by the two
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plate, we calculate the current in the region between the plates. These currents correspond
to a Casimir-like effect, i.e., they are induced due to the boundary condition imposition on
the quantum fields on the two flat planes, and as we will see, their intensities decay with
the distance from the plane, representing a typical Casimir-like effect.

The plan of this work is as follows: In the Section 2 we present the geometry of the
spacetime that we want to consider, the Klein-Gordon equation obeyed by the charged
massive quantum field operator, and the boundary condition that the field has to satisfies on
the flat plates. The complete set of normalized positive energy solutions of the Klein-Gordon
equation in the region between two parallel flat plates considering that the field obeys the
Robin boundary condition on them is presented in Section Bpsonic Modes. Having obtained
this set of bosonic modes, in the Section 3 we calculate the corresponding Wightmann
function, by adopting the mode sum formula approach. Because the momentum along
the direction of cosmic string is discretized, we use the Abel-Plana summation formula to
obtain the sum over this quantum number. Doing this procedure, the Wightmann function
is expressed as the sum of three contributions, the first one associated with the presence
of a cosmic string in the dS space without plates, the second induced by the presence of a
single plate, and the third induced by the two plates. The expressions for second function
is applied for each plate separately, and the third function only for the region between the
plates. In Section 4 we present formally the complete decomposition of the induced bosonic
current, ⟨jϕ⟩. The contribution induced by a single plate is developed in Section 4.1, and
in the region between plates in Section 4.2. Also in these subsections, various asymptotic
limits of the currents are considered and numerical results are presented. In Section 5 we
summarize the most relevant results obtained. Throughout the paper, we use natural units
G = h̄ = c = 1.

2. Background Geometry and Matter Field Content

The line element describing the geometry produced by a cosmic string in (1 + D)−de
Sitter spacetime is given by the following expression:

ds2 = dt2 − e2t/a

(
dr2 + r2dϕ2 + dz2 +

D−3

∑
i=1

dx2
i

)
, (1)

where r ≥ 0 and ϕ ∈ [0, 2π/q] define the coordinates on the conical geometry (q ≥ 1
encodes the angle deficit), (t, z, xi) ∈ (−∞, ∞) and α stands for the length scale of dS
spacetime and it is related with the cosmological constant and the curvature scalar, R, by
the following relations:

Λ =
D(D − 1)

2α2 , R =
D(D + 1)

α2 . (2)

For convenience of the discussion that follows below the line element (1), written in
synchronous time coordinate, can be expressed in a conformal form by introduction of
the conformal time coordinate, τ, defined as τ = −αe−t/α with τ ∈ (−∞, 0]. By doing so,
we get

ds2 =
(α

τ

)2
(

dτ2 − dr2 − r2dϕ2 − dz2 −
D−3

∑
i=1

dx2
i

)
. (3)

Note that the line element inside brackets describes an idealized cosmic string in Minkowski
spacetime.

In this paper, we want to analyze the vacuum effects due to a propagating charged
scalar field in the dS spacetime with a magnetic-carrying-flux cosmic string and in the
presence of two flat boundaries. For this purpose we consider the following Klein-Gordon
field equation:

(gµνDµDν + m2 + ξR)φ(x) = 0 , (4)
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where Dµ = ∂µ + ieAµ and m is the mass of the scalar field. In addition, in the expression
above, we have considered the nonminimal coupling between the background curvature
and the scalar field through the term ξR, where ξ is the curvature coupling constant and
R denotes the Ricci scalar. The magnetic flux along the string axis is introduced through
the vector potential Aµ = Aϕδ

ϕ
µ , where Aϕ = −qΦ/2π is constant and Φ represents the

magnetic flux along the string.
In order to consider the two flat boundaries, we impose that solutions of the Klein-

Gordon Equation (4) satisfy the Robin boundary conditions given by

(1 + β jnl∇l)φ(x) = 0 , z = aj, j = 1, 2, (5)

where β j are constant coefficients (in particular, for β j = 0 and β j = ∞, the Robin boundary
conditions are reduced to the Dirichlet and Neumann boundary conditions, respectively),
and nl represents the normal vectors to the boundaries. In the region between the two
plates one has nl = (−1)j−1δl

z. According to the notation above, the two flat boundaries
are located at z = a1 and z = a2, with a1 < a2. Moreover, note that in our setup problem
the cosmic string is perpendicular to the two boundaries, since it is located along the z-axis.

Bosonic Modes

In this subsection, our aim is to determine the complete set of normalized solutions
for the Klein-Gordon Equation (4).

In the spacetime geometry given by (3) and with the gauge field Aµ = Aϕδ
ϕ
µ , the

Klein-Gordon equation simplifies to[
∂2

∂τ2 +
(1−D)

τ
∂

∂τ + D(D+1)ξ+(mα)2

τ2 − ∂2

∂r2 − 1
r

∂
∂r −

1
r2

(
∂

∂ϕ + ieAϕ

)2

− ∂2

∂z2 − ∑D−4
i=1

∂2

∂(xi)2

]
φ(x) = 0 .

(6)

The equation is completely separable and in accordance to the symmetries present in
the geometry under consideration; so, we propose the following Ansatz:

φ(x) = f (τ)R(r)h(z)eiqnϕ+i⃗k·⃗x|| , (7)

where x⃗|| denotes the coordinates along the (D − 3) extra dimensions, with k⃗ representing
the corresponding momenta. The function h(z) will be determined by the Robin boundary
conditions that the scalar field satisfies on both flat boundaries placed at z = a1 and z = a2.

