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Abstract: Supermassive black holes (SMBHs) are observed in active galactic nuclei interacting with
their environments, where chaotical, discontinuous accretion episodes may leave matter remnants
orbiting the central attractor in the form of sequences of orbiting toroidal structures, with strongly
different features as different rotation orientations with respect to the central Kerr BH. Such ringed
structures can be characterized by peculiar internal dynamics, where co-rotating and counter-rotating
accretion stages can be mixed and distinguished by tori interaction, drying—feeding processes,
screening effects, and inter-disk jet emission. A ringed accretion disk (RAD) is a full general relativistic
model of a cluster of toroidal disks, an aggregate of axi-symmetric co-rotating and counter-rotating
disks orbiting in the equatorial plane of a single central Kerr SMBH. In this work, we discuss the
time evolution of a ringed disk. Our analysis is a detailed numerical study of the evolving RAD
properties formed by relativistic thin disks, using a thin disk model and solving a diffusion-like
evolution equation for an RAD in the Kerr spacetime, adopting an initial wavy (ringed) density
profile. The RAD reaches a single-disk phase, building accretion to the inner edge regulated by the
inner edge boundary conditions. The mass flux, the radial drift, and the disk mass of the ringed
disk are evaluated and compared to each of its disk components. During early inter-disk interaction,
the ring components spread, destroying the internal ringed structure and quickly forming a single
disk with timescales governed by ring viscosity prescriptions. Different viscosities and boundary
conditions have been tested. We propose that a system of viscously spreading accretion rings can
originate as a product of tidal disruption of a multiple stellar system that comes too close to an SMBH.

Keywords: black holes;accretion disks; accretion; hydrodynamics; galaxies; actives

1. Introduction

In this analysis, we consider a cluster of general relativistic viscous disks orbiting a
central Kerr black hole (BH). We study the (diffusive) evolution of the disks agglomerate
following the approach developed in [1] for a single general relativistic thin disk orbiting
a Kerr BH, applied here to a general relativistic disk characterized by an internal ringed
structure composed of different co-rotating and counter-rotating ring-like components
(with respect to the central spinning BH).

From the point of view of numerical integration, we address the issue of the condition
at the inner edge, focusing on the issue of a single (geometrically thin) disk. We examine
ring aggregates with the same relative rotation orientation (¢co-rotating), composed of co-
rotating or counter-rotating rings with respect to the central BH, and clusters of rings with
opposite relative rotation orientation (¢counter-rotating), constituted by an inner co-rotating
ring and an outer counter-rotating ring, or vice versa, by an inner counter-rotating ring
and an outer co-rotating ring with respect to the central BH. Combined sets of clusters are
then considered. We will evaluate the evolution of the fluid density radial drift, the disk
mass Mp, and the mass flux as dependent on the BH spin, the tori rotation orientation,
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and the initial density profiles and spreading. We proceed by adopting an adapted initial
condition on the ring’s initial density inhomogeneity and spreading, and we investigate
the solutions of the diffusion equations for one system with an initial wavy (ringed) density
profile, modeling the two fco-rotating rings with the same viscosity prescription. In order
to do this, we shall make use of the ringed accretion disk (RAD) model for aggregates
of toroidal axis-symmetric disks of co-rotating and counter-rotating fluid structures (tori)
orbiting one center supermassive Kerr BH, with a symmetry plane coinciding with the
equatorial plane of the central Kerr BH [2]. The advantage is in the fact that the model
strongly binds the disks characteristic to the BH defining parameters. The RAD frame
constrains the initial density profile for aggregates of co-rotating and counter-rotating rings.
We use different viscosity prescriptions for tori with different rotation orientations with
respect to the central attractor. Doublet, triplet, and quadruplet rings with different relative
rotations are also explored.

Aggregates of orbiting toroids can form with strongly different features as different
rotation orientations with respect to the central Kerr BH, for example, in active galactive
nuclei, where disks, forming by several matter remnants around a single central attractor,
may contain traces of chaotical accretion episodes.

We should note that the accretion rate can be modified by the interaction between
disks, combined with the multi-phase accretion processes of the different components of
the cluster. This fact could constitute a mechanism to increase the mass accretion rates and
the mass of the supermassive BHs. Multi tori orbiting a single attractor can host screening
tori. This could be the case, for example, in the double system constituted by an internal
co-rotating ring, accompanied by an external counter-rotating toroid that is accreting into
the central BH. Therefore, this effect would frame multiple and simultaneous accretion
phases, including inter-disk accretion and jet shell emission. Observational evidence of
these phenomena might be found in a radially stratified emission of the X-ray spectrum.

As the members of a multiple stellar system become tidally disrupted, accretion rings
can be produced. We envisage a system of such viscously spreading rings as a model
to describe the subsequent evolution and interaction of the debris. In this context, it is
interesting to note that, very recently, Peissker et al. (2024) reported on the discovery of a
binary system within the S-cluster close to the supermassive BH (SMBH of mass about
4 x 10°Mg). In fact, the central parsec of the Milky Way’s SMBH (Sagittarius A*) contains
a very dense population of stars: the nuclear star cluster, one of the densest and most
massive stellar systems studied so far. Thanks to its relative proximity at a distance of
about 8 kpc from us, detailed kinematics of individual stars can be achieved, although the
measurements are hampered by obscuration effects along the line of sight and confusion
among fast-moving stars. Similar systems can be expected in the nuclei of other quiescent
galaxies. Let us emphasize that the galactic center is an extreme example of an inactive
nucleus (the accretion rate is very low, no accretion disk is present, and the accretion
activity is suppressed); in this case, the signal tidal disruption of stars is expected to be very
clean [3].

We first address the case of /co-rotating tori, the composition of two independent
evolutions, and /counter-rotating rings with different viscosity profiles. The impact on the
cluster evolution of the initial density profiles, including the initial ringed components’
differences in density and spreading, is evaluated. We expect that within this approxima-
tion, due to the combination of /counter-rotating seeds, the evolution observed could be
qualitatively similar to {co-rotating seed evolution.

The evolution of a geometrically thin disk subjected to a viscous torque was examined
in [4,5] with a diffusion-like equation (see also [6,7]). The spreading of a viscous disk in the
relativistic regime was also developed by [8-13] (see also [14-16]). Relativistic equations
(one-dimensional relativistic equations) reduce to the Keplerian equations in the Newtonian
limit. In [17], the cluster diffusive evolution was analyzed following [8-13], describing the
evolution of the azimuthal averaged and height integrated disk surface density governed
by different viscosity prescriptions and different inner boundary conditions. The case of
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BH attractors with spin 4 = 0.2 and with spin a = £0.9 were investigated and compared
with the limiting case of Schwarzschild static attractors. In this context, the disk’s total
luminosity, flux, and mass rate were also examined, and it was proved that the disk’s
luminosity curves present a fingerprint of the initial inner ringed structure of the disk and
at different times.

The layout of this paper is as follows. The spacetime metric and constants of motion
are introduced in Section 2. Some notes on the ringed accretion disks are presented in
Section 2.1.

The evolution of viscous tori is studied in Section 3 following [1], where the dynamics
of a viscous gas ring (single thin-disk approximation) orbiting a central Kerr BH is discussed.
The surface density equation is solved using a perturbation approach adapted to the thin-
disk approximation with a low-viscosity assumption. As in [4,5], the general relativistic
equation for surface density dynamics is found from the conservation of the energy-
momentum tensor for a viscose fluid, including a radiative energy flux and its projection
along the flow velocity U”. Different values of constant viscosity are assumed. RADs
orbiting a central attractor with spin a = £0.9 are explored in Section 3.1. In Section 3.2,
RADs orbiting a slower spinning BH with spin 2 = 0.2 are investigated. The mass
flux, the total mass of the disk, and the radial drift of maximum densities in the RAD are
also studied.

Concluding remarks follow in Section 4. In Appendix A, there are some notes on the
conditions of the null flux F in the frame explored in Section 3.

2. The Spacetime Metric and Constants of Motion
In the Boyer-Lindquist (BL) coordinates {t,,6,¢}', the Kerr spacetime metric reads

2
ds* = — <1 - ZMr)dtz + %drz +2d6? + | (r? +a®) + 21\4% sin? 0| sin® d¢?* (1)

2
_4rMa sin? Qdtde,
A=a®>+7r*—2rM and X =a*(1—sin?0) + 12 ()

The equatorial plane, ¢ = sin?# = 1, is a metric symmetry plane coincident with
the disk’s symmetry plane. Parameter 2 = /M > 0 is the metric spin, where the total
angular momentum is | and the gravitational mass parameter is M. A Kerr BH is defined
by the condition a € [0, M] with killing horizons r_— < r, where r+ = M £ vV M? — 4%. An
extreme Kerr BH has dimensionless spin /M = 1, and the non-rotating case a = 0 is the
Schwarzschild BH solution. The spacetime outer ergoregion is |7, rd |, where the outer
and inner stationary limits rZ (ergosurfaces) are given by r= = M & /M2 —a2(1 —0),
respectively, where r; = 0 and rJ = 2M in the equatorial plane § = 7/2 (¢ = 1), and
rt <rfonf #0.

(In the following, we will use geometrical units where appropriate to make the reading
of dimensionless variables easy, where r — r/M and a — a/M).

