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3 Departamento de Física, Universidade Estadual Paulista, UNESP, Av. Dr. Ariberto Pereira da Cunha, 333,

Guaratinguetá 12516-410, SP, Brazil; julio.hoff@unesp.br
4 Department of Physics, West University of Timis, oara, Bd. Vasile Pârvan 4, 300223 Timis, oara, România;

tudor.patuleanu@e-uvt.ro
5 Institut Denis Poisson UMR 7013, Université de Tours, 37200 Tours, France
* Correspondence: lehel.csillag@unitbv.ro

Abstract: Wigner’s classification has led to the insight that projective unitary representations play a
prominent role in quantum mechanics. The physics literature often states that the theory of projective
unitary representations can be reduced to the theory of ordinary unitary representations by enlarging
the group of physical symmetries. Nevertheless, the enlargement process is not always described
explicitly: it is unclear in which cases the enlargement has to be conducted on the universal cover, a
central extension, or a central extension of the universal cover. On the other hand, in the mathematical
literature, projective unitary representations have been extensively studied, and famous theorems
such as the theorems of Bargmann and Cassinelli have been achieved. The present article bridges
the two: we provide a precise, step-by-step guide on describing projective unitary representations
as unitary representations of the enlarged group. Particular focus is paid to the difference between
algebraic and topological obstructions. To build the bridge mentioned above, we present a detailed
review of the difference between group cohomology and Lie group cohomology. This culminates in
classifying Lie group central extensions by smooth cocycles around the identity. Finally, the take-away
message is a hands-on algorithm that takes the symmetry group of a given quantum theory as input
and provides the enlarged group as output. This algorithm is applied to several cases of physical
interest. We also briefly outline a generalization of Bargmann’s theory to time-dependent phases
using Hilbert bundles.

Keywords: projective representation; central extension; universal cover; lifting problem

1. Introduction

From a modern perspective, a complete particle characterization is given once one
constructs an irreducible representation of the Poincaré group. In this context, for instance,
the very concept of spin arises as a quantum label without which the spacetime relativistic
symmetries could not be entirely represented in the Hilbert space [1]. Although the
construction presented in [1] provides an exhaustive classification of the particle content
in Quantum Field Theory, it is worthwhile to mention that the concept of spin as intrinsic
angular momentum dates back to Uhlenbeck and Goudsmit in 1925.

A decade after the Stern–Gerlach experiment was conducted in 1922, spin was intro-
duced ad-hoc in non-relativistic quantum mechanics by Pauli [2] and it was believed that
the correct gyromagnetic ratio can only be explained using a relativistic theory [3]. While
it is true that the interaction between spin and orbital angular momentum can only be
described in a relativistic theory, as Dirac has shown in [4], spin already appears in the
non-relativistic setting. The key theoretical observation to which the concept of spin could
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be traced back to appears in the works of Wigner [1] and Bargmann [5], who pointed out
that in quantum mechanics, instead of using unitary representations of a group G, one has
to use unitary projective (or ray) representations. This is because any two quantum states
differing only by a unimodular phase lead to the same probabilities, as the probabilities
are the measurable quantities in quantum mechanics. Hence, (pure) quantum states are
rays in a projective Hilbert space instead of elements of a Hilbert space. The symmetries
of quantum systems have, therefore, to be implemented as bijections on the projective
Hilbert space, which preserve the transition probabilities. Wigner’s theorem [6–11] shows
that every such map can be implemented in the Hilbert space as a unitary or anti-unitary
operator up to a phase.

Phases appearing in projective representations are well known to depend on the
group element being represented and not dependent, in general, on the physical state
upon which the representation takes place. However, it has been argued that time (or
even spacetime) phase dependence may connect projective representations with precise
experiments [12–15]. These experiments have in common that the gravitational field acts
on the phase of a wave function. The relation between time or spacetime phase dependence
and gauge freedom is widely understood. It is, therefore, only natural to generalize the
projective representation theory to allow for the inclusion of a spacetime dependence in
the phase. This generalization was performed in [16], and we describe its main aspects in
the Appendix A. As we shall see, it brings interesting aspects of generalization and, at the
same time, fits the main line of presentation for this work since it falls within the algorithm
we construct along the paper.

Being motivated by the foundational aspects of non-relativistic quantum mechanics,
Lévy-Leblond [17,18] has extensively studied the unitary ray representations of the Galilei
group. However, it is important to note that he missed one representation, as pointed
out recently by O’Farrill and his collaborators [19]. In a seminal paper on non-relativistic
wave-equations [18], Lévy-Leblond also discovered a Galilei-invariant wave equation,
through which the correct gyromagnetic ratio could be explained from first principles
within a non-relativistic theory. Earlier attempts at formulating Galilei-invariant equations
are also present in the literature [20,21], although they are not completely satisfactory.
The equation presented in [20] is not invariant under the full Galilean group, only under
one of its subgroups, which the authors call the static Galilei group. For a detailed review
of the difference between the Pauli and the Lévy-Leblond equations, see [22].

Outside the Galilean group, several other possible kinematic groups exist for non-
relativistic theories, such as the Carroll or Bargmann groups. A complete classification can
be found in [23]. Although this classification is quite old, there is a recent growing interest
in studying non-relativistic theories motivated by non-relativistic holography [24,25], soft
theorems [26] and Bondi–Metzner–Sachs (BMS) symmetries [27], non-relativistic string the-
ories [28,29] and Carrollian physics [30,31], which allows for understanding the symmetries
of null hypersurfaces [32]. For a detailed review of non-Lorentzian physics, consult [33].

The underlying mathematical concept, which treats both the Carroll and Bargmann
groups on the same footing, is that of a central extension [34]. Historically, central extensions
from a physical perspective were first studied in quantum mechanics in the context of
projective representations and geometric quantization [35], but also modern treatments
of symmetry actions in quantum mechanics are present in the literature [36]. However,
the latter might be quite abstract for a physicist. From a physicist’s perspective, projective
representations are briefly described in Weinberg’s modern textbook on quantum field
theory [37]. Therein, at the level of rigor of a physicist, it is pointed out that for any
symmetry group, (Lie group) G, one can enlarge G to Genl , such that the projective unitary
representations of G are replaced with the unitary representations of Genl . Weinberg also
introduces central charges, which essentially are generators of the centrally extended Lie
algebra associated with Genl .

Motivated by the recently growing interest in non-relativistic kinematical symmetry
groups in both classical and quantum physics and the interaction between anomalies and
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central extensions [38], the goal of the present review article is to give a concrete algorithm
of finding Genl as present in Weinberg’s textbook [37], using the mathematical properties of
the Lie group G in question, based on previous results already presented in the literature,
making all the assumptions explicit. In particular, we would like to be as precise as possible
and build a bridge between the mathematical and physical literature on this topic, opening
the possibility for future productive collaborations between mathematicians and physicists.
Each mathematical theorem presented will be exemplified through direct applications
in physics.