Taking the Ansatz proposed above into (6) and admitting that

∂2h(z)
∂z2 = −k2

zh(z) , (8)

we obtain the following differential equations for the functions f (τ) and R(r):[
∂2

∂τ2 +
(1 − D)

τ

∂

∂τ
+

D(D + 1)ξ + (mα)2

τ2 + λ2

]
f (τ) = 0 , (9)

and [
∂2

∂r2 +
1
r

∂

∂r
− q2(n + α)2

r2 + p2

]
R(r) = 0 , (10)

with
λ =

√
p2 + k2

z + k⃗2 (11)
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and the notation

α =
eAϕ

q
= − Φ

Φ0
, (12)

being Φ0 = 2π/e the quantum flux.
The solution for (10) that is regular at r = 0 is given by

R(r) = Jq|n+α|(pr), (13)

where Jµ(x) denotes the Bessel function of first kind [19]. The solution for the time-
dependent equation is expressed by the linear combination of Hankel functions:

f (τ) = ηD/2(c1H(1)
ν (λη) + c2H(2)

ν (λη)) , (14)

with the order given by

ν =
√

D2/4 − m2a2 − ξD(D + 1) . (15)

Additionally, in (14) we have defined the variable η = |τ|, and H(l)
ν (x) denotes the

Hankel function [19]. Different choices of the coefficients c1,2 in (14) lead to different choices
of the vacuum state. In this paper we consider the Bunch-Davies vacuum, corresponding
to the choice c2 = 0.

As to the solution of the z-dependent equation, it is constrained in the region a1 < z <
a2 by the Robin boundary conditions (5) on the two flat boundaries. For the plate at z = a1,
we have

h(z) = cos[kz(z − a1) + α1(kz)] , (16)

with the notation
e2iα1(x) =

iβ1x − 1
iβ1x + 1

. (17)

From the boundary condition on the second plate z = a2, we get the following
equation:

(1 − b1b2v2) sin(v)− (b1 + b2)v cos(v) = 0, v = kz ã , (18)

with ã = a2 − a1 and bj = β j/ã. We will denote the solutions of (18) by v = vl , with
l = 1 , 2, 3... These solutions constrain the eigenvalues kz through the relation kz = vl/ã.

Finally, combining (13), (14) and (16), we obtain the mode functions that satisfy both
the Klein-Gordon Equation (4) and the Robin boundary conditions (5) on the plates:

φσ(x) = CσηD/2H(1)
ν (λη)Jq|n+α|(pr) cos[kz(z − a1) + α1(kz)]eiqnϕ+i⃗k·⃗x|| , (19)

where σ = {λ, p, n, kz, k⃗} represents the set of quantum numbers that specify each mode of
the field. The coefficient Cσ is fixed by the orthonormalization condition

−i
∫

dD−1x
∫ a2

a1

dz
√
|g|g00[φσ(x)∂t φ∗

σ′(x)− φ∗
σ′(x)∂t φσ(x)] = δσ,σ′ , (20)

where the integral is evaluated over the spatial hypersurface τ = const, and δσ,σ′ represents
the Kronecker-delta for discrete indices and Dirac-delta function for continuous ones.
Applying the normalization condition to the mode functions in (19) gives

|Cσ|2 =
(2π)3−Dα1−Dqpei(ν−ν∗)π/2

4ã{1 + cos[vl + 2α1(vl/ã)] sin(vl)/vl}
. (21)



Universe 2024, 10, 428 6 of 19

3. Wightman Function

In this paper, our objective is to examine the vacuum polarization effects arising from
the background setup described in the previous section. To achieve this, we will utilize
the Wightman function, which is particularly useful for calculating vacuum expectation
values of physical observables dependent on bilinear field operators. Specifically, the
vacuum properties can be characterized by the positive-frequency Wightman function,
W(x, x′) = ⟨0|φ̂(x)φ̂∗(x′)|0⟩, where |0⟩ denotes the vacuum state. To evaluate this function,
we will use the mode-sum technique, expressing the Wightman function in the form:

W(x, x′) = ∑
σ

φσ(x)φ∗
σ(x′) . (22)

where ∑σ denotes the summation over both discrete and continuous quantum numbers,
with σ = {λ, p, n, kz, k⃗}.

Taking (19), along with the coefficient (21), into (22), we obtain

W(x, x′) = 4q(ηη′)D/2

(2π)D−1αD−1 ã ∑∞
n=−∞ einq∆ϕ

∫ ∞
0 dppJq|n+α|(pr)Jq|n+α|(pr′)

×
∫ ∞
−∞ d⃗kei⃗k·∆x⃗|| ∑∞

l=−∞ Kν(e−πi/2ηλl)Kν(eπi/2η′λl)

× cos[vl(z−a1)/ã+α1(vl/ã)] cos[vl(z′−a1)/ã+α1(vl /ã)]
1+cos[vl+2α1(vl /ã)] sin(vl)/vl

,

(23)

where ∆ϕ = ϕ′ − ϕ and ∆x⃗|| = x⃗′|| − x⃗||. Moreover, to obtain the expression above we have

introduced the notation λl =
√

p2 + v2
l /ã2 + k⃗2 and used the identity [20],

ei(ν−ν∗)π/2H(1)
ν (λη)

[
H(1)

ν (λη′)
]∗

=
4

π2 Kν(−iλη)Kν(iλη′) . (24)

To develop the sum over the quantum number l, we adopt a variant of the Abel-Plana
summation formula [18],

∞

∑
l=1

πvl f (vl)

vl + sin(vl) cos[vl + 2α1(vl/ã)]
= −π

2
f (0)

1 − b1 − b2
+
∫ ∞

0
dy f (y)

+i
∫ ∞

0
dy

f (iy)− f (−iy)
(b1y−1)

b1+1
(b2y−1)

b2+1 e2y − 1
.