We introduce the constants of motion (€, £) related to the killing field ¢; = o; and
Gy = dy, respectively, with

E=—(gipp+8ub), L=3gppp+giplt gaU'U" =rp’. 3)

U® = {#,#6,$}. The notation 4 is for the derivative of g with respect to the proper
time for 4 > 0, and ¥ = —1 is a normalization constant.
The velocity components (U!, U?) are

_ 8t 8l SwEtsul

Ut
St — Seg8tt 8tp — SpoSitt
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where these components also describe the circular orbits in BL coordinates. We also intro-
duce the specific angular momentum ¢ and the relativistic angular velocity Q = ues/ut,
where

_8ppU? +gpl"  8ip + 890

L
5= = ©)

/ .
gt + gp U? St + ip Q)

2.1. Ringed Accretion Disks

Ringed accretion disks (RADs) model a cluster of general relativistic toroidal disks
orbiting a central Kerr BH. In this analysis, we consider the disks sharing the equatorial
plane of the Kerr central attractor and the RAD being composed by a mixing of co-rotating
and counter-rotating rings. Many properties of the aggregate are constrained by the
geometry of the Kerr spacetime and, in particular, by the equatorial geodesic structure. This
is constituted by the marginally stable circular orbit, r;;,,, the marginally bounded orbit,
rﬁb ,» and the marginally circular orbit (photon circular orbit), r$. Here and in the following,
we use the notation (£) for counter-rotating and co-rotating motion, respectively.

A free-falling condition for the accretion from the disk inner edge 7;,,.r € [”ih o7 1ol
is assumed in many approximations. The assumption that matter in accretion follows, for
7 < Tinner, @ geodesic motion, having a non-null radial velocity component U" # 0, grounds
the single ring perturbation for the diffusive equation, and here, we extend this approach
to the RAD analysis.

Constraints from RAD Systems

Here, we summarize the main features of the ringed accretion disk (RAD) systems,
setting the constraints for the analysis of the diffusive equations of ring clusters orbiting in
Kerr spacetimes.

The ringed accretion disks were studied in [2]. RAD emerges as a single, geometrically
thin accretion disk characterized by an internal ringed structure [2].

To simplify our discussion, below we describe each toroid of the ringed disk as a
geometrically thick torus governed by the Polish donut (P-D) model. Nevertheless, RAD
construction is independent of the adopted model for the ring constituent.

Polish donut (P-D)

In geometrically thick Polish donut (P-D) tori models, the Euler equation describes
the axially symmetric stationary general relativity hydrodynamic (GRHD) perfect fluid
barotropic tori, governing the force balance in the disk between centrifugal, pressure, and
gravitational forces?.

These are geometrically thick, optical opaque, general relativistic barotropic axially
symmetric and stationary toroidal configurations, cooled by advection and composed by
a one particle-specie perfect fluid, where 9;Q = 0 and 8¢Q = 0, with Q being a generic
spacetime tensor. The continuity equation is identically satisfied as a consequence of the
symmetries, and the fluid dynamics are governed by the Euler equation only, assuming a
barotropic equation of state and fluid orbital motion with U% = 0 and U" = 0.

Toroidal surfaces are closed quiescent (C) (without cusp), proto-jets O, and closed-
cusped (Cx ) solutions (proto-jets are open-cusped solutions associated with geometrically
thick disks. They are characterized by matter funnels along the direction of the BH rota-
tional axis).

In the first and simplest model, a constant fluid-specific angular momentum is as-
sumed /¢ [2,19]; by setting the £ = constant as a parameter, the maximum density points in
the disk are fixed. More specifically, the pressure gradients (defined by the Euler equations)
are regulated by the gradients of an effective potential function for the fluid Vs (r; ¢, a)
parameterized with a constant specific angular momentum ¢ = L/€.

The force balance in the disk is regulated by an effective potential function and encoded
by the Boyer condition of equilibrium configurations of rotating perfect fluids. According
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to Boyer’s theory on equipressure surfaces applied to a P-D torus, toroidal surfaces are
equipotential surfaces with effective potential.

The minima of the effective potential are the maxima of pressure in the torus (torus
center 7 center), and the minima of pressure are the surfaces’ cusp rx for closed-cusped tori
and r; for proto-jets (see [19]).

The location of pressure extremes is constrained by the spacetime (extended) geodesic
structure constituted by radii {r;,, ri, rf;b , ), the marginally stable and marginally circular
(photon) orbit, and the marginally bounded orbits for £+ and radii {rﬁbo}, r[i;]} together, as
shown in Figure 1 and defined in Table 1.

The specific angular momentum (*(r;a) = £+ /£* distribution on the equatorial
plane for fixed spacetime spin a contains the distributions of all the possible tori centers,
T nter > Tiiso, and cusps, rifm o €]r$, 7|, where rl-j;n or € {r]i, £} for counter-rotating and
co-rotating tori, respectively, as shown in Table 1.

The P-D models allow an immediate, simplistic, limiting concept of the inner/outer
edge of both quiescent and cusped torii, being defined and identified uniquely by the torus
equipotential surface (for quiescent torii) or also by the only angular momentum parameter
£, which are constant for each torus for cusped surfaces, governed by the geodesic structure.

These features constitute a model with great advantages and render their adoption
extremely useful and predictive; therefore, P-D tori are well known and widely used in
the literature also as the initial conditions of the more complex evolution of GRMHD
(magnetohydrodynamic) accretion structures (see, for example, ref. [20]).

Clusters constraints

An RAD seed (RAD of the order n = 2) is a couple of tori. We can concentrate our
attention on two tori with parameters (¢;, ¢, ) for the inner and outer tori, respectively, with
respect to the central BH. Introducing notation <, there is C; < C, for the ring’s relative
location (relative location of the tori centers). By construction, the initial data on the ring’s
seeds describe separated tori. Hence, we have

rinner(i) < rcenter(i) < router(i) < rinner(o) < rcenter(o) < Touter(o)/ (6)

where 7oyt is the ring’s outer edge (with the inner edge 1y e]rﬁb o’ rEoD)-

In the RAD seeds, we need to introduce the concept of fco-rotating tori, defined by
the condition ¢;¢, > 0, and lcounter-rotating tori, defined by the relation ¢;¢, < 0. The two
fco-rotating tori can both be co-rotating (¢a > 0) or counter-rotating (¢a < 0) with respect
to the central attractor.

We can introduce the spins {a1, a3, a3}, defined by the crossing of radii of the spacetime
geodesic structure (shown in Figure 1 and defined in Table 1), as follows: a; = 0.4740M :
r[fnbo] (m) = " (a1), ap = 0.461854M : 7 lmbo] (a2) = rieo(a2) and a3 = 0.73688M :
" (a3) = riso(as). Spins {a1,az,a3} identify classes of attractors characterized by the
different relative locations of the radii of the geodesic structure. Focusing on a seed with
cusped tori, the RAD of the order n = 2 can be classified into four classes. The first class of
seeds is constituted by the tori C¥ < C*, which are an (co-rotating seed of counter-rotating
or co-rotating rings with an inner cusped disk. The seed can be observed in general orbiting
any Kerr BH attractor. This case also includes any seeds orbiting a Schwarzchild BH.
The second case is the pair C} < C*. We can generalize this case to the pair ()* < C~,
including an inner accreting (Cx ) or non-accreting (C) torus, indicated here with notation
(). These pairs can be observed in all spacetimes with a € [0, M]. For a £ a3, the outer

torus should be very far from the inner torus to prevent collision, i.e., with 7center > r[;].

However, in spacetimes with a € [0, a[ only, the quiescent co-rotating torus C~ approaches
the cusped phase, i.e., 7x X Tmso, in the RAD seed. The third class is the pair C;, < C*,
which can orbit in all spacetimes with a € [0, M]. Finally, the fourth case is constituted by
{counter-rotating seeds C;, < C{, featuring double accreting disks, formed by an inner
co-rotating cusped disk and an outer counter-rotating cusped disk. This RAD can be
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%

observed in all Kerr geometries. Whereas, the slower the BH (2 < 47), the lower the specific
angular momentum ¢~ of the inner co-rotating torus, and the smaller the tori spacings.

It is worth noting that if the accreting torus is counter-rotating with respect to the Kerr
attractor, i.e., a C{, then there is 7o inner counter-rotating torus, but a couple may be

formed asa C} < Ctorasa ()~ < CJ one.