The paper is structured as follows: we start with an introduction and a short recapitu-
lation of states and observables in quantum mechanics to place both mathematicians and
physicists on the same foot and level of rigor. Symmetries á la Wigner are presented, then
the central notions of (projective) unitary representations are defined, considering strict
topological conditions. In Section 2, we turn our attention to the lifting projective represen-
tations of a Lie group G to ordinary representations of an enlarged group, as it turns out
that projective representations cannot always be lifted to ordinary representations of the
same group. We classify the obstructions from an algebraic and a topological perspective.
As projective representations are in one-to-one correspondence with U(1) group extensions
and cohomology theory, we give a detailed exposition on Lie group cohomology, which
is only briefly presented in the literature from a completely different perspective [39] or
for infinite-dimensional Banach Lie groups [40]. In Section 3, we present the algorithm
mentioned above, which determines the enlarged group Genl from the group G, given some
algebraic and topological conditions. The algorithm is concretely applied to three physically
interesting cases: the Galilei, Poincaré, and Translation groups. The latter is closely related
to the Heisenberg group and the Stone–von-Neumann uniqueness theorem [41–43], which
guarantees the equivalence between wave and matrix mechanics. We conclude the review
in Section 4 by summarizing our results and providing an outlook for further research
possibilities. To guarantee the paper’s sequential readability, we leave an exposition of
the main lines upon which Bargmann’s theory was generalized to incorporate phase-time
dependence in projective representations in the Appendix A.

Mathematical Framework of Quantum Mechanics

In this subsection, we set up the precise mathematical framework that we will use to
bring the physicist and mathematician readers to the same page1.

First, we remark that even though the wave function (or a vector in the Hilbert space) is
usually considered a state, this definition is not entirely satisfactory. In experiments, we can
only measure the probability densities, namely |ψ|2. Therefore, a total global phase cannot
be measured, and we must consider elements of the Projective Hilbert space. In other
words, we have to describe the states of a quantum system by trace-class linear maps.

Definition 1. For every quantum system, there is an associated complex, separable Hilbert space
(H, ⟨·, ·⟩). Moreover,

(i) The states of the quantum system are all trace-class linear maps

ρ : H → H, for which tr(ρ) = 1.

Furthermore, a state ρ is called pure if

∃ψ ∈ H : ∀Ψ ∈ H : ρ(Ψ) =
⟨ψ, Ψ⟩
⟨ψ, ψ⟩ ψ.

If a state is not pure, it is called mixed.
(ii) The observables of the quantum system are all densely defined self-adjoint operators

A : DA → H.
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Since in Quantum Mechanics we can only measure transition probabilities, which are
not affected by an overall global phase in the wave function, states are rays in the projective
space Ĥ := (H \ {0})/ ∼2.

Definition 2. The function

(·, ·) : Ĥ × Ĥ → R,(
φ̂, ψ̂

)
7→

(
φ̂, ψ̂

)
= |⟨φ,ψ⟩|2

||φ||2||ψ||2

is called the transition probability.

Proposition 1. Let (H, ⟨·, ·⟩) be a complex Hilbert space and let T denote the set of all trace-class
positive linear operators with trace equal to one that satisfy

∃ψ ∈ H : ∀α ∈ H : ρ(α) =
⟨ψ, α⟩
⟨ψ, ψ⟩ψ.

In other words T denotes the set of pure states:

T = {ρ : H → H|ρ is a pure state}.

Then, there exists a bijection between T and Ĥ.

Proof. Let ψ̂ ∈ Ĥ be fixed and define the operator associated to ψ̂ as follows

ρψ̂ : H → H, α 7→ ρψ̂(α) :=
⟨ψ, α⟩
⟨ψ, ψ⟩ψ.

The defined operator is well-defined, since if ψ̂ = ϕ̂, then ψ = µ · ϕ and we obtain

ρψ̂(α) =
⟨ψ, α⟩
⟨ψ, ψ⟩ψ =

⟨µ · ϕ, α⟩
⟨µ · ϕ, µ · ϕ⟩µ · ϕ =

µ∗⟨ϕ, α⟩
µ∗µ⟨ϕ, ϕ⟩µ · ϕ =

⟨ϕ, α⟩
⟨ϕ, ϕ⟩ϕ = ρϕ̂(α).

Moreover, the trace of the operator ρψ̂ can be computed as

Tr(ρψ̂) =
dim(H)

∑
j=1

⟨ej, ρψ̂(ej)⟩ =
dim(H)

∑
j=1

⟨ψ, ej⟩
⟨ψ, ψ⟩ ⟨ej, ψ⟩ =

dim(H)

∑
j=1

|⟨ej, ψ⟩|2

⟨ψ, ψ⟩ =
⟨ψ, ψ⟩
⟨ψ, ψ⟩ = 1.

In the last step, we used the Parseval identity. The operator ρψ̂ is also positive, as can
be seen from

⟨α, ρψ̂(α)⟩ =
⟨ψ, α⟩
⟨ψ, ψ⟩ ⟨α, ψ⟩ = |⟨ψ, α⟩|2

⟨ψ, ψ⟩ ≥ 0.

The above discussion provides a well-defined map

A : Ĥ → T, ψ̂ 7→ A
(
ψ̂
)

:= ρψ̂.

We will now prove that A is a bijection in two steps:

1. A is injective: let ϕ, ψ ∈ H such that A
(
ϕ̂
)
= A

(
ψ̂
)
. As we have shown that A is

well-defined, this implies

∀α ∈ H : ρψ̂(α) = ρϕ̂(α).

Since the above equality holds for all α, it holds, in particular, for ϕ. By explicitly
evaluating, we obtain

⟨ψ, ϕ⟩
⟨ψ, ψ⟩ψ =

⟨ϕ, ϕ⟩
⟨ϕ, ϕ⟩ϕ = ϕ.



Universe 2024, 10, 448 5 of 21

Letting µ = ⟨ψ,ϕ⟩
⟨ψ,ψ⟩ , it follows that {ψ, ϕ} is a linearly dependent set and this implies

that ψ̂ = ϕ̂.
2. A is surjective: let ρ ∈ T be given. By the definition of T, we have

∃ψ ∈ H, ∀α ∈ H : ρ(α) =
⟨ψ, α⟩
⟨ψ, ψ⟩ψ.