(25)

For our case,

f (y) = Kν(e−πi/2ηλl)Kν(eπi/2η′λl) cos[y(z − a1)/ã + α1(y/ã)] cos[y(z′ − a1)/ã + α1(y/ã)] . (26)

In accordance with the formula above, the Wightman function can be decomposed as

W(x, x′) = W1(x, x′) + ∆W(x, x′) , (27)

where the first term corresponds to the contribution to a single plate in z = a1 with a cosmic
string perpendicular to it and has been considered in [17] in the analysis of VEV of the
bosonic energy-momentum tensor. It reads,

W1(x, x′) =
8q(ηη′)D/2

(2π)DaD−1

∞

∑
n=−∞

einq∆ϕ
∫ ∞

0
dppJq|n+α|(pr)Jq|n+α|(pr′)

∫
d⃗kei⃗k·∆x⃗||

×
∫ ∞

0
duKν(e−πi/2η

√
u2 + p2 + k2)Kν(eπi/2η′

√
u2 + p2 + k2) (28)

× cos[u(z − a1) + α1(u)] cos[u(z′ − a1) + α1(u)] .

The second contribution in (27), ∆W(x, x′) is the interference term and it is given by
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∆W(x, x′) =
2q

(2π)D−1aD−1

∞

∑
n=−∞

einq∆ϕ
∫ ∞

0
dppJq|n+α|(pr)Jq|n+α|(pr′)

∫
d⃗kei⃗k·∆x⃗||

×
∫ ∞
√

p2+k2

du
c1(u)c2(u)e2ãu − 1

cos[u(z − a1) + α̃1(u)] cos[u(z′ − a1) + α̃1(u)] (29)

× y−D[K̃ν(ηy) Ĩν(η
′y) + Ĩν(ηy)K̃ν(η

′y)]
∣∣∣
y=
√

u2−p2−k2
,

where α̃1(u) is given by the relation e2α̃1(u) = c1(u) and the following notations were
introduced:

K̃ν = yD/2Kν(y), Ĩν = yD/2[Iν(y) + I−ν(y)] , (30)

and

cj(u) =
β ju − 1
β ju + 1

. (31)

For further convenience, the contribution induced by a single plate given in (29) can
be generalized as

Wj(x, x′) = WdS,cs(x, x′) + W(1)
j (x, x′) , (32)

where for j = 1 or j = 2 it is induced by a single plate at z = a1 or z = a2, respectively.
Moreover, the first term in the above expression contains two contributions: one induced
in pure dS spacetime, i.e., in the absence of cosmic string, and the other one induced by it.
This contribution reads,

WdS,cs(x, x′) =
4q(ηη′)D/2

(2π)DaD−1

∞

∑
n=−∞

einq∆ϕ
∫ ∞

0
dppJq|n+α|(pr)Jq|n+α|(pr′)

∫
d⃗kei⃗k·∆x⃗||

×
∫ ∞

0
duKν(e−πi/2η

√
u2 + p2 + k2)Kν(eπi/2η′

√
u2 + p2 + k2) cos(u∆z) .

(33)

In [17] this function has been explicitly developed.
Our aim in this work is to investigate the current induced by the plates. So, let us

consider first the second contribution in (32), which is induced by a single plate at z = aj
and it is given by

W(1)
j (x, x′) =

qa1−D

2(2π)D−1

∞

∑
n=−∞

einq∆ϕ
∫ ∞

0
dppJq|n+α|(pr)Jq|n+α|(pr′)

∫
d⃗kei⃗k·∆x⃗||

×
∫ ∞
√

p2+k2
du

e−u|z+z′−2aj |

cj(u)
y−D[K̃ν(ηy) Ĩν(η

′y) + Ĩν(ηy)K̃ν(η
′y)]
∣∣∣
y=
√

u2−p2−k2
.

(34)

The decomposition in (32), allow us rewrite the Wightman function in the more
symmetric form:

W(x, x′) = WdS,cs(x, x′) + ∑
j=1,2

Wj(x, x′) +
q

2(2π)D−1aD−1

∞

∑
n=−∞

einq∆ϕ

×
∫ ∞

0
dppJq|n+α|(pr)Jq|n+α|(pr′)

∫
d⃗kei⃗k·∆x⃗||

∫ ∞
√

p2+k2

du
c1(u)c2(u)e2ãu − 1

(35)

×
[

2 cosh(u∆z) + ∑
j=1,2

e−u|z+z′−2aj |/cj(u)

]

× y−D[K̃ν(ηy) Ĩν(η
′y) + Ĩν(ηy)K̃ν(η

′y)]
∣∣∣
y=
√

u2−p2−k2
.

where the last term is interference part, ∆W(x, x′), that is induced by the two plates. For
further convenience, we will examine the problem in the particular cases of the well known
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Dirichlet and Neumann boundary conditions, separately, corresponding to β j → 0 and
β j → ∞, respectively. This allow us to rewrite the interference part as

∆W(J)(x, x′) =
q

2(2π)D−1aD−1

∞

∑
n=−∞

einq∆ϕ
∫ ∞

0
dppJq|n+α|(pr)Jq|n+α|(pr′)

×
∫

d⃗kei⃗k·∆x⃗||
∫ ∞
√

p2+k2

du
e2ãu − 1

[
2 cosh(u∆z) + δ(J) ∑

j=1,2
e−u|z+z′−2aj |

]
(36)

× y−D[K̃ν(ηy) Ĩν(η
′y) + Ĩν(ηy)K̃ν(η

′y)]
∣∣∣
y=
√

u2−p2−k2
,

where J = D for Dirichlet BC, δ(D) = −1, and J = N for Neumann BC, δ(N) = 1.
Now, introducing a new variable v =

√
u2 − p2 − k2 and using the identity (e2ãu −

1)−1 = ∑∞
l=1 e−2uãl , we have

∆W(J)(x, x′) =
q

2(2π)D−1aD−1

∞

∑
n=−∞

einq∆ϕ
∫ ∞

0
dppJq|n+α|(pr)Jq|n+α|(pr′)

∫
d⃗kei⃗k·∆x⃗||

×
∫ ∞

0

dvv√
v2 + p2 + k2

∞

∑
l=1

e−2ãl
√

v2+p2+k2

[
2 cosh(∆z

√
v2 + p2 + k2) (37)

+ δ(J) ∑
j=1,2

e−|z+z′−2aj |
√

v2+p2+k2

]
v−D[K̃ν(ηv) Ĩν(η

′v) + Ĩν(ηv)K̃ν(η
′v)] .

