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Abstract: This is a tutorial on the strong gravity effects (motion of massive and massless particles
in a curved spacetime, evaluation of redshift factors, estimate of physical quantities in different
reference frames, etc.) necessary to calculate the electromagnetic spectra of geometrically thin and
optically thick accretion disks around black holes. The presentation is intentionally pedagogical,
and most calculations are reported step by step. In the disk–corona model, the spectrum of a source
has three components: a thermal component from the disk, a Comptonized component from the
corona, and a reflection component from the disk. This tutorial reviews only the strong gravity effects,
which can be decoupled from the physical processes involving the interaction between matter and
radiation. The formulas presented here are valid for stationary, axisymmetric, asymptotically flat,
circular spacetimes, so they can be potentially used for a large class of black hole solutions.
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1. Introduction

The development of sufficiently advanced astrophysical models is crucial if we want
to analyze high-quality data. The aim of this tutorial is to review the relativistic calculations
of the electromagnetic spectrum of thin accretion disks around black holes.

The physical system that we want to study is shown in the left panel of Figure 1 and is
normally referred to as the disk–corona model. The black hole can be either a stellar-mass
black hole in an X-ray binary or a supermassive black hole in an active galactic nucleus. The
key point is that the black hole accretes from a cold, geometrically thin, and optically thick
accretion disk1. The disk is “cold” because it can efficiently emit radiation. Every point on
the surface of the accretion disk has a blackbody-like spectrum, and the whole accretion
disk has a multi-temperature blackbody-like spectrum. The thermal spectrum of the disk is
normally peaked in the soft X-ray band (0.1–10 keV) for stellar-mass black holes in X-ray
binaries and in the UV band (1–100 eV) for supermassive black holes in active galactic
nuclei [1,2]. The corona (yellow regions in Figure 1) is some “hot” (∼100 keV), usually
optically thin, cloud close to the black hole and the inner part of the accretion disk, but
its exact morphology is not yet well understood [3–10]. The right panel in Figure 1 shows
possible coronal geometries. In the lamppost model, the corona is a compact source along
the black hole spin axis (for example, the base of the jet may act as a lamppost corona [7]).
In the sandwich model, the corona is the hot atmosphere above the accretion disk [4,8,10].
In the spherical and toroidal models, the corona is the hot material in the plunging region,
between the inner edge of the accretion disk and the black hole [4]. Compact coronae have
been found from the study of reverberation lags in black hole X-ray binaries [11] and from
the gravitational microlensing of quasars [12]. The coronal geometry can change (even on
timescales of the order of hours or days in the case of X-ray binaries) [13], and two or more
coronae may coexist at the same time.

Since the disk is cold and the corona is hot, thermal photons from the disk (red arrows
in Figure 1) can inverse the Compton scatter off free electrons in the corona. The spectrum
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of the Comptonized photons can be normally approximated well by a power law with
a low- and a high-energy cutoff [5,14,15]. A fraction of the Comptonized photons (blue
arrows in Figure 1) can illuminate the disk: Compton scattering and absorption followed
by fluorescent emission produce the reflection spectrum (green arrows in Figure 1).
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Figure 1. Left panel: Disk–corona model. Right panel: Examples of possible coronal geometries. See
the text for more details. Figure from Ref. [16].

The reflection spectrum in the rest-frame of the material in the disk is characterized
by narrow fluorescent emission lines in the soft X-ray band and a Compton hump with a
peak around 20–40 keV [17,18]. The strongest emission feature is often the iron Kα complex,
which is a very narrow feature at 6.4 keV in the case of neutral or weakly ionized iron
atoms and shifts up to 6.97 keV in the case of H-like iron ions. The reflection spectrum of
the whole disk as seen far from the source is blurred because of relativistic effects (Doppler
boosting due to the motion of the material in the disk and gravitational redshift due to the
gravitational well of the black hole) [19–22]. X-ray reflection spectroscopy is the analysis of
these relativistically blurred reflection features in the X-ray spectra of X-ray binary systems
and active galactic nuclei and can be a powerful tool to study the accretion process around
black holes, measure black hole spins [23–25], and test Einstein’s theory of general relativity
in the strong field regime [26–28].

In these notes, we assume that the spacetime is stationary, axisymmetric, asymptotically
flat, and circular. In spherical-like coordinates (t, r, θ, ϕ), the line element can always be written
in the following form:

ds2 = gttdt2 + 2gtϕdt dϕ + grrdr2 + gθθdθ2 + gϕϕdϕ2 , (1)

where the metric coefficients are independent of the coordinates t and ϕ. The fact that the
only non-vanishing off-diagonal element is gtϕ is a consequence of the assumption that the
spacetime is circular [29,30]. Without such an assumption, in general, we may have other
non-vanishing off-diagonal metric coefficients. In general relativity, Rµν = 0 in vacuum,
and we can always write the line element as in Equation (1) for vacuum solutions if the
spacetime is stationary and axisymmetric [30].

In these notes, we employ units in which GN = c = h̄ = 1, unless stated otherwise,
and the convention of a metric with signature (−+++).

1.1. Basic Concepts

It is useful to start reviewing some basic concepts. For the moment, we ignore the
relativistic effects. Let us consider a detector and a source as shown in the left panel
in Figure 2. The detector and the source are in empty space, so there is no absorption,
scattering, or emission of radiation along the path from the source to the detector. Moreover,
the size of the detector, the size of the source, and the distance between the source and the
detector are much larger than the wavelength of the radiation emitted by the source, so we
can use the ray optics approximation, where the radiated energy flows in straight lines. θ is
the angle between the straight line connecting the detector and the source and the normal
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to the surface of the detector. The energy dE illuminating the infinitesimal surface dσ of the
detector from the solid angle dΩ in the time dt and in the frequency band of width dν is

dE = Iν cos θ dσ dΩ dt dν , (2)

where we introduced the specific intensity of the radiation Iν, which is thus defined as

Iν =
dE

(cos θ dσ)dΩ dt dν
. (3)

The specific intensity can be measured, for example, in W m−2 Hz−1 sr−1. The total
intensity is obtained after integrating the specific intensity over all frequencies

I =
∫ ∞

0
Iν dν . (4)

The total intensity can be measured, for example, in W m−2 sr−1.
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Figure 2. Left panel: The source illuminates the detector and deposits the energy dE on the surface
dσ of the detector from the solid angle dΩ in the time dt and in the frequency band of width dν:
dE = Iν cos θ dσ dΩ dt dν. Right panel: the specific intensity Iν and the total intensity I are conserved
along photon trajectories in empty space. See the text for more details. Figure from Ref. [16].

