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Abstract: Let two test particles A and B, revolving about a spinning primary along ideally identical
orbits in opposite directions, be considered. From the general expressions of the precessions of the
orbital inclination induced by the post-Newtonian gravitomagnetic and Newtonian quadrupolar
fields of the central object, it turns out that the Lense–Thirring inclination rates of A and B are equal
and opposite, while the Newtonian ones oblateness are identical, due to the primary’s oblateness.
Thus, the differences in the inclination shifts of the two orbiters would allow, in principle, for the
classical effects to be cancelled out by enhancing the general relativistic ones. The conditions affecting
the orbital configurations that must be satisfied for this to occur and possible observable consequences
regarding the Earth are investigated. In particular, a scenario involving two spacecraft in polar orbits,
branded POLAr RElativity Satellites (POLARES) and reminiscent of an earlier proposal by Van Patten
and Everitt in the mid-1970s, is considered. A comparison with the ongoing experiment with the
LAser GEOdynamics Satellite (LAGEOS) and LAser RElativity Satellite (LARES) 2 is made.

Keywords: classical general relativity; experimental studies of gravity; experimental tests of gravitational
theories; satellite orbits; harmonics of the gravity potential field

1. Introduction

For the first post-Newtonian (1pN) order, the General Theory of Relativity (GTR)
predicts, among other things, that the orbital motion of a test particle freely orbiting
a massive primary undergoes certain long-term, cumulative perturbations due to the
gravitomagnetic field of the central object caused by its spin angular momentum. This
is called the Lense–Thirring (LT) effect [1,2], although recent historical studies [3–5] have
pointed out that it would be more correct to rename it the Einstein–Thirring–Lense effect.
Essentially, it consists of variations in the orientation of both the orbital plane and in the
orbit within the orbital plane itself, which manifest themselves cumulatively revolution
after revolution. The shape and the size of the path are left unaffected, along with the
time of passage at the pericentre. The LT effect is quite small in ordinary weak-field and
slow-motion scenarios like in the surroundings of, say, the Earth or the Sun. Suffice it
to say that the perihelion of Mercury, whose orbital period amounts to about 88 days, is
shifted by the solar angular momentum by just 2 milliarcseconds per century (mas cty−1).
Moreover, the orbital plane of the LAser GEOdynamics Satellite (LAGEOS) [6], revolving
about the Earth in less than 4 h, precesses at a rate as little as a few tens of milliarcseconds
per year (mas yr−1) due to the terrestrial gravitomagnetic field. On the other hand, such a
general relativistic feature of motion should play a decisive role in the intricate dynamics
of accreting matter close to Kerr black holes [7]. For example, it should drive the relativistic
jets emanating from the surroundings of the supermassive black holes lurking in the active
nuclei of radio galaxies [8,9]. Furthermore, after an accretion disk is formed around a
supermassive black hole, initially with a strong misalignment with respect to the spin of
the latter, as a consequence of a tidal disruption event of a nearby passing star, the LT
effect causes the former to precess at early times before it finally aligns with the hole’s
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equatorial plane, ending the precession [10–12]. Finally, it is believed to cause quasi-
periodic oscillations in the X-ray flux of accreting compact objects [13,14]. In such extreme
natural laboratories, the expected magnitude of the aforementioned LT-driven effects is
large, and thus does not pose a challenge to their detection. Rather, it is the interpretation
of these phenomena that is difficult because of a lot competing effects whose physical
mechanisms are not yet understood with enough accuracy [14]. As a consequence, it is
of the utmost importance to have accurate and reliable tests of the LT effect performed
in better-known environments in order to extrapolate its validity to the aforementioned
strong field scenarios as well.

A wealth of gravitomagnetic effects other than the LT one exist for all scales [15–20].
Among them, the Pugh–Schiff [21,22] precession of the spin axes of four gyroscopes carried
onboard a drag-free spacecraft orbiting the spinning Earth was successfully measured
with a 19% accuracy [23,24] by the dedicated Gravity Probe B (GP-B) mission [25,26].
To date, it still remains the only undisputed test of a gravitomagnetic effect in the existing
peer-reviewed literature.