We now proceed by using the identity [19],

e−ab

a
=

2√
π

∫ ∞

0
e−a2s2−b2/(4s2) , (38)

which allow us to perform the integration over p and k⃗ variables in (38), yielding the
following result:

∆W(J)(x, x′) =
4q

(4π)D/2+1aD−1

∞

∑
l=1

∫ ∞

0

ds
sD−1 e−(r2+r′2+∆x⃗2

∥)/(4s2)
∫ ∞

0
dvve−s2v2

×
[

∑
ϵ=±1

e−(2ãl+ϵ∆z)2/(4s2) + δ(J) ∑
j=1,2

e−(2ãl+|z+z′−2aj |)2/(4s2)

]
(39)

× v−D[K̃ν(ηv) Ĩν(η
′v) + Ĩν(ηv)K̃ν(η

′v)]
∞

∑
n=−∞

einq∆ϕ Iq|n+α|

(
rr′

2s2

)
.

Now in order to continue our calculation, we develop the sum over n. The parameter
α in Equation (12) can be written in the form

α = n0 + α0, with |α0| <
1
2

, (40)

being n0 an integer number. This allow us to sum over the quantum number n in (40) by
using the formula obtained in [21]:

∞

∑
n=−∞

eiqn∆ϕ Iq|n+α|(x) =
1
q ∑

k
ex cos(2πk/q−∆ϕ)eiα0(2πk−q∆ϕ)

− e−iqn0∆ϕ

2πi ∑
j=±1

jejiπq|α0|
∫ ∞

0
dy

cosh [qy(1 − |α0|)]− cosh (|α0|qy)e−iq(∆ϕ+jπ)

ex cosh (y)
[

cosh (qy)− cos (q(∆ϕ + jπ))
] ,

(41)
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where k is an integer number varying in the interval

− q
2
+

∆ϕ

Φ0
≤ k ≤ q

2
+

∆ϕ

Φ0
. (42)

The substitution of (41) in (40), allow us to write

∆W(J)(x, x′) =
4

(4π)D/2+1aD−1

∞

∑
l=1

∫ ∞

0

ds
sD−1

{
∑
k

eiα0(2πk−q∆ϕ)

×
[

∑
ϵ=±1

e−[ρkl+(2ãl+ϵ∆z)2]/(4s2) + δ(J) ∑
j=1,2

e−[ρklj+(2ãl+|z+z′−2aj |)2]/(4s2)

]

− e−iqn0∆ϕ

2πi ∑
j=±1

jejiπq|α0|
∫ ∞

0
dy

cosh [qy(1 − |α0|)]− cosh (|α0|qy)e−iq(∆ϕ+jπ)

cosh (qy)− cos (q(∆ϕ + jπ))
(43)

×
[

∑
ϵ=±1

e−[ρyl+(2ãl+ϵ∆z)2]/(4s2) + δ(J) ∑
j=1,2

e−[ρylj+(2ãl+|z+z′−2aj |)2]/(4s2)

]}

×
∫ ∞

0
dve−s2v2

v1−D[K̃ν(ηv) Ĩν(η
′v) + Ĩν(ηv)K̃ν(η

′v)] ,

where the following notation was introduced

ρkl = r2 + r′2 − 2rr′ cos(2πk/q − ∆ϕ) + ∆x⃗2
∥ ,

ρyl = r2 + r′2 + 2rr′ cosh(y) + ∆x⃗2
∥.

(44)

4. VEV of the Current Density

The VEV of the bosonic current density is formally calculated using the Wightman
function through the formula

⟨jµ(x)⟩ = ie lim
x′→x

(∂µ − ∂µ′)W(x, x′) + 2ieAµW(x, x′) . (45)

The only non vanishing component in the setup problem under consideration is the
one along the azimuthal direction. According to the decomposition made in (36), we have

⟨jϕ⟩ = ⟨jϕ⟩dS,cs + ∑
j=1,2

⟨jϕ⟩(j)
(J) + ∆⟨jϕ⟩(J) . (46)

This component is induced by the presence of the constant potential vector com-
ponent along the angular direction, Aϕ, interacting with the scalar field. Although the
corresponding field strength vanishes, the nontrivial topology of the string gives rise to
Aharonov–Bohm-like effect on the current density along azimuthal direction. As to the
other components of the current density, it can be easily checked that they trivially vanish.

Let us develop and study each term of (46) individually.

4.1. Azimuthal Current in the Presence of a Single Plate

The first term on the right-hand side is induced by the string, which is obtained by
taking (33) into (45):

⟨jϕ⟩dS,cs = − 8q2eηD

(2π)DaD−1

∞

∑
n=−∞

(n + α)
∫ ∞

0
dpp(Jq|n+α|(pr))2

∫
d⃗k

×
∫ ∞

0
duKν(e−πi/2η

√
u2 + p2 + k2)Kν(eπi/2η

√
u2 + p2 + k2) .

(47)
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This term has been already analyzed in [16] for (1 + 3)-dimensions, considering that
the string is compactified to a circle. Our aim in this paper, however, is the study of the
contributions engendered in the presence of the plates.