Table 1. Co-rotating and counter-rotating tori in Kerr BH spacetimes. ¢* is the fluid specific angular

momentum for counter-rotating (+) and co-rotating (—) fluids, respectively. We adopt the notation
+

mbo
and marginally circular (photon) orbits and the marginally bounded orbits for £* specific angular
+

mbo’
geodesic structure. 7« (r]-) is the torus (proto-jets) cusp (“inner edge” minimum pressure and density

ge = q(7e) for any quantity g evaluated on a radius r.. Radii {r;;,, r?;, r> } are marginally stable

momentum. Radii {r[imbo], r[j;] }, together with {ri., 7 r$ }, constitute the Kerr geometry extended

points in the P-D model) and r¢epter is the torus center (maximum pressure and density points in the
P-D model) (see Figure 1).

e T e =t £ L) gt () = ot
r[imba] .if (rmbzg) = Ei(r[mbo])if O USE =(ry) =1t (rm) =/
T3 < Tbo < Tiiso < o) < "o
£ e Lf E]Zibo,ﬂiso[: quiescent and cusped tori. rx E}ribo,r,inso], Teenter G}r,inso,r[j;ho]];
+ _ + : ; . + + +
fely = [@E,émbo[: quiescent tori and proto-jets. 7 E]rif,rmbo], Teenter e]r[mbo],rm};
i+ e L3i It < &f: quiescent tori, 7center > r[j;].
r[il Arix
N 02 0.9 40 02 A oo 40 2 ak o
0| 30
v
- r | r
imboy_ 20 . 20
T i I
e | o—— | g —
\\@g e e me— e W s
O 02 04 06 08 10 00 02 04 06 08 10 %o o2 0.4 06 08 0
a a a
02

Figure 1. Geodesic structure of the Kerr spacetime. Spin a,,;,, = 0.37258, aé = 0.3137, a{f = 0.6383,
(a1, ay) are defined in Section Constraints from RAD Systems. The black region is r < r4, with
r+ being the outer horizon of the Kerr geometry, the gray region is r < r}, and rl = 2 is the
outer ergosurface on the attractor equatorial plane. Radius 75, is the marginally stable orbit, rif
is the marginally circular orbit, and rib , is the marginally bounded orbit for counter-rotating and
co-rotating particles, respectively. Radii r[imbo],r[j;] are in Table 1. The upper-left (center) panel
shows the situation for the co-rotating (counter-rotating) orbits. The upper-right panel shows the
co-rotating and counter-rotating geodesic structures, and the left-bottom panel is a close-up view.
Colored stripes in the panels are the regions locating the disk’s inner edges r G}rnfh o7 rrsl- The

bottom-center panel shows the co-rotating and counter-rotating geodesic structures where dotted

stripes in the panels are the regions locating the disk’s inner edges r G]rib o’ r7s0], and colored
stripes locate the disk’s centers rcieme, € [r[fn s’ r[jfnbo] [. The bottom-right panel shows the co-rotating

and counter-rotating geodesic structures for BHs spins a € [—1, 1]. All quantities are dimensionless.
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These configurations are determined by the constraints placed on the inner edge
(and in some cases on the torus center and outer edge), which are bounded in the range
]r:ﬁb o7 7] (a constraint shared by most accretion disk models).

3. Evolution of Viscous Tori

In [1], the dynamics of a viscous gas ring orbiting a central Kerr BH were discussed
within the (single) thin-disk approximation. The surface density equation was solved
considering the marginally stable orbit as the disk’s inner edge, with boundary conditions
for the accretion disk model and its time evolution. Following [1], the Kerr background
metric is set in Boyer-Lindquist cylindrical coordinates. Using a perturbation approach (the
disk height is much smaller than the radial length scale) with a low-viscosity assumption,
as in the Keplerian frame, the GR equations for the disk dynamics can be recovered by
the conservation of the energy-momentum tensor for a viscose fluid, including a radiative
energy flux and its projection along the flow velocity U, i.e.,

VTP =0, Va(oU") =0, where T = (p+ e+ p)u*u’ + pg™ + 5% + ¢
with 7 = U%"+4°U%, and U,S" =0, U,q" =0, 7)

where 7% can be considered a radiation stress term, p is the rest mass density of matter, p

the pressure, and e the internal energy. The viscous stress tensor S’ encodes the viscous
contribution, and g7 is an energy flux term (radiative energy flow vector)>. We also assume

S — _ypt?  with % = pV UY + KV U — %vcwhﬂh, (8)

where the viscosity is v = v(r), t* is the trace-free shear tensor, and h** = ¢ + U*U" is
the projector of the three-dimensional subspace orthogonal onto U“.

Similarly to RAD, it is assumed that d,Q = 0 for any matter quantity (axially sym-
metric disk). Moreover, we assume that the rest mass is predominant over the pressure
energy density and shear stress. However, in the thin disk approximation, all quantities are
independent from z, which is therefore ruled out by vertical integration, and we consider
the (vertically integrated) surface density £, replacing p in the continuity equation*. Here,
the disks are in circular orbits. We assume the condition U" = 0. Therefore, without
viscosity, there would be no radial inflow. Viscosity causes a small perturbation, and we
can assume, for the particles gas, a geodesic (Keplerian) motion with velocities U%. These
will be deviated by the quantities ¢*, viscosity terms which are null for v — 0. We will only
consider terms in first-order in ¢ (note that v¢” is a second-term-order perturbation).

Using the approximations in the momentum balance equation, we obtain 7, the shear
expression, considering the geodesic four-velocity and the constraint U + Uy = 0,
where there is

3/ MTEA L
=FosraEpn Where SP=r20VMr-3Mr, TF=r'taVMr—2Mr ()

~4)

for co-rotating ( ") and counter-rotating ( ") fluids, respectively.
Introducing the following quantities,

W 2/ SE g L 3VMA? SF
T2 324 8av/Mr—6My. 228 T T T 2 ayMr’

where the mass flux is

(10)

Fr =158 = —A:0,(vBLX). (11)
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Here, thereis Cy = C_(a — —a), By = —B_(a — —a),and AL = —A_(a — —a),
and F_(a) = F4(—a) = F(a)). Analogously, using the continuity equation, we obtain the
equation for the density evolution as follows:

atZi = Ciar[Aiar(l/BiZ)] (12)

for counter-rotating and co-rotating fluids, respectively”. Then, considering Equation (12),
X = 04 (a — —a)and ;X_(a = 0) = 9;X(a = 0). This setup provides the time
evolution of a ring under the combined effects of viscous torques and BH gravity.

We integrate the evolution equations in Equation (12) by first considering fco-rotating
rings and then combining the sequence sin /counter-rotating disks sequences. For two
BH spins, using dimensionless units, we assume a constant viscosity® v. The equations
singularities are the orbits rﬁf and ri5,,. Quantity Bx is singular on rﬁyﬁ, and quantity A4 is
singular on r;5,, (where A1 and Cy are null on r$) However, they are regular on the inner
edgeinry € [r5, 7, [

It is worth noting that for a disk (the limiting case of a RAD of the order n = 1),
considering a narrow ring with a Gaussian density distribution, the initial data for the

density profile can be set as

(r—rp)?

o(r)|,.1 =e 7 with 2(rn)|,eq =0 and  F(reo)|,—q =0, (13)

where 7 € [r[n, Teo] and for iy < g0 (70, b) are constant).
For a RAD, the initial density profile (X9 = £(t = 0,7)) atr > rqy is’

n =7 pj
24(0,7) = Y gjexp dj<~’> , (14)
=1 f

where {¢;, 7;, d;, pi} are constants to be fixed for each model and can be written as follows:

n r— T’Oj 2
Zd(or””ﬁj:z,d”j:A =) giexp|— > . (15)
=1 !

Here, {ro;, b, q;} are constants, defining the RAD models (Q) listed in Table 2).

Table 2. Initial tori models (Q) for the rings, defined in Equation (15). All the quantities are in
dimensionless units. 7 is the RAD order. ryy is the inner ring’s inner edge. ro, is the central radius,
bj is the initial disk spread and fixed r;, and parameters q; and b; fix the disk mass. v is the shear
viscosity coefficient.

(A) n=2 {7’01 = 20,b1 = 0.1,!]1 = 1/3} {7’02 =26, bz = 0.5,(]2 = 1/2} "N = 7
(B) n=1 {F01:36,b1:2,6]1:1/2} v rIN:7
(C) n= 2,1/ =2 {7’01 = 10,b1 = 0.1,ql = 1/3} {7‘02 = 24, bz = 1,q2 = 1/2} TN = 2.21
(D) n=2v=1 {i’ol = 6,b1 = 0.6,[71 = 1/3} {7’02 =15, bz = 1.1,(]2 = 1/9} "N = 2.21
(E) n=2v=1 {1"01 =32,b1=O.71,Q1:1/3} {T02:26,b2:1,QQ:1/3} rIN:8
(F) n= 2,1/ =1 {7’01 = 6, bl = 06, 17 = 1/3} {7‘02 = 14, bz = 1.1, q2 = 1/9} TN = 2.721
(G) n=2v=2 {i’ol = 10,b1 = 0.1,1]1 = 1/3} {7’02 =24, bz = 1,(72 = 1/2} "N = 2.721
(H) n=2v=2 {1"01:15,b1=1,6]1=1/3} {T02:34,b2:1,QQ:1/2} rIN:8

(I) n = 2,1/ =2 {7’01 = 26,b1 = 0.1,ql = 1/3} {7‘02 = 36,b2 = 0.5,q2 = 1/2} TN = 6
(L) n=1Lv=1 {r01:30,b1:O.1,q1:1/2} v TIN:6
M) n=2v=2 {rg,=15b1 =01,q1 =1/3} {ro,=24,bpy =1, =1/2} N =6
(N) 1/122,1/:1 {7’01 :39,b1:0.51,6]1:1/3} {7‘02:18,b2:0.1,q2:1/9} TIN:6
(O) 11:2,1/:1 {1’01:19,171:0.1,[]1:1/3} {7’02:36/52:1/0]2:1/3} I’IN:6
(P) n = 2,1/ =1 {1”01 = 24,b1 = 0.6,6]1 = 1/3} {7’02 = 12,b2 = 1.1,QQ = 1/9} "IN = 6
(Q) n= 2,1/ =2 {7’01 = 18,b1 = 0.1,ql = 1} {7‘02 = 28,b2 = 0.1,q2 = 1/2} TN = 6
(R) n=2v=2 {1’01:11,171:0.1,[]1:1/2} {7’02:34,b2:1,Q2:1/2} I’IN:6
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[1]:
[3]:
[5]:

In order to proceed with the numerical integration, we need to fix the spacetime and
fluid parameters that regulate Equation (12). Therefore, in particular, we explored the spin
range a € [0,1] by selecting two representative values of the spin, faster spinning and
slower spinning BHs, integrating them numerically for all the cases combined, defined
according to (1) different boundary conditions, (2) different initial density profiles, and (3)
different viscosities. Hence, considering the discussion in Section 2.1, we explore RAD
evolution in spacetimes with @ = 0.2 and a = 0.9 (see Figure 1 and Table 3). By fixing in this
analysis two large and small values of BH spin, we evaluate (i) the effects of the different
rotation orientation of each ring component on the orbiting ringed disk with respect to the
central attractor, and (ii) the impact of the tori relative rotation in the disk evolution, which
is emphasized for faster spinning attractors. By increasing the spin, differences are evident
close to and far from the BH tori, according to the geodesic structure of the two spins. In this
respect, we evaluate the case when the inner torus of a doublet is co-rotating versus counter-
rotating (see Figure 1). Tori have different relative rotation orientations and different values
of shear viscosity, with initial densities listed in Table 2. Given the problem of symmetries,
we can study the co-rotating and counter-rotating rings considering 2 = £0.2 and a = +0.9,
respectively, investigating ¢co-rotating seeds of co-rotating or counter-rotating rings, set by
an initial (modulated) density profile Xy according to Equation (15) for n = 2 and within
the models (Q) of Table 2. Then, we can investigate the {counter-rotating rings, focusing
on the co-evolution of each (co-rotating partial solution (Q) + (P), where ((Q), (P)) are
two models of Table 2.