From our definition of specific intensity and total intensity, these two quantities are
conserved along photon trajectories in empty space. Let us consider two infinitesimal
surfaces, dσ1 and dσ2, as shown in the right panel in Figure 2. D is the distance between
dσ1 and dσ2. dΩ1 = cos θ2dσ2/D2 is the infinitesimal solid angle subtended by dσ2 as seen
from the surface dσ1, and dΩ2 = cos θ1dσ1/D2 is the infinitesimal solid angle subtended
by dσ1 as seen from the surface dσ2. The power dE1/dt in the frequency range ν to ν + dν
flowing through the surface dσ1 in the solid angle dΩ1 is

dE1

dt
= I1

ν cos θ1 dΩ1 dσ1 dν = I1
ν cos θ1

cos θ2 dσ2

D2 dσ1 dν , (5)

where I1
ν is the specific intensity on dσ1. In the same way, the power dE2/dt in the frequency

range ν to ν + dν flowing through the surface dσ2 in the solid angle dΩ2 is

dE2

dt
= I2

ν cos θ2 dΩ2 dσ2 dν = I2
ν cos θ2

cos θ1 dσ1

D2 dσ2 dν . (6)

Since there is no absorption/emission between the infinitesimal surfaces dσ1 and dσ2,
dE1 = dE2, therefore I1

ν = I2
ν , i.e., the specific intensity is conserved. We can repeat the

calculations for the total intensity and arrive at the same conclusion.
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If we integrate the specific intensity over the solid angle subtended by the source, we
find the spectral flux (also called the spectral flux density or the flux density)

Fν =
∫

source
Iν cos θ dΩ . (7)

The spectral flux can be measured, for example, in W m−2 Hz−1. The total flux is
obtained after integrating the spectral flux over all frequencies

F =
∫ ∞

0
Fν dν . (8)

The total flux can be measured, for example, in W m−2.
The spectral luminosity is the total power per unit bandwidth emitted by the source

at a certain frequency. It can be indicated with Lν and can be measured, for example, in
W Hz−1. In general, it is not straightforward to measure the spectral luminosity of an
astrophysical source if its emission is not isotropic. For an isotropic source at distance D,
the spectral luminosity is

Lν = 4πD2 Fν . (9)

The total luminosity (also called the bolometric luminosity) is obtained after integrating
the spectral luminosity over all frequencies

L =
∫ ∞

0
Lν dν . (10)

The total luminosity can be measured, for example, in W.
Before concluding this subsection, it can be useful to stress a few important properties

of the quantities discussed here:

1. The specific intensity Iν is independent of the distance of the source Iν = constant,
while the spectral flux Fν is proportional to the inverse of the square of the distance
Fν ∝ D−2.

2. The specific intensity Iν can be seen as the energy flowing out of the source as well as
the energy flowing into the detector and, in general, as the energy flowing along any
photon trajectory.

3. If a source is unresolved (i.e., it appears as a point-like source because its angular size
is smaller than the angular resolution of the instrument used for its observation), we
can measure the spectral flux Fν, but we cannot measure the specific intensity Iν.

1.2. Relativistic Effects

If the astrophysical source is a compact object, like a black hole or a neutron star,
relativistic effects may not be ignored. Some results discussed in the previous subsection
may require modifications.

If the wavelength of the radiation λ is much smaller than the size of the source, the
size of the detector, and the distance between the source and the detector, we can still use
the ray optics approximation, but in a curved spacetime, the radiated energy flows along
null geodesics, which may not be straight lines.

The specific intensity Iν and the total intensity I are not conserved along the photon
trajectories. Liouville’s theorem shows that the conserved quantity is instead Iν/ν3 (for the
details, see Ref. [31]). If Ie(νe) is the specific intensity at the emission point at the frequency
νe as measured in the rest-frame of the emitter, and Io(νo) is the specific intensity at the
detection point at the frequency νo as measured by the observer, the relation between these
two specific intensities is

Io(νo) = g3 Ie(νe) , (11)
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where g = νo/νe is the redshift factor between the detector and the emitter. If relativistic
effects are negligible, g = 1, and we recover the result of the previous subsection.

2. Thin Accretion Disk

In this section, we present a simple model to describe thin, Keplerian accretion disks.
The key assumptions are that the disk is non-self-gravitating2 and that the motion of the
material in the disk is determined by the gravitational field of the black hole, while other
effects (for instance, the pressure of the material itself or the presence of magnetic fields)
can be neglected. This implies that the motion of the accreting material is governed by the
geodesic equations in the black hole spacetime.

2.1. Motion in a Stationary and Axisymmetric Spacetime

We assume that the motion of the “material”3 in the accretion disk is determined by
the gravitational field of the black hole, and therefore it can be derived from the Lagrangian
of a point-like free particle

L =
1
2

(
gtt ṫ2 + 2gtϕ ṫϕ̇ + grr ṙ2 + gθθ θ̇2 + gϕϕϕ̇2

)
, (12)

where ˙= d/dτ, and τ is the proper time of the material. Since the metric coefficients are
independent of the coordinates t and ϕ, we have two constants of motion: the specific
energy E and the axial component of the specific angular momentum Lz:4

pt =
∂L
∂ṫ

= gtt ṫ + gtϕϕ̇ = −E , (13)

pϕ =
∂L
∂ϕ̇

= gtϕ ṫ + gϕϕϕ̇ = Lz . (14)

From the two equations above, we can write ṫ and ϕ̇ in terms of E, Lz, and the
metric coefficients

ṫ =
gϕϕE + gtϕLz

g2
tϕ − gttgϕϕ

, (15)

ϕ̇ = − gtϕE + gttLz

g2
tϕ − gttgϕϕ

. (16)

2.2. Infinitesimally Thin Disk

Equations (15) and (16) directly follow from the conservation of E and Lz, and there
are no assumptions about the orbits in the spacetime. Now, we want to describe the
motion of the material in an accretion disk. This accretion disk is infinitesimally thin and
perpendicular to the black hole spin axis, so the motion of the material has θ = π/2 and
θ̇ = 0.