For the contribution induced in the presence of a single plate, we use the representation
of the Wightman function (34) for Dirichlet (cj(u) = −1) and Neumann (cj(u) = 1):

⟨jϕ⟩(j)
(J) = −

2δ(J)q2eηD

(2π)D−1aD−1

∞

∑
n=−∞

(n + α)
∫ ∞

0
dpp(Jq|n+α|(pr))2

∫
d⃗k

×
∫ ∞
√

p2+k2
due−2u|z−aj |Kν(ηy)[Iν(ηy) + I−ν(ηy)]

∣∣∣
y=
√

u2−p2−k2
.

(48)

Introducing a new variable v =
√

u2 − p2 − k2 and using the identity given in (38), we get

⟨jϕ⟩(j)
(J) = −

4δ(J)q2eηD
√

π(2π)D−1aD−1

∞

∑
n=−∞

(n + α)
∫ ∞

0
dse−(z−aj)

2/(2s2)
∫ ∞

0
dppe−s2 p2

(Jq|n+α|(pr))2

×
∫

d⃗ke−s2k2
∫ ∞

0
dvve−s2 p2

Kν(ηv)[Iν(ηv) + I−ν(ηv)].

(49)

We can now perform the integrals over k⃗, p and v. In k⃗ we have (D − 3) Gaussian
integrals and the integrals over p and v are performed by using the formulas [19]:

∫ ∞

0
dppe−s2 p2

(Jγ(pr))2 =
e−r2/(4s2)

2s2 Iγ(r2/(2s2)) (50)

and ∫ ∞

0
dvve−s2v2

Kν(ηv)[Iν(ηv) + I−ν(ηv)] =
eη2/(2s2)

2s2 Kν(η
2/(2s2)) . (51)

Substituting the results of these integrations into (49) we get,

⟨jϕ⟩(j)
(J) = −

δ(J)q2eηD

(2π)D/2+1aD−1

∫ ∞

0
dχχD/2−1e−χ[r2+(z−aj)

2−η2]/η2
Kν(χ)

×
∞

∑
n=−∞

(n + α)Iq|n+α|(χr2/η2) . (52)

The summation over n has been obtained in [22] and it is given by the representation

∞

∑
n=−∞

(n + α)Iq|n+α|(x) =
2x
q2

[q/2]

∑′

k=0
sin(2πk/q) sin(2πkα0)ex cos(2πk/q)

+
x

qπ

∫ ∞

0
dy sinh(y)

e−x cosh(y)g(q, α0, y)
cosh (qy)− cos (qπ)

, (53)

with the function

g(q, α0, y) = sin(α0qπ) sinh[(1 − |α0|)qy]− sinh(qα0y) sin[(1 − |α0|)qπ] . (54)

In addition, the notation [q/2] denotes the integer part of q/2, and the prime on the
summation symbol over k indicates, that for even values of q, the term k = q/2 should be
taken with the coefficient 1/2.

The integration over χ can be performed by using the formula

∫ ∞

0
dxxµ−1e−vxKν(x) =

√
π2νΓ(µ − ν)Γ(µ + ν)

Γ(µ + 1/2)(v + 1)µ+ν F

(
µ + ν, ν +

1
2

; µ + 1/2;
v − 1
v + 1

)
, (55)
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where F(a, b; c, z) represents the hypergeometric function [19].
Thus, taking (53) into (52), we integrate over χ obtaining the following result

⟨jϕ⟩(j)
(J) = −

2δ(J)e

(2π)(D+1)/2aD+1

[[q/2]

∑′

k=1
sin(2πk/q) sin(2πkα0)FD/2+1

ν (ukj)

+
q
π

∫ ∞

0
dy

sinh(y)g(q, α0, y)
cosh (qy)− cos (qπ)

FD/2+1
ν (uyj)

]
,

(56)

where we have introduced the function

FD/2+1
ν (x) =

2ν+1/2Γ(D/2 − ν + 1)Γ(D/2 + ν + 1)
Γ(D/2 + 3/2)(x + 1)D/2+ν+1 F

(
D
2
+ ν + 1, ν +

1
2

;
D + 3

2
;

x − 1
x + 1

)
, (57)

variables
ukj = 2r2

ps2
k + 2(zp − aj/η)2 − 1 ,

uyj = 2r2
pc2

y + 2(zp − aj/η)2 − 1 .
(58)

and the notations

sk = sin(πk/q), cy = cosh(y) . (59)

Moreover, in (56), rp = r/η and zp = z/η are the proper distances from the string
and the plate, respectively, in unities of the dS spacetime curvature, a. From (56), we can
see that ⟨jϕ⟩(j)

(J) is an odd function of α0 with period equal to quantum flux, Φ0 = 2π/e;
moreover, for 1 ≤ q < 2, the first term on the right-hand side of (56) is absent.

Let us now analyze the behavior of this VEV in some limiting cases. In the conformal
coupled massless scalar field case, the function FD/2+1

ν (x) takes the form [17]:

FD/2+1
ν (x) =

Γ(D/2 + 1/2)
(x + 1)(D+1)/2

. (60)

Therefore, the azimuthal current density (56) in this case reads

⟨jϕ⟩(j)
(J) = −

2δ(J)eΓ(D/2 + 1/2)

(4π)(D+1)/2aD+1

[[q/2]

∑′

k=1

sin(2πk/q) sin(2πkα0)

[r2
ps2

k + (zp − aj/η)2](D+1)/2

+
q
π

∫ ∞

0
dy

sinh(y)g(q, α0, y)
[cosh (qy)− cos (qπ)][r2

pc2
y + (zp − aj/η)2](D+1)/2

]
.