Now we must find ϕ̂ ∈ Ĥ, such that A
(
ϕ̂
)
= ρ. We claim that ϕ := ψ

⟨ψ,ψ⟩ satisfies this
condition. Indeed

(
A
(
ϕ̂
))
(α) =

(
A

(
ψ̂

⟨ψ, ψ⟩

))
(α) = ρ

ψ̂
⟨ψ,ψ⟩

(α)

=
⟨ ψ
⟨ψ,ψ⟩ , α⟩

⟨ ψ
⟨ψ,ψ⟩ , ψ

⟨ψ,ψ⟩ ⟩
ψ

⟨ψ, ψ⟩ =

1
⟨ψ,ψ⟩ ⟨ψ, α⟩

1
⟨ψ,ψ⟩

1
⟨ψ,ψ⟩ ⟨ψ, ψ⟩

ψ

⟨ψ, ψ⟩

=

1
⟨ψ,ψ⟩ ⟨ψ, α⟩

1
⟨ψ,ψ⟩

ψ

⟨ψ, ψ⟩ =
⟨ψ, α⟩
⟨ψ, ψ⟩ψ = ρ(α).

Remark 1. In the physics literature, the states are often associated with normalized elements of the
Hilbert space. The following proposition gives the precise relation between states and normalized
elements of H.

Proposition 2. Let (H, ⟨·, ·⟩) be a complex separable Hilbert space and denote with P′(H) the set
of normalized elements of H, which are identified through x ∼ y ⇐⇒ ∃λ ∈ C∗ : x = λy, i.e.,

P′(H) := {ψ ∈ H|⟨ψ, ψ⟩ = 1}/ ∼ .

Then, there exists a bijection
B : P′(H) → Ĥ.

Proof. The proof is constructive. We construct the map B as

B : P′(H) → Ĥ, [x]1 7→ B([x]1) := x̂,

where [x]1 is the equivalence class of a unit vector x in P′(H), while x̂ is its equivalence
class in Ĥ. The map B is well-defined: suppose [x1]1 = [x2]1. This means, that there exists
λ ∈ C∗, |λ| = 1, such that x1 = λ · x2. In this case, we have the following:

B([x1]1) = x̂1 = λ̂ · x2 = x̂2 = B([x2]1).

We now show that B is a bijection in two steps:

1. B is injective: suppose x1, x2 are unit vectors, i.e., elements of P′(H) such that
B([x1]1) = B([x2]1). By the definition of B this gives

x̂1 = x̂2.

Then, by the definition of equivalence in Ĥ, there exists a nonzero complex number
λ ∈ C∗ such that x1 = λx2. As x1, x2 are unit vectors, this can be satisfied if and only
if |λ| = 1, which implies that x1, x2 satisfy the equivalence relation on P′(H) and thus
[x1]1 = [x2]1.

2. B is surjective: Let x̂ ∈ Ĥ. We want to find a unit vector y, such that B([y]1) = x̂. Note
that the zero vector is not an element of Ĥ by the very definition of the projective
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Hilbert space. Finally, define y := x
⟨x,x⟩ . We claim that this does the job. Indeed, it can

be readily verified that

B([y]1) =
x̂

⟨x, x⟩ = x̂.

From now on, we will consider states as rays, i.e., as elements in Ĥ. A transformation
of a physical system is a transformation of states, hence mathematically a transformation,
not of H, but of Ĥ. Not all transformations are symmetries, only those that preserve the
transition probabilities. This leads to the following natural definition due to Wigner3:

Definition 3. A bijective map S : Ĥ → Ĥ with the property

|⟨Sψ, Sϕ⟩|2
||Sψ||2||Sϕ||2 =

|⟨ψ, ϕ⟩|2
||ψ||2||ϕ||2

is called a symmetry or projective transformation of the quantum mechanical system (H, ⟨·, ·⟩).
The automorphism group Aut

(
Ĥ
)

of projective transformations is defined as

Aut
(
Ĥ
)

:= {S : Ĥ → Ĥ|S is a symmetry}.

We now present the theorem of Wigner, which relates symmetries to unitary and
anti-unitary operators on H.

Theorem 1 (Wigner). Let the set of unitary or anti-unitary operators on a Hilbert space H be
denoted as

Ũ(H) := {U : H → H|U is unitary or anti-unitary}.

Then, the map

Π̂ : Ũ → Aut
(
Ĥ
)

, (Π̂(U))
(
ψ̂
)

:= Û(ψ), ψ ∈ H

is a surjective homomorphism with ker
(

Π̂
)
= U(1).

The abstract formulation of Wigner’s theorem leads to two physically interesting
corollaries:

1. Every symmetry S ∈ Aut
(
Ĥ
)

comes from either a unitary or an anti-unitary operator

on H; this follows from the surjectivity of Π̂;
2. If two unitary transformations U1, U2 give rise to the same projective transformation

Π̂(U1) = Π̂(U2), then they differ by a phase, i.e., U1 = eitU2 for some t ∈ R; this
follows from the kernel of Π̂ being U(1).

Remark 2. It is important to mention that several generalizations of Wigner’s theorem are already
present in the literature. For example, a non-bijective version is presented in [44]. Although not
a generalization, the main line of the proof presented in [45] could be carried over also to non-
separable Hilbert spaces. A generalization to Grassmann spaces can be found in [46]. For further
generalizations and a detailed review, consult [47].

Note that Wigner’s theorem is a result of individual elements of Aut
(
Ĥ
)

. The re-
mainder of this article is devoted to the study of not individual symmetries but symmetry
groups. As we study connected Lie groups G, only considering symmetries arising from
unitary operators will suffice [48]. They are a subgroup of all the symmetries Aut

(
Ĥ
)

.
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Definition 4. Let (H, ⟨·, ·⟩) be a complex separable Hilbert space, Ĥ be the projective Hilbert
space and

π̂ : U(H) → Aut
(
Ĥ
)

.

The group
PU(H) := {π̂(U)|U ∈ U(H)}

is called the projective unitary group of H.

Remark 3. Note that the map π̂ is exactly the map Π̂|U(H), that is, it is the map defined in
Wigner’s theorem restricted to the unitary operators. Also, by constructing equivalence classes of
unitary operators, one can show that PU(H) = U(H)/U(1).

Since we want to consider symmetry groups G, and not just individual symmetries,
we introduce the notion of G-symmetry.

Definition 5. Let (H, ⟨·, ·⟩) be the Hilbert space associated with a quantum system and let G
be a connected Lie group. A G-symmetry of a quantum system or a projective unitary
representation of G is a continuous homomorphism

τ : G → PU(H),

where by continuity we mean with respect to the strong operator topology.

Similarly, we introduce the notion of unitary representation of a connected Lie group G.

Definition 6. A unitary representation of a connected Lie group G on a Hilbert space H is a
continuous group homomorphism

R : G → U(H),

where by continuity we mean with respect to the strong operator topology.

We shall end this section with a relevant observation concerning U(H). It is stated
in the literature that U(H) is not a topological group with respect to the strong operator
topology [49,50]. However, a rigorous proof of this statement is not presented. By checking
the continuity of the group operations explicitly, Schottenloher [51] proves the contrary,
namely that U(H) is a topological group. For other topological aspects of U(H), see [52].