Table 3. Details of the spacetime geodesic structure on the equatorial plane for Kerr BH spacetimes
with spin a = 0.2 and a = 0.9, where the outer ergosurface is r{ = 2. Sign (&) refers to counter-
rotating/co-rotating orbits, respectively. 7,5, is the marginally stable orbit, r,,;, is the marginally
circular orbit, and 7. is the marginally circular orbit, which is also a photon circular orbit. Radii "]
and 7,3, constrain the location of tori centers (points of maximum pressure in the disks) and are
defined in Table 1. Radius r is the outer BH horizon. All quantities are dimensionless.

a=02 ry =276 Tupo =359 Tmgg =533 rp=921  r =1848
ry =198 ry =322 1 = 439 Tihso = 6.64 o) = 1167 r[fy] = 26.41
a=09 ry =155 1, =1732 rn, =232 v, =361 1 =4887
ry = 1.436 ri =391 1y = 5657 Tihso = 8.717 " fbo] = 15-59 r[';] =41.38
The following five sets of boundary conditions are explored®
{Z(t, rIN) =0, arZ(t, rIN) =0, .F(t, 1’00) = 0}; [2] : {arZ(t, rIN) =0, .F(t, 1’00) = 0};
{Z(f,100) =0, F(t,700) =0}; [4]: {Z(t,7e0) =0,X(f, rin) = 0,0.X(¢, riv) = 0};
{Z(t, TIN) = 0, .F(t, 7’00> = 0}, (16)

where %(0,t) = X, and the integration has been set in the range” t € [0, 4] for r € [r|N, 7eo).

For a single-ring model, we can evaluate the total disk mass as follows'

Mp _ / "~ utsdr, (17)
21 "IN

and for n RAD components, we considered the contribution of all rings and the sum
of each ring mass contribution, dividing into subsets the integration total range [r\;, 7eo)
(see Figure 22). The independent evolution of combined /counter-rotating RAD seeds is
studied for spin a = £0.9 in Section 3.1 and Figures 3, 5,7, 9 and 11), and for spin a = +0.2,
Section 3.2 and Figures 13, 15, 17, 19 and 24), focusing on the following composite systems:
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-Figures 3, 9 and 11. The {co-rotating triplet of counter-rotating rings (A +B) : C (A) <
Ci(A) < C,(B).

The {counter-rotating triplet (B + C) : C_(C) < C_(C) < C4(B).
The {counter-rotating triplet (B+ D) : C_(D) < C_(D) < C4(B).
The (co-rotating quadruplet of co-rotating rings (D+C) : C_(D) < C_(C) <
C_(D) < C_(C).

-Figures 5 and 7. The {counter-rotating quadruplet (E+F) : C_(F) < C_(F) < C4(E) <
C4(E).
The {counter-rotating quadruplet (H+ G) : C_(G) < C4(H) < C_(G) < C4(H).
The {co-rotating quadruplet of co-rotating rings (F+G) : C_(F) < C_(G) <
C_(F) < C_(G).

-Figures 13, 19, and 24. The /co-rotating triplet of counter-rotating rings (I+ L) : C(I) <
Ci(L) < Cy (D).
The {counter-rotating triplet (L+M) : C_(M) < C_(M) < C4(L).

The {co-rotating quadruplet of co-rotating rings (M +N) : C_(M) < C_(N) <
C_(M) < C_(N).

The {counter-rotating triplet (L + N) : C_(N) < C4(L) < C_(N).

-Figures 15 and 17. The /counter-rotating quadruplet (O+P) : C_(P) < C4(Q) <
C_(P) <C(Q).
The {co-rotating quadruplet of co-rotating rings (Q+P) : C_(P) < C_(Q) <
C_(P) <C_(Q).

The lcounter-rotating quadruplet (R+ Q) : C4(R) < C_(Q) < C_(Q) < C4+(R).

As is also confirmed in the analysis of [17], the diffusive evolution of a ringed disk can
be described in four phases (analogue to a RAD evolution in a Keplerian frame). Initially,
we observe the rings spreading inside the RAD. Consequently, the internal ringed structure
changes by leveling the density differences among the disks. This phase is characterized
by marked internal activity with interaction among each ringed component. Following
this evolution, an internal density maximum appears, signaling the formation of a single
disk. The final phase is, therefore, dominated by single-disk structure evolution. The
predominant dynamics at the origin are regulated mainly by the RAD boundary conditions.

Concentrating on the early stages of RAD evolution, we will focus on the description
of the phases preceding the disappearance of the internal structure, distinguishing the
RAD internal dynamics with their inter-disk activity. In this phase, the densities maximum
generally spreads towards the origin, and the disk’s outer edges move to larger radii. Note,
assuming the inner edge is close to the marginally stable orbit, a ring evolution (at small
Y) proceeds similarly to the non-relativistic setup. On the other hand, the low viscosity
approximation cannot hold well for the later stages of ring cluster evolution. It is clear
that the accreting matter from the inner edge of the outer ring of the cluster can have an
unperturbed radial component 0" # 0'!.

In Section 3.1, we consider RADs orbiting a central attractor with spin a = +0.9, and
in Section 3.2, RADs orbiting a slower spinning BH with spin a = 0.2 are explored.

3.1. BH Attractors with Spin a = £0.9

In this section, we consider RAD orbiting BH attractors with spin a = 0.9 (see
Table 3). The fco-rotating rings surface density evolution in the BH spacetimes with
a = 30.9 is shown in Figure 2; co-rotating and counter-rotating fluids are also discussed.
In this case, the models {(A), (B), (C), (D)} of Table 2 are considered (note, model (B)
(upper-right panel) is composed of one counter-rotating ring), with the boundary condition
[1] of Equation (16) and different values of the viscosity coefficient v. With the analysis
of the model (B), we can compare single-ring diffusive evolution with RAD diffusive
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evolution. In condition [1], seed evolution is characterized by a building-up of matter
close to the origin (inner edge of the inner RAD ring) at later stages of evolution (more
evident in the counter-rotating case). Focusing on the initial phases of seed evolution
featuring RAD inner structure evolution with ring interaction, the process timescales of
the inner ringed structure re-modulation depend on initial ring spreading and density (the
process appears less dependent on different viscosity values). The first phases of spread
and merging are fast, rapidly followed by the formation of one maximum density for a
newly formed one-ring structure located close to the initial density maximum with a radial
drift velocity. The disk in this phase can retain a modulated inner density profile depending
on the tori’s initial spreading and separation (see model (D)). In the analysis of combined
seeds in Figure 3, we also consider the combined /co-rotating rings quadruplets or triplets
compared with the case of the /co-rotating solutions of RAD diffusive equations.

05 [1]a=-0.9 t=0 0.5 [1]a=-0.9 p =0
t=0.01 t=0.01
04 V=2(A) t=1 04 v=18) t=1
t=2
03 / t=3 0.3
b3 b3
0.2 0.2
0.1 0.1
0.0 F—e — 0.0
10 15 35 40 10
A
0.35 =
0.5 [1] a=0.9 v=2 050 [1]2=0.9 v=1 :_?
0.4 (€ ' (D) )
0.25 t=3
20-3 0.20
0.2 20.15
0.10
0.1 0.05
0.0 ——H——" 0.00
5 10 15 40 5 10 15 20

Figure 2. Evolution of the surface density X for the /co-rotating rings orbiting in the Kerr spacetime
with a2 = 0.9 for counter-rotating (+) and co-rotating (—) flows, respectively, at different times ¢
signed on the panel (see Table 3). The initial density profiles are the models {(A), (B), (C), (D)} of
Table 2, with the boundary condition [1] of Equation (16). v is the viscosity coefficient. Note, model (B)
(upper-right panel) is composed of one counter-rotating ring). All the quantities are dimensionless.

The combination of the /counter-rotating seeds in Figure 3 shows that the evolution is
qualitatively similar to the /co-rotating seed evolution. In this combined analysis, the radial
range of integration is fixed considering the two seeds’ different inner edges. Interestingly,
there is the permanence of the modulated inner structure at later times, with the inner
dynamics not affecting the inner (and outer) RAD region’s evolution.