(61)

We now want to study the asymptotic behavior of the azimuthal current density in the
limits near and distant points from the core of the string, located at r = 0. For points outside
of the plate, z ̸= aj, the VEV of the current density on the string is finite for q|α0| > 1 and
can be obtained directly by putting r = 0 in (56). On the other hand, for q|α0| < 1, the VEV
diverges near the string as

⟨jϕ⟩(j)
(J) ≈ −

2q|α0|−1/2δ(J)qeΓ( 3
2 − q|α0|)

(2π)(D+3)/2aD+1r2(1−q|α0|)
p

FD/2+q|α0|−1/2
ν (2(zp − aj/η)2 − 1) . (62)

For distant points from the string, r ≫ η, |z− aj|, we use the corresponding asymptotic
expression for function FD/2+1

ν (x) [17]:

FD/2+1
ν (x) ≈ 2ν−1/2

√
π

Γ(ν)Γ(D/2 − ν + 1)x−D/2−1+ν , (63)
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which taken into (56) gives

⟨jϕ⟩(j)
(J) ≈ −

22ν−D−1δ(J)eΓ(ν)Γ(D/2 − ν + 1)

πD/2+1aD+1rD+2−2ν
p

[[q/2]

∑′

k=1

sin(2πk/q) sin(2πkα0)

sD+2−2ν
k

+
q
π

∫ ∞

0
dy

sinh(y)g(q, α0, y)
cD+2−2ν

y [cosh (qy)− cos (qπ)]

]
.

(64)

We now turn to the investigation of the behavior of azimuthal current density for
points close and far from the plate at z = aj. On the surface of the plate, z = aj, the VEV
induced by the plate is finite for points outside the string, r ̸= 0. However, for points on
the string’s, r = 0, and q|α0| > 1, the VEV diverges as

⟨jϕ⟩(j)
(J) ≈ −

4δ(J)eΓ(D+1
2 )

(4π)(D+1)/2aD+1|zp − aj/η|D−1

[[q/2]

∑′

k=1
sin(2πk/q) sin(2πkα0)

+
q
π

∫ ∞

0
dy

sinh(y)g(q, α0, y)
cosh (qy)− cos (qπ)

]
,

(65)

and for q|α0| < 1, it diverges as

⟨jϕ⟩(j)
(J) ≈ −

4δ(J)qeΓ(D+1
2 )Γ( 3

2 − q|α0|)

(2π)(D+3)/2aD+1r2(1−q|α0|)
p |zp − aj/η|D+2q|α0|−4

. (66)

For distant regions from the plate, |z − aj| ≫ η, r, we use again the formula given in
(63), obtaining

⟨jϕ⟩(j)
(J) ≈ −

22ν−D−1δ(J)eΓ(ν)Γ(D/2 − ν + 1)

πD/2+1aD+1|zp − aj/η|D+2−2ν

[[q/2]

∑′

k=1
sin(2πk/q) sin(2πkα0)

+
q
π

∫ ∞

0
dy

sinh(y)g(q, α0, y)
[cosh (qy)− cos (qπ)][1 + r2

pc2
y/(zp − aj/η)2]D/2+1−ν

]
.

(67)

We also consider the Minkowskian limit, a → ∞, while keeping t fixed. In this limit,
the geometry under consideration simplifies to that of a cosmic string in the background of
(D + 1)-dimensional Minkowski spacetime. For the analysis of this limit, the representation
for the VEV in the presence of one plate, given in (56), is not convenient. Therefore, for this
end, we return to the representation present in (52) with the series over n given by (53). For
the coordinate η in the arguments of the modified Bessel function, we have η ≈ |t − a|. In
this limit, ν ≫ 1 and, according to (15), we have ν ≈ ima. Using the uniform asymptotic
expansion for the Macdonald function of imaginary order as provided in [23], substituting
it into (52), and following some intermediate steps, we obtain

⟨jϕ⟩(j),(M)
(J) = −

4δ(J)emD+1

(2π)(D+1)/2

[[q/2]

∑′

k=1
sin(2πk/q) sin(2πkα0) f D+1

2
(2m

√
r2s2

k + (z − aj)2)

+
q
π

∫ ∞

0
dy

sinh(y)g(q, α0, y)
cosh (qy)− cos (qπ)

f D+1
2
(2m

√
r2c2

y + (z − aj)2)

]
,

(68)

where we have introduced the notation

fµ(x) =
Kµ(x)

xµ , (69)
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being Kµ(x) the Macdonald function.
In Figure 1 is exhibited the behavior of the azimuthal current density induced by a

single plate at aj = 0, as function of the the proper distances from the string, rp, (top panel)
and the plate, zp, (bottom panel), in unities of the dS spacetime curvature, a. We consider
Dirichlet and Neumann boundary conditions for various values of the parameter q, which
is associated with the deficit angle. From the top panel we can see that the VEV of the
azimuthal current density is is finite on the string and rapidly tends to zero as rp increases.
From the bottom panel, we observe that the VEV is finite on the plate location and rapidly
goes to zero as zp goes large, in accordance to our asymptotic analysis. Moreover, note that
in both plots the intensities increase with q and are higher for Dirichlet BC, compared with
Neumann BC, near the string or the plate.
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1.00

0.75

0.50

0.25

0.00
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Dirichlet BC, q = 1.5
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Figure 1. The VEV of the azimuthal current density induced by a single plate, located at z = aj, is
plotted as function of the proper distance from the string, rp, (top panel) and the proper distance
from the plate, zp, (bottom panel), in units of a. In both plots, we consider Dirichlet and Neumann
boundary conditions and various values of q. Both graphs are plotted for D = 3, α0 = 0.25, ξ = 0,
ma = 1.5 and aj = 0. Moreover, in the top panel we have fixed zp = 0 and in the bottom one, rp = 1.

4.2. Azimuthal Current in the Region Between the Plates

Let us analyze now the contribution induced in the region between the plates, a1 <
z < a2. To this end, we take (40) into (45), obtaining the expression:
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∆⟨jϕ⟩(J) = − 16eq2η2

(4π)D/2+1aD−1

∞

∑
l=1

∫ ∞

0

ds
sD−1 e−r2/s2

×
[

2e−(ãl)2/s2
+ δ(J) ∑

j=1,2
e−(ãl+|z−aj |)2/s2

] ∫ ∞

0
dvve−s2v2

(70)

× Kν(ηv)[Iν(ηv) + I−ν(ηv)]
∞

∑
n=−∞

(n + α)Iq|n+α|

(
r2

2s2

)
.