2. The Lifting Problem and Its Cohomological Ramifications

This section explains how to lift projective unitary representations of a connected Lie
group G to unitary representations of G. First, we define a lift precisely in the context
analyzed here.

Definition 7. Given a projective unitary representation τ : G → PU(H) of a connected Lie group
G, a unitary representation R : G → U(H) is called a lift of τ if the following diagram commutes:

G U(H)

PU(H),

R

τ π̂

which means that4 τ = π̂ ◦ R.
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Remark 4. The above diagram can be completed by the short exact sequence {e} → U(1) →
U(H) → PU(H) → {e} to obtain the following commutative diagram:

G

{e} U(1) U(H) PU(H) {e}.
π̂

R
τ

In physics, we would like to reduce the theory of unitary projective representations to
the theory of unitary representations, as in most cases we work with the Hilbert space H
in practice, not with Ĥ. Besides, projective representations may be challenging to handle.
The problem with such a reduction is that such a lift does not generally exist for a connected
Lie group G. There are two obstructions:

(i) topological: when the group G is not simply connected;
(ii) algebraic: when the Lie algebra g of G admits central extensions.

However, the projective unitary representations of G are in one-to-one correspondence
with unitary representations of an enlarged group Genl . What the enlarged group actually
is depends on the obstruction:

(i) if there is neither topological nor algebraic obstruction, i.e.,

π1(G) = {e} and H2(g,R) = {e},

then the enlarged group is identical to the group itself

Genl = G,

which means that every projective unitary representation of G can be lifted to a unitary
representation of G;

(ii) if there is topological obstruction but no algebraic obstruction, i.e.,

π1(G) ̸= {e} and H2(g,R) = {e},

then the enlarged group is the universal covering group of G

Genl = G̃;

(iii) if there is no topological obstruction, but there is algebraic obstruction, i.e.,

π1(G) = {e} and H2(g,R) ̸= {e},

then the enlarged group is a central extension of the group G;
(iv) if there is both topological and algebraic obstruction, i.e.,

π1(G) ̸= {e} and H2(g,R) ̸= {e},

then the enlarged group is a central extension of the universal covering group G̃ of G.

The enlarged group Genl appearing in cases (ii)–(iv) is a central extension of G in
either case, but not in the sense of the algebraic theory of groups, but rather in the Lie
theoretic sense. The cases (ii) and (iii) are relatively simple to handle: (ii) can be seen as a
π1(G), whereas case (iii) can be seen as a U(1)-extension of G. The case (iv) is more subtle
and will be discussed later.

Remark 5. Note that in the case of algebraic obstructions, we have a non-trivial Lie algebra
cohomology, which is equivalent to a central extension of the Lie algebra g of G by Rn for some
n ∈ N. While it is clear that a Lie group extension of G by U(1) gives rise to a central extension of
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g by R, the converse, in general, is not true. This is why topological obstructions appear, as we will
clarify in the following.

To the best of our knowledge, the literature on Lie group cohomology and central
extensions suffers from a somewhat laconism, which motivates a detailed discussion of Lie
group extensions.

Definition 8. Let G be a connected Lie group and A be a connected Abelian Lie group, a closed
subgroup of H. A central extension of G by A is a short exact sequence of Lie groups

{e} A H G {e},i p

i.e., the map i is an injective Lie group homomorphism and the map p is a surjective Lie group
homomorphism, such that the image of i is contained in the center of H:

im(i) ⊆ Z(H), where Z(H) = {z ∈ G|∀g ∈ G : zg = gz}.

Two central extensions H1 and H2 of G by A are called equivalent if there exists a Lie group
isomorphism ϕ : H1 → H2 such that the following diagram commutes:

H1

{e} A G {e}

H2

i1

i2

ϕ

p1

p2

Clearly, being equivalent as central extensions defines an equivalence relation on the
set of all central extensions. We denote by ExtLie(G, A) the set of all inequivalent central
extensions of G by A. It is well known that if we forget the Lie group structure, the central
extensions are classified by the second cohomology group:

Ext(G, A) ∼= H2
gr(G, A).

The natural extension of the above to Lie groups would be to consider only those
cocycles in H2

gr(G, A), which are smooth5:

H2
s,gr(G, A) := {ω : G × G → A|ω is a cocycle and it is smooth}/ ∼ .

We will now show that this naive approach does not classify all Lie group extensions.

Lemma 1. Let G, H be connected finite-dimensional Lie groups and A be a connected finite-
dimensional Abelian Lie group. Then, the following are equivalent:

(i)

{e} A H G {e}i p

is a central extension of G by A;
(ii) H → G is a principal A-bundle, such that i(A) ⊆ Z(H).

Proof. We prove this by double implication:

1. “⇒”: Suppose the sequence given in the Lemma is a central extension of G by A:
as A is closed, by Cartan’s closed subgroup theorem it follows that i is a Lie group
embedding. By the homogeneous space theorem, H becomes a principal A-bundle.
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2. “⇐”: Suppose H → G is a principal A-bundle, such that i(A) ⊆ Z(H). By definition,
H → G is a surjection, and as the local trivializations restrict to diffeomorphisms on
fibers, it follows that A → E is a Lie group injection. By assumption i(A) ⊆ Z(H),
which shows that the sequence

{e} A H G {e}i p

is a central extension of G by A.

Corollary 1. H2
s,gr(G, A) does not classify all central extensions of G by A in the Lie group

theoretical sense, but only the ones that admit a global smooth section (i.e., a smooth map s : G → H
such that p ◦ s = idG), which are exactly the trivial extensions. A fortiori, H2

s,gr(G, A) = [0].

Proof. The proof follows the same steps as in the algebraic case (see [53]). We choose a
section s : G → H for the central extensions that is not generally a group homomorphism
but is of the form

s(g) · s(h) = f (g, h) · s(gh)

for some element f (g, h) ∈ A. This defines a map

f : G × G → A
(g, h) 7→ f (g, h) ≡ s(g) · s(h) · s(gh)−1

that can be shown to be a 2-cocycle. One associates an equivalence class of central extensions
with an element [ f ] ∈ H2

s,gr(G, A). Since the group H2
s,gr(G, A) contains only smooth 2-

cocycles, the map s of the central extension must also be smooth. By Lemma 1, it follows
that the sections of the central extensions can be seen as sections of the principal A-bundle
H → G. As we required the map s to be globally smooth, it follows that the principal
A-bundle is the trivial bundle. Equivalently, this means that the sequence splits, which
implies that [ f ] is cohomologous to [0], so H2

s,gr(G, A) = [0]. Therefore, H2
s,gr(G, A) = [0]

classifies Lie group extensions that admit a global smooth section, i.e., the topologically
trivial extensions.

A quite general class of examples where the central extension does not admit a global
section occurs when there is a topological obstruction. This happens for Lie groups G that
are not simply connected.

Example 1.