The boundary condition [2] of Equation (16) has been tested in Figure 4. In the
(F) model, we note a phase of matter decreasing at the seed’s inner edge, which can also be
seen in the seed (¢counter-rotating) combination in Figure 5.
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0.5/ [1] a=0.9
(B+C)

t=0

0.4

0.3

0.2

0.1

0.0

10 20 30 40 50
r r
0.5/ [1]a=£0.9 t=0 0.5 [1]a=0.9 (D+C) t=0

(B+D) t=0.1
0.4 0.4
0.3t 0.3
2
0.2 0.2
0.1 0.1
0.0* 0.0

Figure 3. Combined (independent) evolution of the surface densities X of {counter-rotating rings cou-
ples composed by two sets of /co-rotating rings from the integration in Figure 2 for the Kerr spacetime
with spin a = 0.9 for co-rotating and counter-rotating fluids, respectively (see Table 3). Dimen-
sionless time values for the different stages of evolution are signed on the panel. All the quantities
are dimensionless. The initial density profiles are the combinations of models {(A), (B), (C), (D)}
defined in Table 2, with boundary condition [1] of Equation (16). v is the viscosity coefficient. Note,
system (A + B) is an £co-rotating triplet of counter-rotating tori C+ (A) < C+(A) < C4(B). Nota-
tion (=+) is for counter-rotating/co-rotating fluids, respectively. System (B + C) is the {counter-
rotating triplet C_(C) < C_(C) < C4(B). System (B+ D) is the fcounter-rotating triplet
C_(D) < C_(D) < C4(B). System (D + C) is the {co-rotating quadruplet of co-rotating rings:
C_(D) < C_(C) < C_(D) < C_(C). The radial range has been adapted according to the combi-
nation of the independent integrations ranges. The viscosity coefficients v are fixed according to
Figure 2.

0.35
0.30
0.25
0.20
0.15
0.10
0.05
0.00

[2] a=-0.9 [2] a=0.9
v=1(F)

z

0.5

5
t=0.01 [2] a=-0.9 t=0.01
t=1 04 v=2 (H) t=1

[2] a=0.9 v=2
0.4 (G)

0.3
0.2
0.1

0.0

Figure 4. Evolution of the surface density X (/co-rotating rings) in the Kerr metric with spin a = 0.9
at different times t for counter-rotating and co-rotating fluids, respectively (see Table 3). All the
quantities are dimensionless. The initial density profiles are the models {(E), (F), (G), (H)} of
Table 2), with the boundary condition [2] of Equation (16). v is the viscosity coefficient.
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In Figure 6, conditions [3] of Equation (16) are tested. The building-up phase at the
inner edge is evidenced together with the (rapid) destruction of the RAD inner structure,
also characterizing the fcounter-rotating RAD in the combined evolution of Figure 7. The
persistence of a modulated inner-density structure at the stage of one single disk could be
seen as fingerprint of a RAD initial stage, constituted by ring aggregates characterized by
different viscosity prescriptions.

0.5

[2] a=+0.9 t=0 05 [2] a=0.9 t=0

t=0.01 (F+G) t=0.01

40
r r

Figure 5. Combined (independent) evolution of the surface densities . of the {counter-rotating
rings couples composed by two clusters of /co-rotating disks from the integration in Figure 4. The
initial density profiles are the combinations of models {(E), (F), (G), (H) } defined in Table 2), with
boundary condition [2] of Equation (16). v is the viscosity coefficient. System (E + F) is the {counter-
rotating quadruplet C_(F) < C_(F) < C4(E) < C4(E). System (H + G) is the {counter-rotating
quadruplet C_(G) < C4+(H) < C_(G) < C4(H). System (F + G) is the {co-rotating quadruplet of
co-rotating rings C_ (F) < C_(G) < C_(F) < C_(G). The radial range has been adapted according
to the combination of the independent integrations ranges. The viscosity coefficients v are fixed
according to Figure 4.

0.35 . 0.9 t=0 0.35; t=0
a=-0. [3] a=0.9
0.30 t=0.1 . =
v=1 (E) 0.30 v=1 (F) =1
0.25
0.20
20.15
0.10
0.05
0.00
10 15 20 25 30 35 40
r r
0.5 ‘ t=0 0.5 t=0
[38] a=0.9 v=2 t=0.01 [3] a=-0.9 t=0.01
0.4 (G) t=1 04 v=2 (H) t=1
t=2
0.3 t=5 -
z t=15
0.2
0.1 At
- - \\
0.0 ———uw : —
5 10 15 20 25 30 35 40 60 70

r r

Figure 6. Evolution of the surface density X (/co-rotating rings) in the Kerr metric with spina = +0.9
for co-rotating and counter-rotating fluids, respectively, at different times t signed on the panels
(see Table 3). All the quantities are dimensionless. The initial density profiles are the models
{(E), (F), (G), (H)} of Table 2), with the boundary condition [3] of Equation (16). v is the viscosity co-
efficient.

Boundary conditions [4] and [5] of Equation (16) are tested in Figure 8 and Figure 9,
respectively, for the initial density profiles {(A), (B), (C), (D)} of Table 2. Remarkably, the
RAD seed evolution is then similar to the evolution in Figure 2.
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[3] a=£0.9

0.30
0.25
0.20
0.15
0.10
005
0.00 ~ —

[3] a=%0.9 -0 0.5 [3]a=0.9 -0
t=0.01 (F+G) \ t=0.01
t=0.1 0.4
t=1
t=2 0.3
t=15 I
0.2
0.1
0.0

10 20 30 40 50

Figure 7. Combined (independent) evolution of the surface densities > of the {counter-rotating
ring couples composed by two sets of {co-rotating rings from the integration in Figure 6. The initial
density profiles are the combinations of models { (E), (F), (G), (H)} defined in Table 2, with boundary
condition [3] of Equation (16). v is the viscosity coefficient. System (E + F) is the {counter-rotating
quadruplet C_(F) < C_(F) < C4+(E) < C4(E). System (H + G) is the {counter-rotating quadruplet
C_(G) < C4(H) < C_(G) < C4(H). System (F + G) is the {co-rotating quadruplet of co-rotating
rings C_(F) < C_(G) < C_(F) < C_(G). The radial range has been adapted according to the
combination of the independent integrations ranges. The viscosity coefficients v are fixed according

to Figure 6.
0% [a=-09 =0 05 a=09 t=0
t=0.01 t=0.01
04 V=2(A) t=1 0.4 v=1(8) 1
t=2 5
0.3 t=3 0.3 6
s 3
02 | 0.2
0.1 0.1
0.0 £ ——IIC T 0.0 =
10 15 20 25 30 35 40 10
r r
05  [4]2=09 v=2 t=0 035 [4] 2=0.9 v=1 t=0
© t=0.01 0.30 ' t=1
0.4 t=1 (D)
0.25
20-3 0.20
3
02 0.15
0.10
01 . 0.05
00 ——"————" — — 0.00
5 10 15 20 25 30 35 40

Figure 8. Evolution of the surface density ¥ (fco-rotating rings) at different times ¢ signed on the
panels in the Kerr metric with spin a = F0.9 (for counter-rotating and co-rotating fluids, respectively)
(see Table 3). The initial density profiles are the models {(A), (B), (C), (D)} of Table 2, with the
boundary condition [4] of Equation (16). v is the viscosity coefficient. Note, model (B) (upper-right
panel) is composed of one counter-rotating ring).

Different (inner) boundary conditions on the RAD edges affect mostly the RAD
evolution rather then the inner structure evolution generally resolved in the early times
(see, for example, Figures 10 and 11).
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0.5 [5]1a=-0.9 t_t=% ; 0.5 |51 a=-0.9
04 Vv=2(A) » 04 V=18
2
03 3 03
A by
02 | 0.2
0.1 0.1
0.0 0.0
10 15 20 25 30 35 40 10
r r
05 [51a=09 v=2 =0 0.9 [5]a=0.9 v=1 =0
c t=0.01 0.30 DN t=1
04 © (D)
0.25
20-3' . 0.20
b3
0.2 0.15
0.10
01 0.05
0.0: 0.00! ]
5 10 15 20 25 30 35 40 5 10 15 20
r r

Figure 9. Evolution of the surface density ¥ ({co-rotating rings) at different times ¢ signed on the
panels in the Kerr metric with spin a = 4-0.9 for co-rotating and counter-rotating fluids, respectively
(see Table 3). The initial density profiles are the models {(A), (B), (C), (D)} of Table 2, with the
boundary condition [5] of Equation (16). v is the viscosity coefficient. Note, model (B) (upper-right

panel) is composed of one counter-rotating ring).