Returning to the LT effect, tests of it performed in astronomical scenarios in the solar
system are quite rare. At present, there are reports in the literature of experiments made
with Mercury in the Sun’s field [27–29] and with the Juno probe [30] around Jupiter [31,32].
Although none of them are in disagreement with the predictions of GTR, the reported
uncertainties and the correlations with other estimated parameters are large enough to
make the obtained results inconclusive.

As far as the terrestrial field is concerned, attempts have been underway for almost
30 years [33] to measure the LT orbital precessions using some geodetic satellites [34]
tracked with the Satellite Laser Ranging (SLR) technique [35]; for reviews, see, e.g., [36–38]
and references therein. Although the pericenter is also impacted by the gravitomag-
netic field, for 20 years now the focus has been on the nodes of some satellites of the
LAGEOS family [37,39,40]. Such a choice is due to the fact that the node of a satellite
is much less severely disturbed than the perigee by the competing non-gravitational
accelerations [41–45]. In 1976, Van Patten and Everitt [46,47] proposed looking at the sum
of the nodes of a pair of low-altitude, drag-free spacecraft moving in opposite directions
along ideally identical circular orbits passing through the Earth’s poles. Indeed, while the
LT precessions add up, the nominally much larger competing Newtonian node shifts due to
the Earth’s quadrupole mass moment, which would act as a major source of systematic bias,
cancelling out, in principle, such an orbital configuration. An essentially equivalent version
of such an idea, which its promoters intended to allow for a ≃ 1% measurement of the
LT effect, was put forth 10 years later by Ciufolini [48], who proposed the use of a pair of
passive SLR satellites following ideally identical non-polar orbits whose inclinations to the
Earth’s equator are displaced by 180◦. Indeed, such a scenario is conceptually equivalent to
the one by Van Patten and Everitt, apart from the technical details pertaining the tracking
method and the mechanism of compensation of the non-gravitational perturbations, since
the classical node precessions also cancel out in this case, while the LT ones add up. Ciu-
folini [48]’s idea came to fruition in the last years with the launch of the LAser RElativity
Satellite (LARES) 2 [49] in July 2022, joining LAGEOS, which had already been in orbit for
almost 50 years. Ciufolini and coworkers [49] claimed that it would be possible to perform
an LT test with such satellites that was accurate to ≃ 0.2%. Unfortunately, their actual
orbital configurations are just different enough to not allow the cancellation of the classical
precessions to a good enough level [50].

Here, the proposal of using a pair of counter-revolving satellites in polar orbits,
collectively dubbed POLAr RElativity Satellites (POLARES), is reexamined by showing that
it would ideally be possible to use not only the sum of their nodes but also the differences
in their inclinations to extract the LT effect, reducing the biasing impact of the Earth’s
oblateness to an acceptable level. In principle, should the orbits be sufficiently elliptical,
the difference of the perigees could also be adopted [51]. However, this would likely
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force the use of expensive drag-free technologies to counterbalance the non-gravitational
perturbations that the perigees of geodetic satellites are particularly sensitive to.

The following physical and orbital parameters will be used in the rest of the paper.
Among the constants of nature, G is the Newtonian constant of gravitation and c is the
speed of light in a vacuum. As far as the key physical parameters of the Earth are concerned,
µ := GM is the standard gravitational parameter given by the product of G times the mass
M, J = Jk̂ is the spin angular momentum, k̂ is the spin axis, R is the mean equatorial
radius, J2 is the first even zonal harmonic coefficient of degree ℓ = 2 and order m = 0
of the multipolar expansion of the geopotential accounting for deviations from spherical
symmetry, and ρatm is the atmospheric density at a height. The relevant orbital param-
eters characterizing the satellite’s motion with reference to some Earth-centered inertial
(ECI) reference frames are the semimajor axis a, the eccentricity e, the semilatus rectum
p := a(1 − e), the inclination of the orbital plane I, and the longitude of the ascending node
Ω. Furthermore, nK :=

√
µ/a3 is the Keplerian mean motion.

This paper is organized as follows. In Section 2, the general expressions for the
classical and relativistic rates of change of the inclination and the nodes, averaged over
one orbital revolution and valid for an arbitrary orientation of the primary’s spin axis, are
reviewed. Their consequences for counter-revolving satellites in polar orbits are discussed,
with particular emphasis on the difference of the inclinations. The impact of the orbital
injection errors on the difference of the inclinations and the sum of then nodes is the subject
of Section 3. A comparison with LAGEOS and LARES 2 is made in Section 4. Section 5
summarizes the findings and offers conclusions.