{e} π1(G) G̃ G {e}i p

This is a central extension of G by π1(G), but it does not admit a global smooth section
unless G is simply connected, as the sequence does not split. Physically relevant examples include
the following:

1. The rotation group: G = SO(3), in which case π1(G) = {1,−1} and G̃ = SU(2);
2. The four-dimensional proper ortochronous Lorentz group: G = SO+(1, 3), in which case

π1(G) = {1,−1} and G̃ = SL(2,C).
3. The metaplectic group for a symplectic vector space (V, ω): G = Sp(V, ω), similarly

π1(G) = {−1, 1} and G̃ = Mp(V, ω). This example is relevant in half-form correction in
the context of geometric quantization [54,55].

The proper notion to classify Lie group extensions of G by A is the cohomology theory
based on cocycles that are smooth around the identity:

H2
es,gr(G, A) := {ω : G × G → A|ω is a cocycle, smooth around e ∈ G}/ ∼ .
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Proposition 3. There exists a group isomorphism between ExtLie(G, A) and H2
es,gr(G, A).

Proof. This is an immediate corollary of Lemma 1. Everything goes the same way as in
the algebraic group case; however, now we are able to define a locally smooth section
G → H always, as H → G is a principal A-bundle, which admits a locally smooth section
around e.

Definition 9. Let a be an Abelian Lie algebra and g another Lie algebra. A central extension of g
by a is a short exact sequence of Lie algebra homomorphisms

0 a e g 0ι π

so that [a, e] = 0.

Note that a central extension of a Lie group G by A always induces a central Lie
algebra extension of g by a as follows:

0 a h g 0.i p

The converse, in general, does not hold. A sufficient condition for the converse to hold
is for G to be simply connected. In this case, a central extension of g gives rise to a central
extension of G. However, this condition is not necessary; the most general result in the
reverse direction is due to Neeb [56].

Theorem 2 (Neeb). Let G, H be connected finite-dimensional Lie groups and A be a finite-
dimensional connected Lie group and denote by g, h, a the corresponding Lie algebras. Consider the
bracket on h viewed as g×R to be defined by

[(X, t), (X′, t′)] := ([X, X′], ω([X, X′])),

where ω ∈ ∧2(g∗) is a cocycle defining the Lie algebra extension of g by a. Denote by Ω the
corresponding left-invariant 2-form on G:

Ω(g)(dλg({e})v, dλg({e})w) := ω(v, w), v, w ∈ g ∼= T{e}G, λg(x) := gx.

Furthermore, denote by ρg : x 7→ xg the right translation and similarly let Xr(g) be the
right-invariant vector field on G given by Xr(g) = dρg(1).X for g ∈ G. Then, for a Lie algebra
central extension

0 a h g 0.i p

A Lie group central extension

{e} A H G {e}.i p

exists if for each X ∈ g the 1-form i(Xr)Ω on G is exact.

Nevertheless, even if the criteria for Neeb’s theorem are not satisfied, Lie algebra
extensions give rise to Lie group extensions of the universal cover, which is a consequence
of the following theorem [57–59]:

Theorem 3. If G is a simply connected Lie group, then the Lie group cohomology H2
es,gr(G, U(1))

is isomorphic to the Lie algebra cohomology H2(g,R).

We now have the tools to tackle cases (i)–(iv), which we will formulate as proper
mathematical theorems. The first and last cases are the well-known theorems due to
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Bargmann and Cassinelli, which we will not prove. Still, we provide an alternative proof
for (ii) without using the most general result due to Cassinelli (iv), but using Theorem 3.

Theorem 4 (Bargmann). Let G be a connected Lie group which satisfies

π1(G) = {e} and H2(g,R) = {e}.

Then, every projective representation τ : G → PU(H) has a lift to a unitary representation
R : G → U(H), that is, for every continuous homomorphism τ : G → PU(H) there is a
continuous homomorphism R : G → U(H) with τ = π̂ ◦ R.

Remark 6. Let us note that historically, Bargmann, in his seminal paper [5], did not use the lan-
guage of Lie algebra cohomology. The modern formulation of his theorem, together with a simplified
proof that U(H) is a topological group, can be found in a recent writing of Schottenloher [60].
See [61] for a proof without multipliers.

Theorem 5. Let G be a connected Lie group, which satisfies

π1(G) ̸= {e} and H2(g,R) = {e}. (1)

Then, to every projective representation τ : G → PU(H) there corresponds a unitary
representation R : G̃ → U(H), where G̃ is the universal cover of G.

Proof. Since G̃ is the universal cover of G, they are locally isomorphic, which implies that

H2(g̃,R) = H2(g,R) = {e}. (2)

As G̃ is simply connected, by Theorem 3, we obtain that

H2
es,gr

(
G̃, U(1)

)
∼= H2(g̃,R). (3)

Relations (2) and (3) immediately yield

H2
es,gr

(
G̃, U(1)

)
∼= {e}. (4)

Thus, the projective representations are all equivalent to the trivial class in H2
es,gr

(
G̃, U(1)

)
,

which makes the sequence split, making them ordinary representations.

Example 2. A broad class of examples can be obtained from the Whitehead Lemma, which states
that every real semisimple Lie algebra has H2(g,R) = {e}. Thus, we can take any not simply
connected Lie group whose Lie algebra is semisimple. Physically relevant examples within this class
include SO(n) for n ≥ 3 and the Lorentz group.

Remark 7. We would like to point out that the proper ortochronous Poincaré group also falls in
the previous class of examples, but not due to the Whitehead Lemma, as the Poincaré algebra is
not semisimple.

Theorem 6. Let G be a connected Lie group, which satisfies

π1(G) = {e} and H2(g,R) ̸= {e}. (5)

Then, to every projective representation τ : G → PU(H) there corresponds a unitary
representation R : Genl → U(H), where Genl is a central extension of G by Rn for some n ∈ N.
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Example 3. By an argument involving the Chevalley–Eilenberg resolution, one can show that
the only Abelian Lie groups that fall in this class are Rn for n ≥ 2. These are quite important in
quantum mechanics and closely related to the Heisenberg group.

Finally, the most general case, when the group is neither simply connected nor has
vanishing Lie algebra cohomology, is due to Cassinelli. For a proof, consult [36].

Theorem 7 (Cassinelli). Let G be a connected Lie group, which satisfies

π1(G) ̸= {e} and H2(g,R) ̸= {e}. (6)

Then, to every projective representation T : G → PU(H) there corresponds a unitary
representation R : Genl → U(H), where Genl is a central extension of the universal cover G̃ of G
by Rn for some n ∈ N.

Remark 8. The central extension of G̃ by Rn appearing in the previous theorem is often called
the universal central extension of G. Universal central extensions for perfect groups have been
extensively studied in [62].