05 [4]a=-0.9 t—tg% 1 0.5 [4] a=10.9 t=0

s (A+B) . (B+C)

0.3 - 03

b3 b3

0.2 0.2

0.1 0.1

0.0 .00 ,
10 20 30 40 50 10 20 30 40 50

r r

0.5 [4] a=+0.9 0.5 [4] a=0.9 (D+C)
B+D

04 (B+D)

0.3

b3

0.2

0.1 g

00 —F—
10 20 30 40 20 25 30 35

Figure 10. Combined (independent) evolution of the surface densities X of the {counter-rotating ring

couples composed by two sets of {co-rotating rings from the integration in Figure 8. The initial density

profiles are combinations of models {(A), (B), (C), (D)} defined in Table 2, with boundary condition

[4] of Equation (16). v is the viscosity coefficient. Note, system (A + B) is a {co-rotating triplet of
counter-rotating tori C4(A) < C4(A) < C4(B). Notation (+) is for counter-rotating/co-rotating
fluids, respectively). System (B + C) is the fcounter-rotating triplet C_(C) < C_(C) < C4(B).
System (B + D) is the {counter-rotating triplet C_ (D) < C_(D) < C4(B). System (D + C) is the
Lco-rotating quadruplet of co-rotating rings: C_ (D) < C_(C) < C_(D) < C_(C). The radial range
has been adapted according to the combination of the independent integrations ranges. The viscosity

coefficients v are fixed according to Figure 8.
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0.5 [5] a=-0.9
0_4: (A+B)
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0.5 [5] a=0.9 (D+C)
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Figure 11. Combined (independent) evolution of the surface densities X of the {counter-rotating
rings couples composed of two sets of {co-rotating rings from the integration in Figure 9. The
initial density profiles are the combinations of models {(A), (B), (C), (D)} defined in Table 2, with
boundary condition [5] of Equation (16). v is the viscosity coefficient. Note, system (A + B) is an
Lco-rotating triplet of counter-rotating tori C1 (A) < C4(A) < C4(B). Notation (=) is for counter-
rotating / co-rotating fluids, respectively). System (B + C) is the {counter-rotating triplet C_(C) <
C_(C) < CL(B). System (B + D) is the fcounter-rotating triplet C_ (D) < C_ (D) < C4(B). System
(D + C) is the ¢co-rotating quadruplet of co-rotating rings: C_(D) < C_(C) < C_(D) < C_(C).
The radial range has been adapted according to the combination of the independent integrations
ranges. The viscosity coefficients v are fixed according to Figure 9.

3.2. BH Attractors with Spin a = £0.2

In Figures 12 and 13, we consider clusters orbiting BHs with spin 2 = £0.2. Similarly
to the case in Figure 2, boundary conditions [1] of Equation (16) are considered here for the
initial density profiles {(I), (L), (M), (N)} of Table 2, where model (L) (upper-right panel)
is composed of one counter-rotating ring. The destruction of the inner RAD structure is
followed by the formation of an inner maximum density also present during later stages of
RAD evolution.

Boundary conditions [2] are tested in Figures 14 and 15, where, for the (P) model, an
increase in mass at the inner edge followed by a decreasing phase during later stages of
evolution is noted.

From the analysis of the boundary condition [3] applied to the {(O), (P), (Q), (R)}
models of Figure 16, we see that, after the leveling of the inner ringed structure, the single
maximum density of the final disk appears to be affected mostly by the spreading of the
initial ring cluster.
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Figure 12. Evolution of the surface density ¥ (fco-rotating rings) in the Kerr metric with spin
a = £0.2 for co-rotating and counter-rotating fluids, respectively (see Table 3). All the quantities
are dimensionless. Dimensionless time values for the different stages of evolution are signed on the
panel. The initial density profiles are the models {(I), (L), (M), (N)} of Table 2, with the boundary
condition [1] of Equation (16). v is the viscosity coefficient. Note, model (L) (upper-right panel) is
composed of one counter-rotating ring).
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Figure 13. Combined (independent) evolution of the surface densities X of the {counter-rotating
rings couples composed by two sets of {co-rotating rings from the integration in Figure 12. The
initial density profiles are the combinations of models {(I), (L), (M), (N)} defined in Table 2, with
boundary condition [1] of Equation (16). v is the viscosity coefficient. System (I + L) is the {co-
rotating triplet of counter-rotating rings C (I) < C (L) < C(I). System (L + M) is the {counter-
rotating triplet C_(M) < C_(M) < C4(L). System (M + N) is the {co-rotating quadruplet of
co-rotating rings C_(M) < C_(N) < C_(M) < C_(N). System (L + N) is the fcounter-rotating
triplet C_(N) < C4(L) < C_(N). The radial range has been adapted according to the combination
of the independent integrations ranges. The viscosity coefficients v are fixed according to Figure 12.
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Figure 14. Evolution of the surface density X ({co-rotating rings) in the Kerr metric with spina = 0.2
for co-rotating and counter-rotating fluids, respectively, at different times r signed on the panels (see
Table 3). The initial density profiles are the models {(O), (P), (Q), (R)} of Table 2, with the boundary
condition [2] of Equation (16). v is the viscosity coefficient.
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Figure 15. Combined (independent) evolution of the surface densities X of the {counter-rotating
rings couples composed by two sets of {co-rotating rings from the integration in Figure 14. The initial
density profiles are the combinations of models {(O), (P), (Q), (R)} defined in Table 2, with boundary
condition [1] of Equation (16). v is the viscosity coefficient. System (O + P) is the fcounter-rotating
quadruplet C_(P) < C1(Q) < C_(P) < C4(Q). System (Q + P) is the {co-rotating quadruplet
of co-rotating rings C_ (P) < C_(Q) < C_(P) < C_(Q). System (R + Q) is the {counter-rotating
quadruplet C+(R) < C_(Q) < C_(Q) < C4+(R). The radial range has been adapted according
to the combination of the independent integrations ranges. The viscosity coefficients v are fixed
according to Figure 14.

Figure 17 shows the independent evolution of /co-rotating rings with different vis-
cosities. RAD evolution does not differ qualitatively from the /co-rotating solutions of the
diffusive RAD equation.

In Figures 18 and 19, boundary conditions [4] of Equation (16) are applied to the
models {(I), (L), (M), (N)} and can be compared to Figure 8.
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Figure 16. Evolution of the surface density X ({co-rotating rings) in the Kerr metric with spina = 0.2
for co-rotating and counter-rotating fluids, respectively, at different times ¢ signed on the panels (see
Table 3). The initial density profiles are the models {(O), (P), (Q), (R)} of Table 2, with the boundary
condition [3] of Equation (16). v is the viscosity coefficient.
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Figure 17. Combined (independent) evolution of the surface densities X of the {counter-rotating
rings couples composed by two sets of {co-rotating rings from the integration in Figure 16. The initial
density profiles are the combinations of models {(O), (P), (Q), (R) } defined in Table 2, with boundary
condition [3] of Equation (16). v is the viscosity coefficient. System (O + P) is the fcounter-rotating
quadruplet C_(P) < C1(Q) < C_(P) < C4(Q). System (Q + P) is the fco-rotating quadruplet
of co-rotating rings C_ (P) < C_(Q) < C_(P) < C_(Q). System (R + Q) is the {counter-rotating
quadruplet C1(R) < C_(Q) < C_(Q) < C4(R). The radial range has been adapted according
to the combination of the independent integrations ranges. The viscosity coefficients v are fixed
according to Figure 16.

In Figure 20, F (the mass flux defined in Equation (11) in the Kerr spacetime with
a = £0.2 for the {co-rotating rings is shown at different stages of RAD evolution. Boundary
condition [4] of Equation (16) has been adopted with initial models {(I), (L), (M)} of
Table 2. The related density evolution is shown in Figure 18). The flux zeros (changing
slowly with time) as well as the disk spreading during RAD evolution and the destruction
of the inner ringed density profile are evidenced.
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Figure 18. Evolution of the surface density ¥ (fco-rotating rings) in the Kerr metric with spin
a = £0.2 for co-rotating and counter-rotating fluids, respectively (see Table 3). All the quantities
are dimensionless. Dimensionless time values for the different stages of evolution are signed on the
panel. The initial density profiles are the models {(I), (L), (M), (N)} of Table 2, with the boundary
condition [4] of Equation (16). v is the viscosity coefficient. Note, model (L) (upper-right panel) is
composed of one counter-rotating ring).
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Figure 19. Combined (independent) evolution of the surface densities X of the {counter-rotating
rings couples composed by two sets of {co-rotating rings from the integration in Figure 18. The
initial density profiles are the combinations of models {(I), (L), (M), (N)} defined in Table 2, with
boundary condition [4] of Equation (16). v is the viscosity coefficient. System (I + L) is the {co-
rotating triplet of counter-rotating rings C4 (I) < C (L) < C(I). System (L + M) is the {counter-
rotating triplet C_(M) < C_(M) < C4(L). System (M + N) is the fco-rotating quadruplet of
co-rotating rings C_(M) < C_(N) < C_(M) < C_(N). System (L + N) is the fcounter-rotating
triplet C_(N) < C4(L) < C_(N). The radial range has been adapted according to the combination
of independent integrations ranges. The viscosity coefficients v are fixed according to Figure 18.
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Figure 20. The mass flux F of Equation (11) for the fco-rotating rings couples in the Kerr metric with
spin a = £0.2 for co-rotating and counter-rotating fluids, respectively (see Table 3). All the quantities
are dimensionless. The initial density profiles are the models {(I), (L), (M)} of Table 2, with the

boundary condition [4] of Equation (16). v is the viscosity coefficient. Density evolution is shown in
Figure 18.