2.3. Motion in the Disk Region (r > rISCO)

The motion of the material in the disk is approximated with quasi-geodesic equatorial
circular orbits5, so ṙ = 0. Let us write the geodesic equations in the following form:

d
dτ

(
gµν ẋν

)
=

1
2
(
∂µgνρ

)
ẋν ẋρ . (17)

For equatorial circular orbits, ṙ = r̈ = θ̇ = 0, and for µ = r, Equation (17) reduces to

(∂rgtt)ṫ2 + 2
(
∂rgtϕ

)
ṫϕ̇ +

(
∂rgϕϕ

)
ϕ̇2 = 0 . (18)



Universe 2024, 10, 451 6 of 40

The angular velocity of the material as measured by the coordinate system (t, r, θ, ϕ) is
ΩK = dϕ/dt = ϕ̇/ṫ, and the previous equation becomes6(

∂rgϕϕ

)
Ω2

K + 2
(
∂rgtϕ

)
ΩK + (∂rgtt) = 0

⇒ ΩK =
−∂rgtϕ ±

√(
∂rgtϕ

)2 − (∂rgtt)
(
∂rgϕϕ

)
∂rgϕϕ

, (19)

where the sign + is for co-rotating orbits (orbits with angular momentum parallel to
the black hole spin) and the sign − is for counter-rotating orbits (orbits with angular
momentum anti-parallel to the black hole spin).

Since the material of the disk follows time-like geodesics, which we are parametrizing
with the proper time τ, we have gµν ẋµ ẋν = −1. Since ṙ = θ̇ = 0 and ϕ̇ = ΩK ṫ, we have

gtt ṫ2 + 2gtϕ ṫϕ̇ + gϕϕϕ̇2 = −1 ⇒ ṫ =
1√

−gtt − 2gtϕΩK − gϕϕΩ2
K

. (20)

At this point, we can write the specific energy E and the axial component of the
specific angular momentum Lz for geodesic, equatorial, and circular orbits in terms of
known quantities

E = −
(

gtt + gtϕΩK
)
ṫ = − gtt + gtϕΩK√

−gtt − 2gtϕΩK − gϕϕΩ2
K

, (21)

Lz =
(

gtϕ + gϕϕΩK
)
ṫ =

gtϕ + gϕϕΩK√
−gtt − 2gtϕΩK − gϕϕΩ2

K

. (22)

Since the motion of the material is determined by the gravitational field of the black
hole (and we ignore the pressure of the fluid and possible magnetic fields), the inner edge
of the accretion disk can naturally be at the radius of the innermost stable circular orbit
(ISCO) [34]. Inside the ISCO, circular orbits are unstable, so the material can quickly plunge
onto the black hole. To find the ISCO radius, we need to study the stability of the geodesic
equatorial circular orbits. From gµν ẋµ ẋν = −1 and using Equations (15) and (16), we
can write

grr ṙ2 + gθθ θ̇2 = Veff(r, θ) , (23)

where

Veff =
gϕϕE2 + 2gtϕELz + gttL2

z

g2
tϕ − gttgϕϕ

− 1 . (24)

Orbits are stable (unstable) under small perturbations along the radial and vertical
directions if, respectively,

∂2Veff

∂r2 < 0 (> 0) ,
∂2Veff

∂θ2 < 0 (> 0) (25)

In the Kerr spacetime and in many other black hole spacetimes, equatorial circular
orbits are always stable along the vertical direction, the ISCO radius is determined by the
stability along the radial direction, and there is one ISCO radius separating stable orbits
(r > rISCO) and unstable orbits (r < rISCO). In general, this is not guaranteed: orbits may be
even vertically unstable and/or there may be more than one stable region and/or more
than one unstable region [35,36].
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2.4. Motion in the Plunging Region (r+ < r < rISCO)

At r = rISCO, equatorial circular geodesics become unstable. We can approximate
the motion of the material in the plunging region (r+ < r < rISCO, where r+ is the
radial coordinate of the black hole event horizon in the equatorial plane) with equatorial
geodesic orbits with specific energy EISCO and the axial component of the specific angular
momentum LISCO

z , where EISCO and LISCO
z are E and Lz at r = rISCO.

The 4-velocity of the material in the plunging region is uµ = (ṫ, ṙ, 0, ϕ̇). ṫ and ϕ̇ are
given by Equations (15) and (16) for E = EISCO, Lz = LISCO

z , and θ = π/2

ṫ =
gϕϕEISCO + gtϕLISCO

z

g2
tϕ − gttgϕϕ

, (26)

ϕ̇ = − gtϕEISCO + gttLISCO
z

g2
tϕ − gttgϕϕ

. (27)

ṙ can be inferred from gµν ẋµ ẋν = −1

ṙ = −
√

−1 − gtt ṫ2 − 2gtϕ ṫϕ̇ − gϕϕϕ̇2

grr

= −

√√√√ 1
grr

[
gϕϕ(EISCO)2 + 2gtϕEISCOLISCO

z + gtt(LISCO
z )2

g2
tϕ − gttgϕϕ

− 1

]
, (28)

where the sign − in front of the square root is chosen because the material is falling onto
the black hole. It can be useful to stress that ṫ, ϕ̇, and ṙ are functions only of the radial
coordinate r, so we have the 4-velocity of the accreting material in the plunging region at
every radial coordinate.

The presence of magnetic fields can make the model significantly more complicated.
General Relativistic Magnetohydrodynamic (GRMHD) simulations can provide the most re-
liable description of the accretion process onto compact objects, even if current simulations
still rely on a number of simplifications, so caution is necessary when we want to derive
conclusions for the accretion process on astrophysical black holes, and the morphology of
magnetic fields around black holes is still poorly understood. Current GRMHD studies
suggest that thin accretion disks are close to being Keplerian, and the simple model de-
scribed in Section 2.3 can well approximate the motion of the material in the disk region [37].
Magnetic fields can instead affect the motion of the material in the plunging region and
change the location of the inner edge of the disk, which may not be rISCO any longer. In
such a case, Equations (26)–(28) may not well describe the motion in the plunging region.
The simplest models to describe the motion of the material in the plunging region in the
presence of magnetic fields still assume that the motion is on the equatorial plane (θ = π/2
and θ̇ = 0) and consider simple modifications in the Lagrangian in Equation (12) to slow
down the fall of the material from the ISCO to the black hole.

3. Corona

This section is devoted to studying how the corona illuminates the accretion disk.