2. The General Expressions for the LT and J2 Precessions of the Orbital Plane and
Their Consequences

The spin axis of a celestial body in the solar system is usually parameterized as

k̂ = {cos α cos δ, sin α cos δ, sin δ} (1)

in terms of the right ascension (R.A.) α and declination (decl.) δ of its north pole of rotation
with reference to the Earth’s Mean Equator and Mean Equinox (MEME) at 12:00 Terrestrial
Time on 1 January 2000 (J2000.0). It should be noted that, in general, α, δ are time-dependent
because of possible gravitational pulls exerted by other more or less distant bodies; in the
case of Earth, they induce, e.g., lunisolar precession and nutation [52].

In view of the following developments, it is useful to introduce the unit vectors l̂, m̂, ĥ
defined as

l̂ = {cos Ω, sin Ω, 0}, (2)

m̂ = {− cos I sin Ω, cos I cos Ω, sin I}, (3)

ĥ = {sin I sin Ω,− sin I cos Ω, cos I} (4)

in such a way that l̂ × m̂ = ĥ holds. The unit vector l̂ is directed along the line of nodes
towards the ascending node, while ĥ is aligned with the satellite’s orbital angular momentum.

The LT and Newtonian precessions of the inclination I and node Ω, valid for an arbi-
trary orientation of the primary’s spin axis k̂ with respect to the inertial system adopted, are

İLT =
2GJ

c2a3(1 − e2)
3/2 k̂ · l̂ =

2GJ cos δ cos(α − Ω)

c2a3(1 − e2)
3/2 , (5)

İ J2 = −3
2

nK J2

(
R
p

)2(
k̂ · l̂

)(
k̂ · ĥ

)
=

3
2

nK J2

(
R
p

)2
cos δ cos(α − Ω)[− cos I sin δ + sin I cos δ sin(α − Ω)], (6)
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Ω̇LT =
2GJ csc I

c2a3(1 − e2)
3/2 k̂ · m̂ =

2GJ[sin δ + cos δ cot I sin(α − Ω)]

c2a3(1 − e2)
3/2 , (7)

Ω̇J2 = −3
2

nK J2

(
R
p

)2
csc I

(
k̂ · m̂

)(
k̂ · ĥ

)
=

=
3
2

nK J2

(
R
p

)2
sin I[− cot I sin δ + cos δ sin(α − Ω)][sin δ + cot I cos δ sin(α − Ω)]. (8)

Interestingly, the LT shift of the inclination given by Equation (5) does not depend on
the inclination itself.

From Equations (5) and (6), it turns out that, if the primary’s spin axis is aligned with
the reference z axis, corresponding to

δ = 90◦, (9)

both the LT and the classical rates of change of I vanish, contrary to the node shifts which
reduce to the well-known secular precessions

Ω̇LT =
2GJ

c2a3(1 − e2)
3/2 , (10)

Ω̇J2 = −3
2

nK J2

(
R
p

)2
cos I. (11)

widely used in the literature, as per Equations (7) and (8). The entire body of published
works on the SLR-based LT tests, including [48], rely upon Equations (10) and (11), while
the inclination has never been considered so far in this context.

If k̂ is generally not aligned with the reference z axis, the situation is as follows. If A
and B denote two satellites moving along orbits with ideally identical shapes and sizes,
the conditions to be met for them to move along opposite directions are

IB = 180◦ − IA, (12)

ΩB = ΩA + 180◦. (13)

Indeed, from Equation (4) and Equations (12) and (13), it turns out that

ĥB = −ĥA. (14)

Moreover, the following is also true:

l̂B = −l̂A, (15)

m̂B = m̂A, (16)

so that
l̂B × m̂B = m̂A × l̂A = −ĥA = ĥB. (17)

From Equations (5) and (6) and Equations (14)–(16), it follows that, for a given ori-
entation of k̂, the LT inclination rates are equal and opposite, while the classical ones are
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identical. Thus, in principle, one can look at the differences in the inclination rates of two
counter-orbiting satellites

İA − İB (18)

since the LT effect would be enhanced, while the competing classical shifts would exactly
cancel out.