In Figure 21, the radial drift of the fluid density X is considered by studying the
solution ¥’ = 9,X = 0 in the plane t —  for co-rotating and counter-rotating fluids orbiting
the BH spacetime with spin a = £0.2, respectively. The initial density profiles are models
{(I), (L), (M)} (density evolution is shown in Figure 18), with the boundary condition
[4]. The integration ranges consider the RAD inner (i), center (c), and outer (o) tori. The
systems (Q) + (P) for the two general models {(Q), (P)} consider sums that are two seed
evolutions apart, which is the solution of ¥'(Q) = 0 and X/(P) = 0, while system (Q + P)
is the solution of ¥/(Q) + ¥/(P) = 0. The radial ranges distinguishing the (i), (c), and (o)
components are defined by the radii iy < 7(;) < 7+ < roo. The radial drift of the inner and
outer tori follows the destruction of the inner ringed structure'?
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Figure 21. Radial drift of the fluid density X. Solution &’ = 9,X = 0 in the plane t — r for co-rotating
and counter-rotating fluids orbiting the BH spacetime with spin a = 40.2, respectively (see Table 3).
All quantities are dimensionless. The initial density profiles are the models {(I), (L), (M)} of Table 2,
with the boundary condition [4] of Equation (16). v is the viscosity coefficient. Density evolution
is shown in Figure 18. The integration ranges consider the RAD inner (i), center (c), and outer
(o) tori. The radial ranges distinguishing the (i), (c), and (o) components are defined by the radii
"IN < 7(¢) < T+ < Too. For the {co-rotating seeds (I) and (M), the inner torus (i) is defined in the range
[rin, 7+] and the outer torus (o) is defined in [r4, 7], where the (I) seed there is 7. = 30, and the (M)

seed there is 7. = 22. For the combined independent system (M + L), there is (r(c) =22,r, = 28),
where the inner torus (i) is defined in [ryy;, 7(¢); the center torus (¢) is defined in [r (., 7.]; the outer

torus (o) is defined in [r«, 7o ]. The systems (Q) + (P) for two general models {(Q), (P)} consider

the sums two evolutions apart, which is the solution of ¥'(Q) = 0 and X'(P) = 0, while (Q + P) is
the solution of ¥'(Q) + X'(P) = 0.

In Figure 22, the evolution of the disk mass Mp of Equation (17) is studied as a function
of the dimensionless time. Co-rotating and counter-rotating fluids were considered orbiting
the BH spacetime with spin a = £0.2, respectively (see Table 3). The initial density profiles
are the models {(I), (L), (M)} of Table 2, with the boundary condition [4] of Equation (16),
and the related density evolution is shown in Figure 18. The systems (Q) + (P) for two
general models {(Q), (P)} represent the sums of the two evolutions apart, which is the
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sum of Mp(Q)/2m and Mp(P)/2m, while (Q + P) is the mass of the composed system
formed by (Q) and (P), where these two evaluations are clearly coincident. At later stages
of the RAD disk evolution, the curves decrease approximately with a power law (¢° for
s = constant). The integration ranges consider the RAD inner (i), center (c), and outer
(0) tori. There is, therefore, an exponential decrease in RAD mass at a later stage of RAD
evolution, similar to one disk evolution. The decomposition with the selection of the radii
tc < 4 is set here on the condition of faint density in the ring’s interspace. The analysis
of the RAD decomposition for the {co-rotating couples or the combined evolution of the
RAD seeds in the inner, outer, and eventually, central ring shows the mass increase on one
ring component in correspondence to the mass decreases of the other inner component
following matter exchange for accretion from the outer ring to the inner one, for example,
from the outer disk to the central ring or the outer ring to the inner ring, as shown in
Figure 18. The outer ring mass increases at larger stages of evolution independently to the
disk rotation orientation with respect to the Kerr BH and the relative rotation orientation.
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Figure 22. Evolution of the disk mass as a function of the dimensionless time. For large times,
the curves decrease approximately with a power law of t° for co-rotating and counter-rotating
fluids orbiting the BH spacetime with spin a2 = +0.2, respectively (see Table 3). All quantities
are dimensionless. The initial density profiles are the models {(I), (L), (M)} of Table 2, with the
boundary condition [4] of Equation (16). v is the viscosity coefficient. Density evolution is shown in
Figure 18. The integration ranges consider the RAD inner (i), center (c), and outer (o) tori. The radial
ranges distinguishing the (i), (c), and (o) components are defined by the radii rpy < 7y < 74 < 7o
For the {co-rotating seeds (I) and (M), the inner torus (i) is defined in the range [ry, 7«], and the
outer torus (o) is defined as [r«, 7« ], where for the (I) seed, 7. = 30, and for the (M) seed, r, = 22.
For the combined independent system (M + L), (r() = 22,7« = 28), where the inner torus (i) is
defined in [r|N, 7()]; the center torus (c) is defined in [r(.), r+]; the outer torus (o) is defined in [rs, reo].
The systems (Q) + (P) for two general models {(Q), (P)} consider the sums of the two evolutions
apart, which is the sum of Mp(Q) /27 and Mp(P) /27, while (Q + P) is the mass of the composed
system formed by (Q) and (P) (the two evaluations clearly are coincident).

The analysis of the RAD seed diffusive equation in the R-frame is completed in
Figures 23 and 24 with the initial density profiles {(I), (L), (M), (N)} of Table 2 with the
boundary condition [5] of Equation (16). It is interesting to note that the persistence of the
maximum density at later stages of evolution depends on the ring’s spreading rather then
the ring’s density maximum.
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Figure 23. Evolution of the surface density X ({co-rotating rings) in the Kerr metric with spin
a = F0.2 for counter-rotating and co-rotating fluids, respectively (see Table 3). All the quantities
are dimensionless. Dimensionless time values for the different stages of evolution are signed on the
panel. The initial density profiles are the models {(I), (L), (M), (N)} of Table 2, with the boundary
condition [5] of Equation (16). v is the viscosity coefficient. Note, model (L) (upper-right panel) is
composed of one counter-rotating ring).
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Figure 24. Combined (independent) evolution of the surface densities X of the {counter-rotating
rings couples composed by two sets of {co-rotating rings from the integration in Figure 23 for
the Kerr spacetime with spin 4 = £0.2 for co-rotating and counter-rotating fluids, respectively
(see Table 3). Dimensionless time values for the different stages of evolution are signed on the
panel. All the quantities are dimensionless. The initial density profiles are the combinations of
models {(I), (L), (M), (N)} defined in Table 2, with boundary condition [5] of Equation (16). v is
the viscosity coefficient. System (I + L) is the {co-rotating triplet of counter-rotating rings C (I) <
C4(L) < C4(I). System (L 4+ M) is the fcounter-rotating triplet C_ (M) < C_ (M) < C4(L). System
(M + N) is the £co-rotating quadruplet of co-rotating rings C_ (M) < C_(N) < C_(M) < C_(N).
System (L 4 N) is the {counter-rotating triplet C_(N) < C4(L) < C_(N). The radial range has
been adapted according to the combination of the independent integrations ranges. The viscosity
coefficients v are fixed according to Figure 23.
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4. Conclusions

We discussed the evolution equation of a ringed accretion disk composed of clusters
of co-rotating and counter-rotating general relativistic thin disks, solving a diffusion-like
propagating equation for the RAD surface density. Following [1], the approach developed
for a single disk is applied here to a ring agglomerate orbiting on the equatorial plane
of a central Kerr BH and defined by an initial modulated density profile. The clusters
are composed of rings of different densities and spreading. The numerical solutions of
the RAD diffusive equations, recovered from the conservation of particle number and
the toroidal component of the stress-energy tensor, have been found to test multiple
viscosity prescriptions and boundary conditions. The analysis was performed considering
both faster-spinning and slower-spinning BH spacetimes. The initial spreading of disks,
constituting the internal ringed structure, governs the RAD evolution, being a predominant
factor with respect to the initial ring densities.

It was found that the first stage of the cluster evolution involves inner structure
dynamics and is characterized by spreading in the RAD and the modification of the
internal structure disappearing in the second stage, while the third stage is dominated by
the formation of a single disk with an internal density maximum. The final stage of RAD
evolution is characterized by single-disk evolution at the origin. We focused mostly on the
first stages of evolution. Close to the last stable circular radius, for small density %, our
analysis shows that the disks evolve similarly to the non-relativistic case (see also [17]).

The investigation first focused on the evolution of a set of {counter-rotating or {co-
rotating sets subjected to several viscosity prescriptions and boundary conditions, defined
by an initial modulated density profile governing the inner ringed structure of the RAD. We
then analyzed the combined independent evolution of the {counter-rotating seeds. In this
combined analysis, the radial range of integration was fixed considering the two seeds’ dif-
ferent inner edges. The combination of the {counter-rotating seeds shows that the evolution
is qualitatively similar to the {co-rotating evolution. However, we proved the persistence
of an inner ringed structure also at later times, while the internal dynamics (characterized
by ring component interaction) do not affect the RAD boundary region’s evolution.

Hence, the analysis explores wide ranges of different cases, selected in the classes
(of possible configurations) relevant to the phenomenological impact, especially for the
astrophysical context of SMBHs and their accretion disk evolution. Therefore, we analyzed,
among the different cases, the following: (1) differences for fast and slowly spinning
BHs, (2) the impact of tori number, (3) the divergences between fco-rotating and fcounter-
rotating tori, and (4) the effects of different viscosities and boundary conditions. The
astrophysical differences evidenced in the disk density evolution for each different case are
dominated by the different relative rotations of the tori and the density differences in the
initial ringed density. These aspects affect the timescales of the process and characterize
the final phases of RAD evolution, which are constituted by one single disk resulting
from the multi-tori merger. We go into detail below, summarizing the impact of each
different condition on the final evolution. Note that the aggregates of different disks with
different viscosity are equivalent, in our frame, to a single disk affected by inhomogeneous
viscosity (depending on the radius) and with possibly different rotation orientation in
the (single) ringed profile. However, for the astrophysical context, the most impacting
feature appears during composed (independent) evolution, which can be split into the
contribution of different components (as in Figure 22), evident in the mass accretion rate.
The effects of disk morphology as the set of several systems are then evident in all the
phenomena associated with the existence of the multiple inter-disk inner-edges. The relative
rotation and initial difference in density, differentiated particularly in the spacetimes of the
faster spinning attractors, are, also in this frame, the most relevant factors influencing the
process timescales.