3.1. Coronal Spectrum

We start assuming that the corona is a point-like source. An extended corona can be
easily described as the combination of a number of point-like coronae.

The photon spectrum of the corona in its rest-frame can be approximated by a power
law with a high-energy cutoff Emax and a low-energy cutoff Emin [5], so we can write

dNc

dtcdEc
=

{
KE−Γ

c Emin < Ec < Emax
0 otherwise

, (29)



Universe 2024, 10, 451 8 of 40

where Nc is the photon number, K is a normalization constant, Γ is the photon index, and
the subindex c indicates that a quantity is evaluated in the rest-frame of the corona. The
spectral luminosity of the corona is

dLc

dEc
= Ec

dNc

dtcdEc
, (30)

and the total luminosity of the corona is

Lc =
∫

Ec
dNc

dtcdEc
dEc =

∫ Emax

Emin

KE−Γ+1
c dEc =


K

2−Γ

[
E2−Γ

max − E2−Γ
min

]
Γ ̸= 2

K ln
(

Emax
Emin

)
Γ = 2

. (31)

If we know the total luminosity of the corona and its spectrum, we can fix the normal-
ization constant K.

The spectrum of the corona detected far from the source is not exactly that in Equation (29)
because it is redshifted. The redshift factor is

g =
Eo

Ec
=

−uµ
okµ

−uµ
c kµ

, (32)

where uµ
o = (1, 0, 0, 0) is the 4-velocity of the distant observer, uµ

c is the 4-velocity of the
point-like corona, and kµ = (kt, kr, kθ , kϕ) is the conjugate 4-momentum of the photons
emitted by the corona and detected by the distant observer. kµ should be evaluated at
the detection point in the numerator and at the corona in the denominator. The photon
spectrum of the corona detected by the distant observer is

dNo

dtodEo
=

{
K′E−Γ

o E′
min < Eo < E′

max
0 otherwise

, (33)

where E′
max = gEmax and E′

min = gEmin are, respectively, the redshifted high-energy
cutoff and the redshifted low-energy cutoff, K′ = gΓK, and the subindex o indicates that a
quantity is evaluated in the rest-frame of the observer. The photon number is an invariant.
If the corona emits photons from time tc to time tc + ∆tc in the corona rest-frame, the total
number of photons is (for Γ ̸= 1)

Nc =
∫ tc+∆tc

tc
dtc

∫ Emax

Emin

dEc KE−Γ
c =

∆tcK
1 − Γ

[
E1−Γ

max − E1−Γ
min

]
. (34)

The total number of photons detected by the distant observer is

No =
∫ to+∆to

to
dto

∫ E′
max

E′
min

dEo K′E−Γ
o =

∆toK′

1 − Γ

[
E′1−Γ

max − E′1−Γ
min

]
=

(
g−1∆tc

)(
gΓK

)
1 − Γ

[(
g1−Γ

)
E1−Γ

max −
(

g1−Γ
)

E1−Γ
min

]
= Nc . (35)

3.2. Illumination of the Accretion Disk

To calculate how the corona illuminates the disk, we fire N photons from the corona
to the disk, where N is a sufficiently large number to meet our requirements of accuracy
for the final result. If the corona emission is isotropic in its rest-frame, we consider the
rest-frame of the corona, and we isotropically fire these N photons. If this is not the case,
we consider the rest-frame of the corona, and we fire N photons according to the specific
angular emission law of the corona such that any photon trajectory can represent the same
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number of photons per unit time and unit energy. The photon spectrum for every emission
direction (ray) is

dNc

dtcdEc
=

{
K̃E−Γ

c Emin < E < Emax
0 otherwise

, (36)

where K̃ = K/N .
As an example, let us assume that the corona is an infinitesimally thin disk above

the accretion disk and the black hole as shown in Figure 3 [38]. The system is perfectly
axisymmetric, so the central axis of the corona coincides with that of the accretion disk and
with the rotational axis of the black hole. The corona may rotate with angular frequency ω̃
as measured in the spherical-like coordinates (t, r, θ, ϕ). Since the system is axisymmetric,
we can restrict our calculations to a certain radial direction. We consider a number of
point-like coronae along such a radial direction and, as shown in Figure 3, we indicate with
R the radial coordinate of every point-like corona from the central axis. The spacing of
the point-like coronae can be used to regulate the intensity profile of our disk-like corona.
For example, if we assume that the surface of the corona has constant luminosity, we need
a point-like corona for every equal-area annulus. In the Newtonian limit, the area of the
annulus of radius R and width ∆R is 2π R ∆R, and therefore we would need to distribute
the point-like coronae with a separation ∆R ∝ 1/R. If we employ ∆R = constant, it is
equivalent to assume that the intensity profile of the corona scales as 1/R.

  

Black Hole
Accretion Disk

R Tetrad

H

Corona

Z

Y

X

r0

Figure 3. Rotating disk-like corona: an extended corona can be thought of as the combination of
a number of point-like coronae. For every point-like corona, we consider its locally Minkowskian
reference frame, and we fire N photons. We calculate the null geodesics from the point-like corona to
the accretion disk in order to calculate how the point-like corona illuminates the disk. See the text for
more details. Figure from Ref. [16].

To write the photon initial conditions, it is convenient to choose the locally Minkowskian
reference frames of the point-like coronae (see Appendix A). If uµ

j is the 4-velocity of the

point-like corona j, ur
j = uθ

j = 0 (because the corona rotates about the black hole spin axis)

and uϕ
j = ω̃ut

j by definition. From gµνuµ
j uν

j = −1, we find ut
j

ut
j =

1√
−gtt − 2ω̃gtϕ − ω̃2gϕϕ

. (37)
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The time-like tetrad basis vector Eµ

(T) is uµ
j . We choose the orientation of the space-like

tetrad basis vectors as shown in Figure 3 with r̂ = Ẑ and θ̂ = Ŷ. The expression for Eµ

(X)

can be inferred from the conditions gµνEµ

(X)
Eν
(X)

= 1 and gµνEµ

(X)
Eν
(T) = gµνEµ

(X)
Eν
(Y) =

gµνEµ

(X)
Eν
(Z) = 0. In the end, the tetrad of the orthogonal basis vectors associated to the

locally Minkowskian reference frame of the point-like corona j has the following form:

Eµ

(T) = ut
j


1
0
0
ω̃

, Eµ

(X)
=

ut
j√

g2
tϕ − gttgϕϕ


gtϕ + ω̃gϕϕ

0
0

−gtt − ω̃gtϕ

,

Eµ

(Y) =
1√
gθθ


0
0
1
0

, Eµ

(Z) =
1√
grr


0
1
0
0

. (38)

For every point-like corona, we fire N photons and check if and where these photons
hit the accretion disk. In the locally Minkowskian reference frame of the point-like corona,
the initial 4-momentum of the photons can be written as

k(α)0 =


E

E sin χ cos ψ
E sin χ sin ψ

E cos χ

 , (39)

where E is the photon energy, and χ ∈ [0; π] and ψ ∈ [0; 2π] are the polar angles in the
locally Minkowskian reference frame of the point-like corona. If the emission of the point-
like corona is isotropic, we can consider a grid of constant ∆(cos χ) and ∆ψ, and fire a
photon from every point of the grid7. In the spherical-like coordinates (t, r, θ, ϕ), the initial
conditions for the photon position will be like

t0 = 0 , r0 =
√

H2 + R2 , θ0 = arctan
(

R
H

)
, ϕ0 = 0 . (40)

The initial conditions for the photon 4-momentum will be like

kµ
0 = k(α)0 Eµ

(α)
. (41)

In our case, with the tetrad in (38), we have

kt
0 = k(T)0 Et

(T) + k(X)
0 Et

(X) , kr
0 = k(Z)

0 Er
(Z) , kθ

0 = k(Y)0 Eθ
(Y) ,

kϕ
0 = k(T)0 Eϕ

(T) + k(X)
0 Eϕ

(X)
. (42)

With the initial conditions in (40) and (42), we solve the geodesic equations in the
coordinate system (t, r, θ, ϕ). We calculate the trajectory of every photon of the grid of the
point-like corona, and then we repeat these calculations for every point-like corona.

3.3. Spectral Flux Illuminating the Disk

We divide the accretion disk into annuli (radial bins). The annulus i has radial coordi-
nate ri and width ∆ri. We fire photons from the point-like corona j to the disk as discussed
in the previous subsection. If the ray k (k = 1, . . . ,N ) hits the annulus i, it deposits the
following energy on the annulus i with photons of energy Ed

dεijk = EddN , (43)
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where dN is the photon number, which is conserved along the photon path because we are
in vacuum and there is no photon emission or absorption. The photon number of a ray in
the rest-frame of the corona is

dN = K̃E−Γ
c dtc dEc , (44)

The redshift factor between the emission point (the point-like corona j) and the incident
point (the annulus i) of the ray k is

gijk =
Ed
Ec

=
−uµ

i kµ

−uµ
j kµ

=

 1 − bk ΩK√
−gtt − 2ΩKgtϕ − Ω2

Kgϕϕ


i


√
−gtt − 2ω̃gtϕ − ω̃2gϕϕ

1 − bk ω̃


j

, (45)

where bk = −kϕ/kt is a constant of motion of the ray k, the subindices i and j in the last
expression are used to indicate that the first term is evaluated at the annulus i and the
second term is evaluated at the point-like corona j, ΩK is the angular velocity of the material
in the disk given in Equation (19), and ω̃ is the angular velocity of the point-like corona.
We can thus rewrite Equation (44) as

dN = K̃ gΓ
ijk E−Γ

d dtd dEd . (46)

The spectral flux on the annulus i produced by the ray k of the point-like corona j is

FX,ijk =
dεijk

dσi dtd dEd
=

K̃ gΓ
ijk E−Γ+1

d

Ai
, (47)

where Ai is the proper area of the annulus i (see Appendix B)

A(ri, ∆ri) = 2π∆ri


√√√√ grr

(
g2

tϕ − gttgϕϕ

)
−gtt − 2gtϕΩK − gϕϕΩ2

K


r=ri ,θ=π/2

. (48)

If the ray k hits the plunging region and we want to include the emission of the
plunging region in the calculations, we proceed in the same way, but we need to use the
4-velocity of the material in the plunging region for uµ

i (see Section 2.4) and the proper area
of an annulus in the plunging region for A(ri, ∆ri)

8.
The spectral flux on the annulus i produced by the disk-like corona is obtained by

summing over all rays for every point-like corona and then over all point-like coronae

FX,i = ∑
j

∑
k

FX,ijk . (49)

The total flux illuminating the annulus i by the disk-like corona is

Fi =
∫

FX,i dEd . (50)

Note that the ionization parameter of the annulus i is

ξi =
4πFi
ne,i

, (51)

where ne,i is the electron density of the annulus i.
We repeat these calculation for every annulus i of the accretion disk and we find the

spectral flux and the total flux at every radial coordinate: FX = FX(r) and F = F(r).
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If we are interested only in the X-ray flux illuminating the disk (0.1–100 keV) and
gijkEmin < 0.1 keV and gijkEmax > 100 keV, Equations (49) and (50) become, respectively,
(for Γ ̸= 2)

FX,i(Ed) =
K̃ E−Γ+1

d
Ai

∑
j

∑
k

gΓ
ijk , (52)

Fi =
K̃

Ai(2 − Γ)

[
E2−Γ

high − E2−Γ
low

]
∑

j
∑
k

gΓ
ijk , (53)

where Elow = 0.1 keV and Ehigh = 100 keV.
If the photon index Γ changes over the corona, Equation (44) becomes

dN = K̃E
−Γj
c dtc dEc , (54)

where Γj is the photon index of the point-like corona j. We can proceed in the same
way, and the spectral flux and the total flux of the disk-like corona will be still given by
Equations (49) and (50).

If the corona moves at mildly relativistic velocities with respect to the disk, relativistic
effects may significantly alter the illumination of the disk [39,40] and therefore the motion
of the corona should be included in the calculations.

4. Non-Relativistic Reflection Spectrum

The non-relativistic reflection spectrum is the reflection spectrum in the rest-frame of
the material of the disk. In the previous section, we calculated the spectrum of the radiation
illuminating the disk. We can plug this spectrum in a reflection model (like reflionx [18]
or xillver [17]) and obtain as the output the non-relativistic reflection spectrum.

In general relativity, the atomic physics near a black hole is the same as the atomic
physics in our laboratories on Earth. This is because in general relativity, the gravitational in-
teraction is only described by the metric tensor gµν, and locally the laws of non-gravitational
physics are those of Special Relativity: indeed, we can always perform a coordinate trans-
formation and find a locally inertial reference frame (see, for example, Subsection 6.4.2 in
Ref. [41]). In theories beyond general relativity, this may not be true9.