Instead, the opposite holds for the node shifts: the LT rates are identical, while the
J2-driven ones are opposite. Incidentally, this proves that, independent of the actual value
of the inclination of the orbital planes and of the orientation of the primary’s spin axis
(the actual value of I did not enter the above reasonings), the counter-orbiting scenario is
conceptually equivalent to the LAGEOS–LARES 2 one provided by Ciufolini [48], relying
upon Equations (10) and (11), in the sense that for a pair of counter-revolving satellites, the
sums of the LT node rates also add up, while the Newtonian ones cancel out. However, it
should be stressed that the orbital geometry proposed by Ciufolini [48] is not supplemented
by any condition on the satellites’ nodes. Thus, for a general orientation of k̂, the sole
condition on the inclination given by Equation (12) does not allow the classical node
precessions to be cancelled out by summing them, not even in the ideal case of identical
semimajor axes and eccentricities. Indeed, by imposing only Equation (12), one can find(

k̂ · m̂A

)(
k̂ · ĥA

)
+

(
k̂ · m̂B

)(
k̂ · ĥB

)
= cos δ[sin(α − ΩA) + sin(α − ΩB)]

[
cos 2IA sin δ + cos δ cos

(
α − ΣΩ

2

)
sin 2IA sin

∆Ω
2

]
,

where

ΣΩ := ΩA + ΩB, (19)

∆Ω := ΩA − ΩB. (20)

If condition

I = 90◦, (21)

Ω = α, (22)

implying that the orbit is polar since Equations (21) and (22) yield

k̂ · ĥ = 0, (23)

which is also imposed, and then the LT inclination rate of Equation (5), which is independent
of I, does not vanish, while the classical one does, as per Equation (6).

Thus, if Equation (9) does not hold, a pair of counter-orbiting satellites moving along
identical polar orbits would allow, in principle, for the LT effect to also be measured using
the differences in their inclinations as well as the sum of their nodes.

Does all this have any practical relevance in the case of a possible mission around
the Earth? The answer is positive for the following reasons. The ECI, which is routinely
used in satellite data reductions, is the Geocentric Celestial Reference System (GCRS) [53].
It is essentially characterized by the MEME, and also dubbed as the J2000 system. More
precisely, the orientation of GCRS coincides by default with that of the International
Celestial Reference System (ICRS), as per Recommendation 2 of the IAU 2006 Resolution
B.2 of the International Astronomical Union (IAU) [53]. In turn, the fundamental plane
of ICRS is almost coincident with the Earth’s mean equator at J2000.0, up to a constant
offset known as frame bias, which is as little as a few tens milliarcseconds [54]. Thus,
the reference z axis of the ECI adopted is substantially aligned with the Earth’s spin axis at
J2000.0. The data analyses of any future satellite-based mission aimed at measuring the LT
effect will necessarily be carried out over a time span during which the terrestrial spin axis
will not coincide with the J2000 one due to, e.g., the lunisolar precession. Thus, the general
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expressions of Equations (5)–(8) are to be used, implying, among other things, that the LT
effect on the inclination can also be looked at; according to Equation (5), the further from
the year 2000 the mission launches or data analysis begins, the greater the LT effect on
inclination. In addition, the same considerations should also be extended to the current
LAGEOS–LARES 2 experiment, since the latter was launched about two years after J2000.0
and their data analyses will continue for several years.

3. The Impact of the Unavoidable Departures of the Actual Orbits from the Ideal Ones

The final orbital configurations of the satellites once launched would differ from
their idealized counterparts because of the unavoidable orbit injection errors. The scope
of this Section is to investigate their impact on the level of cancellation of the classical
perturbations due to the Earth’s oblateness, which can be actually achieved by taking the
difference of the inclinations (Section 3.1) and the sum of the nodes (Section 3.2) of the
two POLARES.