Example 4. Any not simply connected Abelian Lie group of a dimension greater than two falls
within this class. Tori G = Rn/Zn, n ≥ 2 is such an example. However, a physically more relevant
example is the Galilei group, which admits a non-trivial central extension by R.

3. Enlargement of Symmetry Groups in Physics: A Practitioner’s Guide

This section provides a concrete algorithm for finding the enlarged symmetry group of
a quantum mechanical system, with a particular focus on the symmetry groups appearing
in physics.

This algorithm is essentially based on the previously presented theorems. Its key
ingredients are the topology of the Lie group in question, i.e., π1(G) and its second Lie
algebra cohomology H2(g,R). The procedure of finding the enlarged group Genl based on
the data

{
π1(G), H2(g,R)

}
is depicted in Figure 1, where G⋆ denotes an Rn extension of G,

which is formally defined as a pair (G⋆ := Rn × G, ·) with the operation

(x, g1) · (y, g2) := (x + y + (ξ1(g1, g2), ξ2(g1, g2), . . . , ξn(g1, g2)), g1 ◦ g2), (7)

where ξ1, . . . , ξn ∈ Z2
es(G,R) are R-valued cocycles, which are smooth around the identity.

Similarly,
(

G̃
)⋆

denotes an Rn extension of the universal cover G̃ of G. Formally, it is a pair((
G̃
)⋆

, ·
)

with the same operation as before.
This procedure can be readily applied to the concrete physical situations at hand.

For example, in the case of the rotation group SO(3), we have the following:

π1(SO(3)) = Z2, H2(so(3),R) = 0. (8)

It immediately follows, by simply chasing the diagram from Figure 1, that the projec-
tive representations of SO(3) can be lifted to representations of SU(2).

Although this result is well-known, viewing it from this perspective could be illumi-
nating. Moreover, it sheds light on the appearance of spin in quantum mechanics simply
from rotational symmetry without the need for any relativistic effect. Note, however, that a
relativistic quantum theory is necessary for the correct description of spin-orbit coupling,
for instance.

In the following, we describe three physically relevant groups for non-relativistic and
relativistic quantum mechanics and their projective representations. Essentially, these will
be simple applications of the provided algorithm.



Universe 2024, 10, 448 14 of 21

Figure 1. Schematic illustration of the procedure that determines the enlarged symmetry group Genl
given the data (G, π1(G), H2(g,R)).

3.1. The Galilei Group

The Galilei group plays a central role in non-relativistic quantum mechanics. In the
spirit of Wigner, a non-relativistic particle could be defined as a projective unitary represen-
tation of the Galilei group Gal. Formally, this group is given by

Gal = R4 ⋊
(
R3 ⋊ SO(3)

)
. (9)

It is readily seen that π1(Gal) ̸= {e}, since SO(3) appears in the semidirect product.
The universal cover of Gal can be straightforwardly constructed as

G̃al = R4 ⋊
(
R3 ⋊ SU(2)

)
. (10)

It can be shown that it has a non-trivial Lie algebra cohomology. More precisely
we have

H2(Gal,R) = R. (11)

Essentially, the non-equivalent central extensions of Gal are labeled by a real number,
which is physically interpreted as the mass. In Weinberg’s terminology, the mass is a
central charge in the extended algebra. This interpretation also leads to a well-known
superselection rule of particles with different masses, called the Bargmann superselection
rule [63–66]. Hence, the Galilei group falls into the most general case, to which Cassinelli’s
theorem has to be applied.

3.2. The Poincaré Group

The (proper ortochronous) Poincaré group is the key object in Wigner’s classification of
relativistic particles. Although its irreducible representations are well known and present in
almost every physics textbook, rigorous accounts and arguments are often missing. To this
end, we would like to point out the class to which the (proper ortochronous) Poincaré group
belongs in the scheme developed here. Recall that the (proper ortochronous) Poincaré group
is a semidirect product of the spacetime translation group and the connected component of
the proper ortochronous Lorentz group

Poin = R4 ⋊ SO+(1, 3). (12)
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Its universal cover is obtained from the double-sheeted SL(2,C) covering as

P̃oin = R4 ⋊ SL(2,C), (13)

from which we can conclude that it is not simply connected. However, its Lie algebra
cohomology is vanishing even though the Lie algebra is not semisimple (for proof, see [59]).
Hence, the Poincaré group falls in the case of Theorem 5. In Weinberg’s terminology, all
the central charges can be eliminated, as there is no non-trivial central extension due to the
absence of algebraic obstructions.

3.3. The Heisenberg Group

Let us consider the Hilbert space H = L2(R2n). The translations in position and
momentum space are given by

(Paψ)(x) = ψ(x − a), (Maψ)(x) = eiaxψ(x), respectively. (14)

We can easily define a projective unitary representation of R2n on Ĥ as

τ : R2n → PU(H), τ(x, y) = Px ◦ My, (15)

since the two operators commute up to a phase. However, we cannot lift this projective
representation to a unitary representation of R2n, since it has a non-vanishing Lie-algebra
cohomology. However, the projective unitary representation of R2n is in one-to-one cor-
respondence with the (unique) unitary representation of the Heisenberg group, which
is a central extension of R2n by R, as R2n falls in the case of Theorem 6. Moreover, this
representation is unique, as guaranteed by the Stone–von-Neumann theorem [41]. Thus,
the projective representations of R2n lead to the unique representation of the position and
momentum operators, respectively. They implement the commutation relation on (a dense
subspace of) H.

4. Summary and Outlook

This article presented a detailed and mathematically precise review of the represen-
tation theory used in quantum mechanics. We noted the differences between ordinary
group cohomology and Lie group cohomology, where the topological and smooth aspects
have been discussed in depth. An algorithm was provided, which relates the enlarged
group Genl of a quantum system to the G-symmetries described by a connected Lie group
G. From our presentation, it becomes clear in which cases one has to consider the univer-
sal cover, a central extension, or a central extension of the universal cover, thus making
the ideas presented in Weinberg’s textbook [37] mathematically precise. All of this boils
down to two properties of the Lie group G in question: π1(G) and H2(g,R), which are
topological and algebraic, respectively. The algorithm was applied to three concrete cases
of physical relevance.

In this approach, although spin enters as a quantum label necessary to represent
Poincaré symmetries in the Hilbert space, it can also be viewed as a consequence of
quantum mechanics’ mathematical formalism and consistency. It appears in any quantum
system exhibiting rotational symmetry through the projective representations of SO(3),
or equivalently, as our theorems show, the unitary representations of SU(2), respectively.
We would also like to point out that projective representations are necessary, and are
not just a matter of choice for the Galilei group. It can be shown that the Schrödinger
equation is Galilei invariant if the wave function transforms up to a phase that can not
be eliminated [66].