If we know the spectrum of the radiation at every radius of the accretion disk, we
can calculate the non-relativistic reflection spectrum at every radial coordinate. Since this
tutorial is focused on the relativistic calculations, and the calculations of non-relativistic
reflection spectra involve only atomic physics (at least in general relativity and in any
other metric theory of gravity), here we briefly present the main results and the reader
can find more details in [17,18] and the references therein. In general, the calculation of
a non-relativistic reflection spectrum requires solving some radiative transfer equations.
Figures 4–6 show non-relativistic reflection spectra calculated by the xillver model [17]10

assuming that the incident radiation is described by a power law with photon index Γ and
high-energy cutoff Ecut = 300 keV, and illuminates a cold material with incident angle
ϑi = 45◦ (i.e., the angle between the propagation direction of the incident photons and the
normal to the surface of the cold material in the rest-frame of the cold material). The cold
material is characterized by the electron density N, the ionization parameter ξ (defined
as in Equation (51)), and has solar elemental abundances. The emission angle is ϑe = 60◦

(i.e., the angle between the propagation direction of the emitted photons and the normal
to the surface of the cold material in the rest-frame of the cold material). Figure 4 shows
how a non-relativistic reflection spectrum changes if we change the value of the photon
index Γ of the incident radiation, while Figures 5 and 6 show, respectively, the impact of
the ionization parameter and of the electron density.
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Figure 4. Examples of non-relativistic reflection spectra produced with xillver [17] for different
values of the photon index Γ and assuming that the high-energy cutoff is Ecut = 300 keV, the incident
angle is ϑi = 45◦, the emission angle is ϑe = 60◦, the ionization parameter is log ξ = 3 (ξ in units of
erg cm s−1), and the electron density is log N = 18 (N in units of cm−3).

Figure 5. As in Figure 4 for Γ = 1.7 and different values of the ionization parameter ξ (ξ in units of
erg cm s−1).
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Figure 6. As in Figure 4 for Γ = 1.7 and different values of the electron density N (N in units of cm−3).

5. Returning Radiation

The returning radiation (or self-irradiation) is the radiation emitted by the disk and
returning to the disk because of the phenomenon of light bending. Figure 7 shows the
fractions of photons that at every emission radius return to the disk (red curve), fall onto
the black hole or the plunging region (black curve), or escape to infinity (blue curve). The
plot refers to the case of an infinitesimally thin Keplerian disk in the equatorial plane of a
Kerr black hole with spin parameter a∗ = 0.998. As we can see from Figure 7, the fraction
of photons returning to the accretion disk is relevant only at very small radii, say, r < 2 M,
while at larger radii, most of the radiation can escape to infinity [43].

1 10 100
re [M ]
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100

P
ho

to
n

F
ra

ct
io

n

ret

bh

inf

Figure 7. Fraction of photons that at every emission radius re return to the accretion disk (returning
radiation, red curve), fall onto the black hole or the plunging region (black curve), or escape to infinity
(blue curves). We assume that the compact object is a Kerr black hole with spin parameter a∗ = 0.998
and that the accretion disk is Keplerian, infinitesimally thin, and perpendicular to the black hole spin
axis. We ignore the radiation from the plunging region, and the three curves start from re = rISCO on
the left. Figure from Ref. [16].
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To include the returning radiation in our calculations, we can consider a number of
points on the accretion disk along a certain radial direction and fire photons from every
point to study if and where they return to the accretion disk. At every emission point, we
consider the locally Minkowskian reference frame associated to the material of the accretion
disk. In the disk region r > rISCO, the tetrad of the orthogonal basis vectors and its inverse
are those reported in Equations (A6) and (A7) with ω = ΩK

Eµ

(T) = ut


1
0
0

ΩK

, Eµ

(X)
=

1√
grr


0
1
0
0

,

Eµ

(Y) =
ut√

g2
tϕ − gttgϕϕ


gtϕ + ΩKgϕϕ

0
0

−gtt − ΩKgtϕ

, Eµ

(Z) =
1√
gθθ


0
0
1
0

, (55)

E(T)
µ = −ut


gtt + ΩKgtϕ

0
0

gtϕ + ΩKgϕϕ

, E(X)
µ =

√
grr


0
1
0
0

,

E(Y)
µ = ut

√
g2

tϕ − gttgϕϕ


−ΩK

0
0
1

, E(Z)
µ =

√
gθθ


0
0
1
0

, (56)

and ut is given in Equation (20) because we are considering the material in the disk.
In the plunging region r+ < r < rISCO, Eµ

(T) = (ut, ur, 0, uϕ), where ut, ur, and uϕ are

given, respectively, by Equations (26) and (27). Eµ

(Z) = (0, 0, 1/
√

gθθ , 0) as in the disk region

because the material is still assumed to be confined on the equatorial plane. Eµ

(X)
and Eµ

(Y)

can be found from the condition gµνEµ

(α)
Eν
(β)

= η(α)(β).
In such locally Minkowskian reference frames, the 4-momentum of the photons have

the form

k(α)0 =


k(T)0

k(X)
0

k(Y)0

k(Z)
0

 =


E

E sin ϑe cos φe
E sin ϑe sin φe

E cos ϑe

 , (57)

where E is the photon energy, and ϑe ∈ [0; π/2] and φe ∈ [0; 2π] are the polar angles in the
rest-frame of the material of the disk. If the emission is isotropic, we can consider a grid
of constant ∆(cos ϑe) and ∆φe and fire a photon from every point of the grid. The photon
4-momenta in the coordinate system (t, r, θ, ϕ) can be obtained from

kµ
0 = Eµ

(α)
k(α)0 . (58)