The evolution of the disk mass Mp, mass flux, and radial drift was also studied as
a function of the dimensionless time, in dependence on the ring rotation orientation, BH
spin, and the initial RAD density profile. The mass increases on one ring component, and
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in correspondence, the mass decreases the other inner component, mostly independent
from the ring’s relative rotation orientation and rotation with respect to the central BH. At
later stages, the curves Mp decrease approximately with a power law (¢° for s =constant)
(within the condition of faint density in the rings interspace). On the other hand, focusing
on the initial stages of the seed evolution featuring the RAD inner structure evolution
with rings interaction, the process timescales of the inner ringed structure re-modulation
depend on the initial rings spreading and density (the process appears less dependent on
the different viscosity values, in the first approximation the viscosity appears most relevant
factor when the viscosity fluctuation in the RAD distribution is the greater). The disk in this
stage can retain a modulated inner density profile depending on the tori’s initial spreading
and separation (see, for example, model (D)).

However, it should be noted that, while in this analysis stress models have been
applied in the entire range of integration, other conditions should apply at infinity, particu-
larly in the inner region (for r €]|r, rin[). In fact, in the RAD, the perturbation analysis is
complicated by the typical inter-disk activity constituted by the inter-ring accretion and
disk collision. More generally, the presence of multiple inner edges, due to the internal
ringed structure, undermines the validity of the use of viscosity as a perturbation for the
only non-zero radial fluid velocity. That is, it exists as an unperturbed component U’ # 0
in the presence of radial inter-disk flux.

Furthermore, for fast-spinning attractors (a > 0.828427), the co-rotating ring is ex-
pected to partially orbit the outer ergoregion of the Kerr spacetime, and for faster-spinning
attractors (a > 0.942809), the inner edge of the inner co-rotating ring is expected to be in the
outer-ergoregion, and the ring can be totally contained in this region. In this situation, the
counter-rotating flow from the outer disk, having an initial toroidal velocity u? < 0, arrives
at the outer ergosurface with u? > 0. The flow is free-falling and there is a constant ¢ < 0
along all the motion. Therefore, the flow crosses, and before reaching the outer ergosurface,
an inversion surface embeds the central BH, where u? = 0, which is defined by the param-
eter £. Consequently, in the presence of an inner co-rotating disk, the counter-rotating flow
from the outer torus can impact the inner ring with u¢ > 0 [21].

However, within all these approximations, our analysis is a feasible test of the early
stages of RAD evolution. For all these reasons, this early exploratory study provided a
preliminary but well-founded overview of the multi-ring frame of ring aggregate evolution.

We stress the possibility of accretion rings being produced by tidal disruptions of mul-
tiple stellar systems when they sink too close to the SMBH. In this frame, our application
could be extremely timely in connection with the recent apparent detection of the the first
binary star in the S-cluster close to SgrA* [22].
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Appendix A. On the Null Flux Condition

Here, we include some notes on the condition of the null flux 7, which was explored
in Section 3.

Condition F = 0 at point r implies (£ = 0, £ = 0) or £’ = 0 for r on a particular
orbit rfg for counter-rotating and co-rotating fluids, respectively. Radius r is the zero of
R, = 843 + a?(7r — 15)\/r — 8ar? + [6 — (r — 3)r]r3/2 for the co-rotating case, and 7 (a)
is the zero of the quantity R (a) = R (—a) for the counter-rotating case. Radii 7 (a)
are shown in Figure A1l. Interestingly, this radius strongly distinguishes the co-rotating
from the counter-rotating fluxes. This property is particularly relevant for the RAD, where
the flux from the outer and inner torus is considered in the region r < ri5,,. As is clear
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from Figure A1, thereis ) €]r’,  rto,[ forany a € [0,1], which is not always the case for
co-rotating fluxes where condition r; €]r,, , 7,5, holds for a € [0,ac], where atas, =5/9,
there is r = ¥ mbo- FOT larger spin, a > ac, where r, € [r; b 0]. Furthermore, for BH
spin, ax = 0.8117 and there is r = rd; therefore, the (co-rotating) flux has a zero point
in the ergoregion for BH spin a > a«. This aspect can also play a relevant role for ¢

counter-rotating systems for slower spin BHs for the case when the disk is counter-rotating.

0O.O 0.2 0.4 0.6 0.8 1.0

a

Figure A1. On the null flux F condition: Appendix A. Radii r for counter-rotating and co-rotating
fluids, respectively, are plotted as functions of the central Kerr BH spin a € [0,1]. All quantities
are dimensionless. On r%, there is F = 0 with &’ = 0. The black region is r < r, with r being
the outer horizon of the Kerr geometry, and the gray region is r < rJ, where rf = 2M is the outer
ergosurface on the attractor equatorial plane. The geodesic structure of the Kerr spacetime is also
plotted: radius i, is the marginally stable orbit, riy[ is the marginally circular orbit, and rib , is the
marginally bounded orbit for counter-rotating and co-rotating particles, respectively. At a = 0.8117,

isr= = 7t
thereisrg =r..

Notes

1

We adopt the geometrical units c = 1 = G and the (—, +, +, +) signature, Latin indices run in {0,1,2,3}. The radius r has a unit
of mass [M], angular momentum units of [M]?, velocities [U] = [U’] = 1, and [U?] = [U?] = [M]~! with [U?/U'] = [M]~! and
[Up /U] = [M]. For the sake of convenience, considering the dimensionless energy, effective potential [V,¢] = 1, and an angular
momentum per unit of mass [L]/[M] = [M].

It is assumed that the time scale of the dynamical processes 74, (regulated by the gravitational and inertial forces, the timescale
for pressure to balance the gravitational and centrifugal force) is much lower than the timescale of the thermal ones 1y, (i.e.,
heating and cooling processes, the timescale of radiation entropy redistribution) that is lower than the time scale of the viscous
processes T,;;, and the effects of strong gravitational fields are dominant with respect to the dissipative ones and predominant to
determine the unstable phases of the systems [18,19], i.e., Ty, < Type < Tyis see also [20]. Thus, the effects of strong gravitational
fields dominate the dissipative ones [18,19]. Consequently, during the evolution of dynamical processes, the entropy distribution
depends on the initial conditions of the system. The entropy is constant along the flow. According to the von Zeipel condition,
the surfaces of constant angular velocity () and of constant specific angular momentum ¢ coincide, and the rotation law ¢ = ¢(Q2)
is independent of the equation of state. More precisely, these structures are radiation pressure-supported accretion tori, cooled by
advection, with low viscosity, opaqueness, and super-Eddington luminosity (high matter accretion rates) [19]. The accretion
mechanism in these models occurs from a Roche lobe overflow from the tori cusps, constituting also an important local stabilizing
mechanism against thermal and viscous instabilities and globally against the Papaloizou-Pringle instability.

The rest of energy densityp could include a thermal contribution, which is, in general, ignored in the thin disk approximation.
The quantity p could be considered the total pressure (radiation and HD pressure).
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4 Ignoring terms higher than z%/r?, we adopt a near-equatorial plane approximation using the height-integrated quantities,

allowing a 1 + 1-dimensional analysis of the diffusive equations within the condition

L0 =%o(r) and UX|,_o=U)(r), x={t,r,¢}, (where U*=U"+¢", U"¢ =0),
where ¢ represents the fluctuation contribution to the mean flow, and notation U” is adopted for the unperturbed geodesic fluid
circular velocity

5 Assuming a = 0 (the static Schwarzschild case) and considering the first order in M = 0, we obtain the non-relativistic evolution
equation:

8% —3v {322 T a%z} =32 1o (vvrm));
see [4,5]

6 Note, for the single disk, with time f = vt/ M?, we can assume a constant viscosity v, which is equivalent to the condition M = 1.
However, for the multi-ring case it is convenient to specify the viscosity prescription for each ring explicitly.

7 Note, the RAD inner edge rin < 50 coincides, for a fco-rotating seed, with the inner edge of the most internal disk.

8 In [1], it is assumed 7y = 7,5,(co-rotating fluids) with Z(rpy) = 0 and F(re) = 0. Conditions on the flux at 7,5, imply a
discussion on the density ¥ and its radial derivative £’ in 7,,50. The condition of null flux F and null density ¥ at a point r, for
example, rpy or in the limit 7o, are not equivalent. Conditions in 7,5, depend on the central BH spin. A null flux at 5, implies
more restrictive conditions on the density X and its radial derivative >/ at tso. At infinity, a null flux leads to £ = 0 and rd,~ = 0.
Using boundary condition £ = 0 at the inner edge would imply neglecting the viscous torque in the region |r, 11N [, assuming
accretion onto the central BH occurs in the free-falling hypothesis. Condition F = 0 at a point r implies ¥ = 0 and ¥’ = 0 or,
interestingly, &' = 0 for r on a particular orbit (see Appendix A).

? Time ¢y is the total simulation time, and the choice of r« is clearly related to numerical integration, location, spreading of the
outer disk, and the choice of ¢ Iz

10 Here, U' is the unperturbed velocity component, and Mp could be considered from the time integral of the flux function F at a
proper radius.

1 It should be stressed that this divergence with respect to the perturbation set-up adopted here is expected to be more relevant for
{counter-rotating rings.

12 For {counter-rotating seed analysis, the radial range split could also be implemented by considering the radius r, where the mass
flux F changes sign (see Figures 20 and 21).
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