To conclude this review, we would like to mention that recent progress has been made
in the context of the representation theory of Lie supergroups. In particular, Mackey’s
imprimitivity theorem has been generalized to that setting [67]. It would be interesting to
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see if Bargmann’s theorem, or more generally Cassinelli’s theorem, can also be generalized,
leading to a clear description of how to enlarge symmetry groups in the SUSY setting.
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Appendix A. Generalization of Bargmann’s Theory

Here, we shall depict the main steps of the formalism presented in [16], leading to a
generalization of Bargmann’s theory of projective representations including time depen-
dence6 on the phase. Before doing so, let us briefly recall the direct relation between time-
dependent phases and gauge fields appearing even in non-relativistic quantum mechanics.

Roughly speaking, consider a wave function ψ describing a quantum system whose
dynamics are dictated by the Schrödinger equation. Of course, any element of the set
{eiαψ} for α constant (and real) keeps the dynamical equation invariant and the physical
system description intact. Nevertheless, if α = α(t, x), then the dynamical equation is
not invariant anymore, and to restate invariance, compensating fields are in order. In the
simple case at hand, the prescription means new time and spatial derivatives ∂t 7→ ∂t + iφ
and ∇ 7→ ∇− iA, respectively, with (gauge) fields transforming by φ′ = φ − ∂tα(t, x) and
A′ = A +∇α(t, x). In an attempt to interpret and understand gauge freedom within the
scope of projective representations, a formalism extending the theory was developed [16].
From now on, we will focus on the main steps of this generalization.

The first aspect we shall emphasize is that probabilities can only be summed up for a
countable set of events. This simple statement naturally leads us to appreciate the basic
formulation for this generalization in the context of analytic Borel structures. Moreover,
use is made of a specific fiber bundle whose typical fiber is given by a Hilbert space H.

Consider a fiber bundle with a base manifold given by R. For every point t ∈ R, we
associate a Hilbert space Ht performing the fiber. The Hilbert bundle is defined as the set
{(t, ψ)|t ∈ R, ψ ∈ Ht} = M. A Hilbert bundle cross-section is defined by

ψ : R → Ht

t 7→ ψt, ∀t ∈ R. (A1)

Therefore, for any cross-section ψ and (t0, ϕ0) ∈ M it is possible to compose the inner
product (ϕ0, ψt0) in such a way that any cross-section defines a complex-valued function in
M. Recall that a Borel set may be generically defined as one formed through the countable
union, countable intersection, and complement of open sets. Besides, a given function, say
f : X → Y, is said to be a Borel function if f−1(O) is a Borel set for every open set O ⊂ Y.

Definition A1. A Borel bundle is a Hilbert bundle M endowed with a Borel analytic structure7

in M such that

• Let π(t, ψ) = t be the fiber bundle projection. Then, E ⊆ R is a Borel set if π−1(E) is a Borel
set on M.

• There exist countable sections {ψi} (i = 1, 2, · · · ) such that



Universe 2024, 10, 448 17 of 21

– their corresponding complex-valued functions on M are Borel functions;
– no two different points (tk, ϕk) ∈ M (k = 1, 2) give the same values for every ψi,

except if ϕ1 = ϕ2 = 0;
– the mapping t → (ψi

t, ψ
j
t) is a Borel function for all i for all j.

Finally, a section is called a Borel cross-section if the function defined on M by the sec-
tion is a Borel function. A couple of definitions suitable for our approach are still necessary.

Definition A2. Let µ be the Lebesgue measure on R. A section t → ψt is square summable with
respect to µ if ∫

R
(ψt, ψt)dµ(t) < ∞. (A2)

From these definitions, it is possible to say that the space L2(R, µ,H) containing all
classes of square summable sections forms a separable Hilbert space with an inner product
given by

(ϕ, ψ) =
∫
R
(ϕt, ψt)dµ(t). (A3)

Also, using this construction, it is conceivable to assign to each time a self-adjoint
operator Ot : Ht → Ht performing, at the formalism level, the measuring action.

A relevant isomorphism between Hilbert bundles, M ≃ M′, is defined as follows:
U : M → M′ is a Borel isomorphism such that for every t ∈ R

U|t×Ht ⇒ ∃ t′ ×H′
t′ ∈ M′, (A4)

with unitarity. Of course, for M′ = M, we have an automorphism.
Consider, as usual, a connected Lie group G and denote by A the set of automorphisms

of M. Consider also the action G ×R of G on R given by t 7→ r−1t for all r ∈ G and t ∈ R.
The mapping r → Ur (from G to A) is a representation of G if UrUs = eiξ(r,s,t)Urs. Besides,
it is considered that (i) the action of G on M is transitive and smooth, (ii) ξ is differentiable
in t ∈ R. Denote by F the set of all real and differentiable functions on R. Let us revisit the
ray definition to the relevant quantities for our purposes.

Definition A3. The ray of a given cross-section ψ is defined by Ψ = {eiζ(t)ψ(t), ζ ∈ F} and the
operator ray corresponding to a given automorphism U is U = {τU|t 7→ τ(t) ∈ F , |τ| = 1}.

As usual in the standard formulation, the continuity concept allows for the current
physical interpretation that probability transitions vary continuously with the variation in
elements of G. The idea of continuity can be expressed as follows: for any r ∈ G, any ray Ψ
and any positive ε, there exists a neighborhood V(∋ r) ⊂ G such that

dt(UsΨ, UrΨ) < ε, (A5)

if s ∈ V and t ∈ R, where dt(Ψa, Ψb) = inf ||ψa − ψb||t and ψ ∈ Ψ. With this concept
of continuity, it is possible to show that it is always feasible to find continuous represen-
tatives8 Ur ∈ Ur. The associative law together with UrUs = eiξ(r,s,t)Urs may be used to
show that the continuity of phase factors is inherited from the continuous representa-
tives9. Additionally, notice that given a continuous representative Ur, another one may
be reached by U′

r = eiζ(r,t)Ur for ζ real, continuous in r. In fact, ||U′
sψ − U′

rψ|| < ε implies
2 − 2Re(eiκUsψ, Urψ) < ε2, where κ ≡ ζ(s, t) − ζ(r, t) and we assume t ∈ S ⊂ R. Call-
ing ap (bp) the real (imaginary) part of Upψ, the previous relation reads (1 − as cos(κ)−
bs sin(κ) − ar) < ε2/2. It is readily verified that if the limit κ → 0 is well defined (for
r, s ∈ V ⊂ G), the new representatives are also continuous. As it can be verified, the relation
ξ ′(r, s, t) = ξ(r, s, t) + ∆[ζ] is reflexive, transitive, and symmetric, leading to a true equiva-
lence relation. Thus, two exponents ξ and ξ ′ are equivalent if ξ ′(r, s, t) = ξ(r, s, t) + ∆[ζ].
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The phase freedom in the ray representation allows for a relevant generalization,
encompassing local groups. In fact, take θ(t) ∈ F and select representatives (eiθ(t)Ur and
eiθ′(t)Us) such that