We can then solve the geodesic equations in the coordinate system (t, r, θ, ϕ) to calcu-
late the photon trajectories and study which trajectories return to the disk. For the photons
that return to the disk, we can calculate the redshift factor

g =
E2

E1
=

−uµ
2 kµ

−uµ
1 kµ

(59)

where the subindices 1 and 2 refer, respectively, to the emission point and the absorption
point. In the numerator, we have the 4-velocity of the material in the disk and the photon
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4-momentum at the absorption point. In the denominator, we have the 4-velocity of the
material in the disk and the photon 4-momentum at the emission point. For r ≥ rISCO, we
use the 4-velocity of the material in the disk region (Section 2.3)

uµkµ =
1 − b ΩK√

−gtt − 2gtϕΩK − gϕϕΩ2
K

, (60)

where b = −kϕ/kt. For r < rISCO, we use the 4-velocity of the material in the plunging
region (Section 2.4)

uµkµ = kt
gϕϕEISCO + gtϕLISCO

z

g2
tϕ − gttgϕϕ

− kϕ
gtϕEISCO + gttLISCO

z

g2
tϕ − gttgϕϕ

−kr

√√√√ 1
grr

[
gϕϕ(EISCO)2 + 2gtϕEISCOLISCO

z + gtt(LISCO
z )2

g2
tϕ − gttgϕϕ

− 1

]
. (61)

We can proceed as in the case of the illumination of the disk by the corona discussed in
Section 3. We divide the disk into annuli and we calculate the spectral flux for every annulus
as in Equation (49). Note that the total spectral flux illuminating the disk eventually will
be the sum of the direct radiation from the corona, the returning radiation of the thermal
component of the disk, and the returning radiation of the reflection component [44].

6. Relativistic Reflection Spectrum

Once we have the non-relativistic reflection spectrum at every radial coordinate of the
accretion disk, we can proceed to calculate the relativistic reflection spectrum, namely, the
reflection spectrum of the whole disk as seen by an observer far from the source [21,22].
The observed spectral flux is

Fo(Eo) =
∫

source
Io(Eo, X, Y) dΩ =

1
D2

∫
source

g3 Ie(Ee, re, ϑe) dXdY (62)

where the subindices o and e are used to indicate quantities measured in the rest-frame of
the distant observer and in the rest-frame of the emitter, respectively. dΩ = dXdY/D2 is
the infinitesimal solid angle in the sky of the distant observer, X and Y are the Cartesian
coordinates in the plane of the distant observer11, and D is the distance between the
observer and the source. g = Eo/Ee is the redshift factor, and Io = g3 Ie follows from
Liouville’s theorem (see Section 1.2). re is the emission radius in the accretion disk, and ϑe
is the emission angle in the rest-frame of the material of the disk, namely, the angle between
the normal to the disk and the photon emission direction measured in the rest-frame of the
material (which is different, in general, from the inclination angle of the disk i, namely, the
angle between the normal to the disk and the line of sight of the distant observer, because
of the phenomenon of light bending). The plane of the distant observer is assumed to be
perpendicular to the straight line connecting the source and the observer, so the angle θ in
the definition of the specific intensity (see Section 1.1) is 0 and cos θ = 1.

We consider a grid in the image plane of the distant observer. From every point of the
grid, we fire a photon and we calculate its trajectory backwards in time from the detection
point on the image plane of the distant observer to the emission point on the accretion disk.
When the photon hits the disk, say, at the radial coordinate re, we calculate the redshift
factor g and the emission angle ϑe. At this point, for every pixel with Cartesian coordinates
(X, Y) and area dXdY of the image of the disk on the plane of the distant observer12, we
have g and Ie, so we can calculate the integral in Equation (62) and determine the observed
flux density. The next subsections present the calculations of the photon initial conditions,
redshift factor g, and emission angle ϑe.
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6.1. Photon Initial Conditions

To write the photon initial conditions, we consider the system sketched in Figure 8. We
have a black hole, an accretion disk on the equatorial plane of the black hole perpendicular
to the black hole spin axis, and an observer far from the black hole. D is the distance
between the black hole and the observer, and i is the inclination angle of the disk, namely,
the angle between the black hole spin axis and the line of sight of the distant observer. The
Cartesian coordinates (x, y, z) are centered at the black hole as shown in Figure 8, so the
xy-plane coincides with the plane of the accretion disk, and the z-axis coincides with the
black hole spin axis. The distant observer has the Cartesian coordinates (X, Y, Z), where
the XY-plane coincides with the image plane of the observer, and the Z-axis coincides with
the straight line connecting the black hole and the observer. The Cartesian coordinates
(x, y, z) are related to the Cartesian coordinates (X, Y, Z) by the following relations:

x = D sin i − Y cos i + Z sin i ,

y = X ,

z = D cos i + Y sin i + Z cos i . (63)

  

Accretion Disk

Observer

Black Hole

X

y
x

z

Y Z

D

i

r0

K0

Figure 8. The Cartesian coordinates (x, y, z) are centered at the black hole. The Cartesian coordinates
(X, Y, Z) are the coordinate system of the distant observer. D is the distance between the black hole
and the distant observer. i is the inclination angle between the black hole spin axis and the line of
sight of the distant observer. K0 = (0, 0,−K0) is the initial 3-momentum of a photon in the coordinate
system of the distant observer. See the text for more details. Figure from Ref. [16].

The metric of our spacetime is in spherical-like coordinates (t, r, θ, ϕ). Far from the
black holes, the spatial coordinates (r, θ, ϕ) reduce to the usual spherical coordinates in flat
spacetime and are related to (x, y, z) by

r =
√

x2 + y2 + z2 ,

θ = arccos
( z

r

)
,

ϕ = arctan
( y

x

)
. (64)

For the distant observer, a generic photon has the initial position of the form (X0, Y0, 0)
and initial 3-momentum of the form K0 = (0, 0,−K0) because the photon trajectory is



Universe 2024, 10, 451 18 of 40

perpendicular to the XY-plane. In the coordinate system (t, r, θ, ϕ), the initial position of
the photon is

t0 = 0 ,

r0 =
√

X2
0 + Y2

0 + D2 ,

θ0 = arccos
(

Y0 sin i + D cos i
r0

)
,

ϕ0 = arctan
(

X0

D sin i − Y0 cos i

)
. (65)

The initial 4-momentum of the photon is kµ
0 = ∂xµ

∂Xµ Kµ
0 , where {xµ} = (t, x, y, z),

{Xµ} = (t, X, Y, Z) are the Cartesian coordinates of the distant observer, and Kµ
0 =

(K0, 0, 0,−K0) is the initial 4-momentum of the photon in the reference frame of the distant
observer. The result is

kr
0 = −D

r0
K0 ,

kθ
0 =

1√
X2

0 + (D sin i − Y0 cos i)2

[
cos i − (Y0 sin i + D cos i)