To this aim, the equations for the rates of change of I and Ω, averaged over one orbital
revolution, were simultaneously integrated with respect to time over a time span 10 years
long by inserting Equations (5)–(8) into their right-hand-sides in order to obtain time-
dependent shifts ∆I(t), ∆Ω(t) for both satellites. Furthermore, the secular trend and the
annual harmonic variations in J2, as modeled in the Earth’s gravity model ITSG-Grace2018,
retrievable at http://doi.org/10.5880/ICGEM.2018.003, were also taken into account. Fi-
nally, the precessional motion of the Earth’s spin axis was included according to ([55]
pp. 176–177), as well. The start date was assumed to be, say, 35 years after J2000.0, cor-
responding to a hypothetical launch in the next ten years. In each integration, the initial
values of the semimajor axes, the eccentricities, the nodes and the inclinations were modi-
fied from time to time by small quantities compared to their ideal counterparts in order to
simulate orbit injection errors.

3.1. The Difference in the Inclinations

Figure 1 shows the plots of the differences in the nominal integrated shifts of the incli-
nations induced by the LT effect and the Earth’s oblateness, obtained for an orbital height
of 2000 km for both spacecraft up to 4 km and almost-circular orbits whose eccentricities
differed by 0.00376. Equations (12) and (13) and Equations (21) and (22) were used for the
initial values I0, Ω0 of the inclinations and the nodes up to offsets of 10 mas in I0 and 10
arcseconds in Ω0. Furthermore, the plot of the absolute value of

I J2(t) :=
∆I J2

A (t)− ∆I J2
B (t)

∆ILT
A (t)− ∆ILT

B (t)
(24)

is also depicted. The ratio I J2 is a measure of the nominal systematic bias induced by the
Earth’s quadrupole mass moment on the expected LT signal; the larger it is, the greater the
indirect impact of the errors of the various parameters (G, J2, R,µ, J, aA,B, eA,B, IA,B, ΩA,B, . . .)
entering it.

It turns out that the expected LT signal is at the mas level. However, the J2 one is just
up to about 80 times larger. Such a feature is important since it allows the mismodeling in
Equation (24) induced by the several sources of errors affecting it to be made negligible.
By varying the offsets in the orbital elements, it can be found that differences in the values
of the semimajor axes and the eccentricities as large as those of the existing LAGEOS and
LARES 2 [49] are well tolerated. Discrepancies in the initial values of the nodes from
their ideal values of Equations (13) and (22) up to δΩ0 ≃ 0.1◦ would not yield a dramatic
increase of I J2 . As far as the inclinations are concerned, departures from the ideal values
of Equation (12) and Equation (21) up to δI ≃ 100 mas would not change the pattern of
Figure 1.

http://doi.org/10.5880/ICGEM.2018.003
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Figure 1. Differences in the nominal LT (upper panel) and J2 (middle panel) shifts of the inclinations,
in mas, of a pair of counter-orbiting satellites numerically integrated over 10 years. The temporal
variations of both k̂ ([55] pp. 176–177) and J2, modeled according to ITSG-Grace2018, were included
as well. An initial epoch 35 years after J2000.0 was assumed. An orbital height of 2000 km was
adopted for both satellites up to an offset of 10 km. The initial values of the inclinations differ from
Equations (12) and (13) and Equations (21) and (22) by 10 mas. The lower panel shows the plot of the
absolute value of Equation (24).

3.2. The Sum of the Nodes

By defining

N J2(t) :=
∆ΩJ2

A(t) + ∆ΩJ2
B (t)

∆ΩLT
A (t) + ∆ΩLT

B (t)
, (25)

it is possible to also repeat the previous analysis for the sum of the nodes of POLARES.
The results are shown in Figure 2.
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Figure 2. Sums of the nominal LT (upper panel) and J2 (middle panel) shifts of the nodes, in mas,
of a pair of counter-orbiting satellites numerically integrated over 10 years. The temporal varia-
tions of both k̂ ([55] pp. 176–177) and J2, modeled according to ITSG-Grace2018, were included
as well. An initial epoch 35 years after J2000.0 was assumed. An orbital height of 2000 km was
adopted for both satellites up to an offset of 10 km. The initial values of the inclinations differ from
Equations (12) and (13) and Equations (21) and (22) by 10 mas. The lower panel shows the plot of the
absolute value of Equation (25).

The combined LT signature reaches the arcsec level over 10 years, while the nominal
bias due to J2 is up to ≃ 90 times larger than the former over the same time span.