The next step is to integrate over v by using (51):

∆⟨jϕ⟩(J) = − 2q2e
(2π)D/2+1aD−1

∞

∑
l=1

∫ ∞

0
dχχD/2−1e−(r2/η2−1)χKν(χ)

×
[

2e−2χ(ãl/η)2
+ δ(J) ∑

j=1,2
e−2χ(ãl+|z−aj |)2/η2

]
∞

∑
n=−∞

(n + α)Iq|n+α|(χr2/η2) ,

(71)

where we have introduced the variable χ = η2/(2s2). By using the formula (53) for the sum
over n, we can integrate over χ with the help of (55). The result is the following expression:

∆⟨jϕ⟩(J) = − 2e
(2π)(D+1)/2aD+1

∞

∑
l=1

{[q/2]

∑′

k=1
sin(2πk/q) sin(2πkα0)

×
[

2FD/2+1
ν (vkl) + δ(J) ∑

j=1,2
FD/2+1

ν (vkjl)

]
+

q
π

∫ ∞

0
dy

sinh(y)g(q, α0, y)
cosh (qy)− cos (qπ)

(72)

×
[

2FD/2+1
ν (vyl) + δ(J) ∑

j=1,2
FD/2+1

ν (vyjl)

]}
,

where we have introduced the variables

vkl = 2r2
ps2

k + 2(ãl/η)2 − 1 ,

vyl = 2r2
pc2

y + 2(ãl/η)2 − 1 ,
(73)

and
vkjl = 2r2

ps2
k + 2(ãl/η + |zp − aj/η|)2 − 1 ,

vyjl = 2r2
pc2

y + 2(ãl/η + |zp − aj/η|)2 − 1 .
(74)

Let us now study the behavior of this VEV in some limiting situations. In the conformal
coupled massless scalar field case, the function FD/2+1

ν (u) has the simple form given in
(60). Thus, in this case, the VEV induced in the region between the plates reads:

∆⟨jϕ⟩(J) = − 2eΓ(D/2 + 1/2)
(4π)(D+1)/2aD+1

∞

∑
l=1

{[q/2]

∑′

k=1
sin(2πk/q) sin(2πkα0)

[
2

[r2
ps2

k + (ãl/η)2](D+1)/2

+ ∑
j=1,2

δ(J)

[r2
ps2

k + (ãl/η + |zp − aj/η|)2](D+1)/2

]
+

q
π

∫ ∞

0
dy

sinh(y)g(q, α0, y)
cosh (qy)− cos (qπ)

(75)

×
[

2
[r2

pc2
y + (ãl/η)2](D+1)/2

+ ∑
j=1,2

δ(J)

[r2
pc2

y + (ãl/η + |zp − aj/η|)2](D+1)/2

]}
.
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We now consider the limit of large values of the distance between the plates, ã ≫
r, |z − aj|. In this case, we can not neglect the term 2r2

pc2
y in the arguments of the functions

FD/2+1
ν (u), since it is essential for the convergence of the integral over y. Therefore, in this

limit, we get

∆⟨jϕ⟩(J) ≈ 22ν−DeΓ(ν)Γ(D/2 − ν + 1)
πD/2+1aD+1(ã/η)D+2−2ν

∞

∑
l=1

{[q/2]

∑′

k=1
sin(2πk/q) sin(2πkα0)

×
[

2
lD+2−2ν

+ ∑
j=1,2

δ(J)

(l + |z − aj|/ã)D+2−2ν

]
+

q
π

∫ ∞

0
dy

sinh(y)g(q, α0, y)
[cosh (qy)− cos (qπ)]

(76)

×
[

2
[(rcy/ã)2 + l2]D/2+1−ν

+ ∑
j=1,2

δ(J)

[(rcy/ã)2 + (l + |z − aj|/ã)2]D/2+1−ν

]}
.

This result show us that the VEV of the azimuthal current density decays as the
separation between the plates increases.

For distant points from the string and fixed distances from the plates, r ≫ η, |z −
aj|, we have vkjl ≈ vkl and vyjl ≈ vyl , according to (73) and (74). Therefore, using the
corresponding asymptotic expression for the function FD/2+1

ν (u) given in (63), we obtain
the following result:

∆⟨jϕ⟩(J) ≈ −
22ν+1−D(1 + δ(J))eΓ(ν)Γ(D/2 − ν + 1)

πD/2+1aD+1rD+2−2ν
p

∞

∑
l=1

{[q/2]

∑′

k=1

sin(2πk/q) sin(2πkα0)

[s2
k + (lã/r)2]D/2+1−ν

+
q
π

∫ ∞

0
dy

sinh(y)g(q, α0, y)
[cosh (qy)− cos (qπ)][c2

y + (ãl/r)2]D/2+1−ν

}
.