(eiθ(t)Ur)(eiθ′(t)Us) = ei(θ(t)+θ′(r−1t)+ξ(r,s,t))Urs, (A6)

from which a group structure may be read for elements belonging to {θ(t), r} with the
product given by {θ(t), r}{θ′(t), s} = {θ(t) + θ′(r−1t) + ξ(r, s, t), rs}, for r, s ∈ G. As usual,
call this group H. If e is the identity in G, then ē = {0, e} is the identity in H and elements
given by {θ(t), e} form an Abelian subgroup T ⊂ H. The novelty appearing in this
generalization of Bargmann’s theory concerning these H (local) groups comes from the
action of G in R: due to this action (t 7→ r−1t) H is to be considered equal to T ⋊ G so
that H is a semicentral extension of G. However, it is still true that locally G ≃ H/T
and if two exponents are equivalent, their respective associated semicentral extension
groups are homomorphic [5]. Finally, the exponents are proved to be continuous, but it
is also possible to show that they are additionally differentiable in r and s. The standard
method to prove this important property is the so-called Iwasawa construction [5,16,68].
See also [69] (Theorem 1 and Lemma 1) for a detailed account of exponents differentiability
via Iwasawa construction.

Generally speaking, the above construction already generalizes the phase dependence
of projective representations to encompass time explicitly. The rest of this appendix deals
with framing such a generalization, mutatis mutandis, into the main text algorithm regarding
the enlargement of symmetry. To do so, we shall sketch the main aspects of the ingenious
strategy developed in ref. [16] to construct the algebra related to the H groups.

Firstly, we call attention to the fact that there is a very useful particularization in the
analysis that shall be used from now on. A given local exponent ξ(r, s, t) of G is said to be
canonical if it is differentiable in all variables and equals zero if r and s are elements of a
one-parameter subgroup. It is possible to show [5] that locally every exponent is equivalent
to a canonical one.

It is considered an embed of H in a Lie group (with manifold structure performed by
a Banach space) so that a standard relation between group and algebra is warranted with
convergence of the Baker–Campbell–Hausdorff series. Hence, take H̃ as the closure of H.
The semisimple extension of T with G is inherited to its closure Ñ, that is H̃ = T̃ ⋊ G and,
therefore, H̃ ∋ (n, g) with n ∈ Ñ and g ∈ G. Observe that (n, g)(n′, g′) = (ngn′g−1, gg′).
Thus, gn′g−1 ∈ Ñ defines an automorphism, say Ag := gn′g−1 ∈ Aut(Ñ). Elements of
H ⊂ H̃ are given by { f (t), g} and to give the right account of group action upon t ∈ R (as
discussed), the restriction of A to H shall given by (Ag f )(t) := f (g−1t).

Consider any two fixed vectors A and B of the Lie algebra, and τA and τB (for τ ∈ R∗),
two local one-parameter subgroups. Define the quantity

q(τA, τB) := lim
τ→0

τ−2(τA)(τB)(τA)−1(τB)−1. (A7)

Using the standard exponential mapping between Lie algebra and Lie group and the
Baker–Campbell–Hausdorff series, one obtains

e±τAe±τB = exp
(
± τA ± τB +

τ2

2
[A, B]± O(τ3)

)
, (A8)

up to second order in τ. Therefore, for τ being sufficiently small, we are left with
exp (τ2[A, B]), from which the bilinear, antisymmetric commutator can be fairly identified,
i.e., q = [A, B]. Now, the computation of [ā, b̄]

[ā, b̄] = [{ f , a}, {y, b}] = lim
τ→0

τ−2(τāτb̄)(τ−1 ā−1τ−1b̄−1), (A9)
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leads to

[ā, b̄] = {F( f , y) + Ξ(a, b, t), [a.b]}, (A10)

where

Ξ(a, b, t) = lim
τ→0

τ−2[ξ((τa)(τb), (τa)−1(τb)−1, t) + ξ(τa, τb, t)

+ ξ((τa)−1, (τb)−1, (τb)−1(τa)−1t], (A11)

are called infinitesimal exponents and F( f , y) can be bypassed for this general exposition.
It is worth stressing that the Jacobi identity is warranted for the bilinear form, and then,
the algebra is recovered fully. As a last step, we call attention to the following particular-
ization concerning canonical exponents: if two canonical exponents are equivalent, then
ξ ′ = ξ + δ[Λ], where Λ is a linear real form defined in the algebra [5]. By inserting this
particularized equivalence into (A11), we arrive at a similar equivalence relation for the
infinitesimal exponents, that is, Ξ′ = Ξ + ∆[Λ]. From now on, there is a pari passu reasoning
between this formulation and Bargmann’s theory. With effect, as in the standard case, to ev-
ery local exponent, there corresponds an infinitesimal exponent10. Moreover, two canonical
exponents are equivalents if their infinitesimal exponents counterparts are also equivalents.
This similarity assigns the generalization at hand to the algebraic branch of the enlarging
symmetry algorithm highlighted in the main text. Besides from the topological aspect,
we call attention once again to the fact that, just as in the usual case, a given exponent is
equivalent to a canonical one only locally, and the obstructions to the global validity of the
analysis rest again upon the group manifold simply connectivity.

Notes
1 In order to guarantee sequential readability, we provide here a pinpointed list of mathematical symbols and their meaning:

H: Hilbert space;
DA: Domain of the operator A (DA ⊂ H);
Ĥ: Projective Hilbert space;
Aut(·): Automorphism group of ·;
PU(·): Projective unitary group of ·;
π1(·): First homotopy group of ·;
H2(·, ◦): Second cohomology group of · with coefficients in ◦;
⋊: Semi-direct product.

2 The equivalence relation x ∼ y ⇐⇒ ∃θ ∈ R : x = eiθy is used in defining the projective Hilbert space. Hence, the projective
Hilbert space is defined as the Hilbert space set minus the zero element, quotient out by the equivalence relation of being related
by a phase.

3 Notice that, as defined in Definition 3, the transformations physically represent active transformations since they relate to different
frames of reference.

4 Note that π̂ is trivially continuous since it defines the final topology on PU(H).
5 By smooth, we mean that the cocycles are maps that are infinitely differentiable with respect to the smooth structures of the Lie

group G and the Lie group A.
6 Spacetime dependence may be directly accomplished by straightforward adaptation of the formalism we are about to review.
7 A continuous image of a Borel set in a Banach space is called an analytic Borel structure. In particular, it is Lebesgue measurable.
8 See Ref. [48], Theorem 1, for detailed and commented proof. The unique necessary adaptation of the proof presented in [48] to

the case at hand is the consideration that t must belong to a compact subset S of R.
9 See also [48], Lemma 1, replacing ω by exp [i(r, s, t)].

10 It is more or less obvious from the outlined construction (see [16], Theorem 3).
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