4. The LAGEOS–LARES 2 Case

Recently, Ciufolini and coworkers [56] claimed that LAGEOS and LARES 2 will allow
them to perform a test of the LT effect accurate to ≃ 0.2% by monitoring the sum of their
nodes, in accordance with the earlier proposal put forth by Ciufolini in [48].
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In fact, all of the analyses by Ciufolini and coworkers over the years have always
been based on Equations (9)–(11), which were not satisfied since the very epoch of the
LARES 2 launch occurred about 22 years after J2000.0. On the other hand, even if
Equations (10) and (11) could be applied to the LAGEOS–LARES 2 experiment, the present
author showed in [50] that the ambitious goal by Ciufolini and coworkers [56] could
not be met because of the consequences of the imperfect cancellation of the summed
J2-driven node precessions. By repeating the same analysis as in Section 3, one obtains
Figures 3 and 4, which clearly exemplify how it is not possible to achieve the accuracy goal
stated in [56], not even when looking at the difference of the inclinations.
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Figure 3. Differences in the nominal LT (upper panel) and J2 (middle panel) shifts of the inclinations,
in mas, of LAGEOS and LARES 2 numerically integrated over 10 years. The temporal variations of both
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k̂ ([55] pp. 176–177) and J2, modeled according to ITSG-Grace2018, were included as well. The launch
date of LARES 2 was assumed as the initial epoch. The initial values of the satellites’ semimajor axis,
eccentricity and inclination were retrieved from ([49] Table 1), while those of the nodes were calculated
with the WEB resource https://www.n2yo.com/(accessed on 1 November 2024). The lower panel
shows the plot of the absolute value of Equation (24).
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Figure 4. Sums of the nominal LT (upper panel) and J2 (middle panel) shifts of the nodes, in mas,
of LAGEOS and LARES 2 numerically integrated over 10 years. The temporal variations of both
k̂ ([55] pp. 176–177) and J2, modeled according to ITSG-Grace2018, were included as well. The launch
date of LARES 2 was assumed as the initial epoch. The initial values of the satellites’ semimajor axis,
eccentricity and inclination were retrieved from ([49] Table 1), while those of the nodes were calculated
with the WEB resource https://www.n2yo.com/(accessed on 1 November 2024). The lower panel
shows the plot of the absolute value of Equation (25).

https://www.n2yo.com/
https://www.n2yo.com/
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5. Summary and Conclusions

It has been shown that, for a general orientation of the primary’s spin axis with respect
to the inertial reference frame adopted, the Lense–Thirring rates of change of the orbital
inclinations of two satellites moving along ideally identical orbits in opposite directions are
equal and opposite, while those induced by the primary’s oblateness have the same sign.
However, the opposite happens for the nodes: the relativistic rates are the same, while
the classical ones differ by a minus sign. Thus, the difference of the inclinations and the
sum of the nodes of two counter-revolving spacecraft allow, in principle, for the aliasing
Newtonian shifts to be cancelled out due to the quadrupole mass moment of the central
body and for the gravitomagnetic ones to be enhanced.

The earlier proposal by Van Patten and Everitt—here branded POLARES—of using a
pair of drag-free spacecrafts moving in opposite directions along identical circular orbits
passing through the Earth’s poles is reexamined in view of the aforementioned results.
Indeed, they would be applicable to a hypothesized new mission since at the time of
its launch (still to come), the terrestrial spin axis would be displaced with respect to its
orientation at the epoch J2000.0, which is generally assumed as the reference z axis of the
geocentric inertial reference system usually adopted in actual satellites’ data reductions.

For an orbital altitude of, say, 2000 km, the combined relativistic inclination and node
shifts of POLARES would amount to a few milliarcseconds and a couple of arcseconds,
respectively, after 10 years from the launch. By assuming not-too-stringent orbital injection
errors, the nominal ratios of the signatures due to the Earth’s first even zonal harmonic to
the Lense–Thirring ones in both the difference of the inclinations and the sum of the nodes
can be kept at a level sufficiently low to allow the indirect consequences on them of errors
on the various physical and orbital parameters to be considered negligible.

This is not the case of the ongoing LAGEOS–LARES 2 experiment, both for the sum of
the nodes and the difference of the inclinations, because of the imperfect cancellation of the
classical orbital shifts for both the orbital elements.

Should the POLARES concept be implemented with passive, geodetic satellites of
LAGEOS-type, a detailed investigation of several non-gravitational accelerations affecting
them would be needed; this is outside the scope of the present paper.
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