(77)

Finally, we consider the Minkowskian limit, a → ∞, with a fixed value of t. Following
the same procedure adopted for the contribution induced by a single plate, the VEV of the
azimuthal current density induced in the region between the plates reads:

∆⟨jϕ⟩(M)
(J) = − 4emD+1

(2π)(D+1)/2aD+1

∞

∑
l=1

{[q/2]

∑′

k=1
sin(2πk/q) sin(2πkα0)

×
[

2 f D+1
2
(2m

√
r2s2

k + (z − aj)2)

+ δ(J) ∑
j=1,2

f D+1
2
(2m

√
r2

ps2
k + (ãl/η + |zp − aj/η|)2)

]
(78)

+
q
π

∫ ∞

0
dy

sinh(y)g(q, α0, y)
cosh (qy)− cos (qπ)

[
2 f D+1

2
(2m

√
r2c2

y + (z − aj)2)

+ δ(J) ∑
j=1,2

f D+1
2
(2m

√
r2

pc2
y + (ãl/η + |zp − aj/η|)2)

]}
,

with the function fµ(x) defined in (69).
In Figure 2 is displayed the dependence of the VEV of the azimuthal current density

in the region between the plates as function of the proper distance from the string, rp,
considering zp = 0.2 (top panel) and zp = 0.5 (bottom panel). This is presented in unities of
the dS spacetime curvature, a. In both plots, we consider Dirichlet and Neumann boundary
conditions for various values of the parameter associated with the deficit angle, q. We
observe that the current density in the region between the plates is finite on the string and
rapidly goes to zero as the proper distance from the string, rp, increases.
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Figure 2. The VEV of the azimuthal current density induced between the plates is plotted as function
of the proper distance from the string, rp. In the top panel we consider zp = 0.2 and in the bottom
panel, zp = 0.5. In both plots we consider Dirichlet and Neumann boundary conditions and different
values of q. Both graphs are plotted for D = 3, α0 = 0.25, ξ = 0, ma = 1.5. The positions of the plates
are in both plots at a1 = 0 and a2 = 1.

In Figure 3 we display the behavior of the VEV of the azimuthal current density in
the region between the plates as function of zp. In the top panel we consider rp = 0.1 and
in the bottom panel, rp = 0.5. Here also, we assume Dirichlet and Neumann boundary
conditions and different values for q. We can observe from both plots that the VEV is finite
on the plates at z = 0 and z = 1, being symmetric with respect to the midpoint between the
plates at z = 0.5. Moreover, in both plots the intensities increase with the parameter q and
are higher for Dirichlet BC compared with the Neumann BC for the same values of q.
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Figure 3. The VEV of the azimuthal current density induced between the plates is plotted as function
of zp. In the top panel we assume rp = 0.1, and in the bottom, rp = 0.5. For both plots we also
assume D = 3, α0 = 0.25, ξ = 0, ma = 1.5.

5. Conclusions

The main objective of this work was to investigate the vacuum bosonic current induced
by the presence of a carrying-magnetic-flux cosmic string in a (D + 1)-de Sitter spacetime
considering the presence of two flat boundaries perpendicular to it. In this setup, we impose
that the scalar charged quantum field obeys the Robin boundary conditions on the two flat
boundaries. The particular cases of Dirichlet and Neumann boundary conditions are study
separately. In order to develop this analysis, we presented the the Wightman function in
(36) in a more symmetric for, i.e., decomposed in a part associated with the presence of the
string in dS space only, plus the contributions induced by just one flat plane followed by
other induced by two flat planes. Because the current induced by a cosmic string have been
calculated before, our focuses were in the obtainment of the azimuthal component induced
by a single plate, develop in Section 4.1. The contravarient component, ⟨jϕ⟩, was presented
in (56) combined with (57), (58) and (59). Some limiting cases for this current have been
presented. In the massless conformal coupled was given in (61). For points near the string,
and considering z ̸= aj, we have shown that for q|α0| > 1 this component is finite, and

we can take r = 0 in (56); however for q|α0| < 1 this VEV diverges with r−2(1−q|α0|)
p as

shown in (62). For points far from the string, (56) decays with r−(D+2−2ν)
p . For points close

to the plate, z = aj, but outside the string, r ̸= 0, the VEV is finite; however on the string,
r = 0, and q|α0| > 1 the VEV diverges as exhibited in (65). The Minkowskian limit, i.e.,
a → ∞ and fixed value of t, has been also considered and is given in (68). Finally for points
distant from the plate, |z − aj| ≫ η, r, the current decays as |zp − aj/η|−(D+2−2ν). Also in
the Section 4.1, we have presented two plots, in Figure 1, exhibiting the behavior of ⟨jϕ⟩ as
function of rp (top panel) and zp (bottom panel), considering separately the Dirichlet and
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Neumann BC and different values attributed to q. We can observe that these plots are in
accordance with our asymptotic analysis.

The analysis of the VEV of azimuthal current in the region between the plates, has
been developed in Section 4.2. The complete expression for this VEV is given in (73),
combined with (73) and (74). Some limiting cases for this contribution has have been
analyzed. For a conformal coupled massless scalar field case, the VEV takes a simpler
form given by (76). In the asymptotic limit of large values of the distance between the
plates, ã = |a1 − a2| ≫ r, |z − aj|, it decays with the inverse of (ã/η)D+2−2νas shown in
(77). For large distances from the string and considering fixed distances from the plates,
r ≫ η, |z − aj|, the corresponding asymptotic formula is present in (77) and shows that the
VEV induced in the region between the plates decays as 1/rD−2+2ν

p . The Minkowskian
limit has been also analyzed for this contribution and it is presented in (79). The behavior of
the VEV of the azimuthal current density in this region, as function of the proper distance
from the string, rp, considering Dirichlet and Neumann boundary conditions with different
values of q, are exhibited in Figure 2. In the same region, in Figure 3 we have plotted
the behavior of the azimuthal current density the proper distance from the plates, zp,
considering also the same boundary conditions and different values of q. Like in the
previous graphs, the plots confirm the analytical asymptotic behaviors.

To finish this paper we want to say that in our analysis we have considered the space-
time fixed. In this sense we have quantized only the matter field. Here, the charged bosonic
field. The induced azimuthal current can be considered as the source in the semiclassical
formulation of the Maxwell equations. By its turn, the energy density present in the corre-
sponding electromagnetic field can also be considered as source in the Einstein equation in
a back-reaction approach, providing corrections on the metric tensor of spacetime back-
ground. The calculations of these corrections correspond in fact a hard work that can be
developed in new project.
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