D
r2

0

]
K0 ,

kϕ
0 =

X0 sin i

X2
0 + (D sin i − Y0 cos i)2 K0 . (66)

kt
0 can be easily obtained from the condition gµνkµ

0 kν
0 = 0 with the metric tensor of flat

spacetime

kt
0 =

√(
kr

0
)2

+ r2
0
(
kθ

0
)2

+ r2
0 sin2 θ0

(
kϕ

0

)2
. (67)

With the initial conditions in Equations (65)–(67), we can integrate the geodesic equa-
tions in the spherical-like coordinates (t, r, θ, ϕ) backwards in time from a point in the image
plane of the distant observer to its emission point on the accretion disk. In the Kerr metric
in Boyer–Lindquist coordinates, the equations of motion are separable, and we can restrict
the attention to the motion in the rθ-plane; the corresponding equations can be solved in
terms of elliptic integrals [19]. In general, this is not the case. We can still exploit the fact
that the spacetime is stationary and axisymmetric, so we have Equations (15) and (16),
which can be rewritten as

dt
dλ′ =

gϕϕ + b gtϕ

g2
tϕ − gttgϕϕ

, (68)

dϕ

dλ′ = − gtϕ + b gtt

g2
tϕ − gttgϕϕ

, (69)

where b = Lz/E = −kϕ/kt is a constant along the photon trajectory, and λ′ = Eλ is the
normalized affine parameter. For the r and θ coordinates, we have to solve the second-order
geodesic equations, which reduces to the following equations for the metric in Equation (1):
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d2r
dλ′2 = −Γr

tt

(
dt

dλ′

)2
− Γr

rr

(
dr

dλ′

)2
− Γr

θθ

(
dθ

dλ′

)2
− Γr

ϕϕ

(
dϕ

dλ′

)2

−2Γr
tϕ

(
dt

dλ′

)(
dϕ

dλ′

)
− 2Γr

rθ

(
dr

dλ′

)(
dθ

dλ′

)
, (70)

d2θ

dλ′2 = −Γθ
tt

(
dt

dλ′

)2
− Γθ

rr

(
dr

dλ′

)2
− Γθ

θθ

(
dθ

dλ′

)2
− Γθ

ϕϕ

(
dϕ

dλ′

)2

−2Γθ
tϕ

(
dt

dλ′

)(
dϕ

dλ′

)
− 2Γθ

rθ

(
dr

dλ′

)(
dθ

dλ′

)
, (71)

where Γµ
νρ are the Christoffel symbols of the metric.

6.2. Redshift Factor and Emission Angle

When the photon hits the accreting material on the equatorial plane, we have to
calculate the redshift factor g and the emission angle ϑe.

If the photon hits the accreting material in the disk region (re > rISCO), the redshift
factor is

g =
Eo

Ee
=

−uµ
okµ

−uµ
e kµ

, (72)

where uµ
o = (1, 0, 0, 0) is the 4-velocity of the distant observer, uµ

e = ut
e(1, 0, 0, ΩK) is the

4-velocity of the Keplerian material in the accretion disk, and kµ = (kt, kr, kθ , kϕ) is the
conjugate 4-momentum of the photon. kµ should be evaluated at the detection point in
the numerator and at the emission point in the denominator, but actually kt and kϕ are
constants of motion, and kr and kθ do not play any role as the r and θ components of the 4-
velocities of the observer and of the material in the disk vanish. With ut

e from Equation (20),
the redshift factor g is

g =

√
−gtt − 2gtϕΩK − gϕϕΩ2

K

1 − b ΩK
(73)

where b = −kϕ/kt is a constant of motion and can be evaluated, for example, from the
initial conditions, so from the last expression in Equation (66) and from Equation (67).

To evaluate the emission angle in the rest-frame of the material in the disk, we need
the normal to the disk surface in the rest-frame of the material in the disk, nµ. We have to
consider the locally Minkowskian reference frame associated to the material in the disk
(see Appendix A) and nµ = Eµ

(Z), so

nµ =
1√
gθθ


0
0
1
0

. (74)

The emission angle ϑe can be evaluated as

cos ϑe =
nµkµ

uν
ekν

=
g√
gθθ

kθ

kt
=

1√
gθθ

√
−gtt − 2gtϕΩK − gϕϕΩ2

K

1 − b ΩK

kθ

kt
, (75)

where kθ is the θ component of the conjugate 4-momentum of the photon at the emission
point in the disk.
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If the photon hits the accreting material in the plunging region (re < rISCO), the redshift
factor is still given by Equation (72), but now the 4-velocity uµ

e has three non-vanishing
components (ut

e, ur
e, uϕ

e ). The redshift factor is

g =

(
ut

e + ur
e

kr

kt
+ uϕ

e
kϕ

kt

)−1

, (76)

where ut
e, ur

e, and uϕ
e are given, respectively, by the expressions in Equations (26) and (27)

if the material is in free fall. The locally Minkowskian reference frame associated to the
material in the plunging region is different from that reported in Appendix A because ur

e is
non-vanishing in the plunging region, and Eµ

(T) = uµ. However, since uθ
e is still vanishing,

we still have

nµ =
1√
gθθ


0
0
1
0

, (77)

and the emission angle is

cos ϑe =
g√
gθθ

kθ

kt
=

1√
gθθ

(
ut

e + ur
e

kr

kt
+ uϕ

e
kϕ

kt

)−1 kθ

kt
. (78)

The first calculations of iron line emissions from plunging regions were reported in
Ref. [46]. However, current reflection models normally ignore the radiation from the plung-
ing region because the material is thought to be highly ionized. Indeed, in the plunging
region, the material is expected to have a non-negligible radial velocity (see Section 2.4),
which can lead to a low rest-mass density (which will be estimated in Section 7.3). In such
a case, the ionization parameter ξ must be very high; see Equation (51). If the material
is highly ionized, the interactions between the photons from the corona and the material
in the plunging region are dominated by Compton scattering: the resulting reflection
spectrum has no emission lines and has instead the same shape as the incident spectrum.
In the analysis of the X-ray spectrum of a source, the reflection spectrum from the plunging
region contributes to the continuum and cannot be easily distinguished from the direct
spectrum from the corona. At the same time, it does not affect the analysis of the reflection
features from the disk and, in turn, the estimate of the parameters of the model. Such a
conclusion may change in the presence of non-negligible magnetic fields in the plunging
region, as these magnetic fields may reduce the radial velocity of the accreting material,
and thus increase the value of the electron density and decrease the value of the ionization
parameter. If magnetic fields can significantly slow down the plunging process, even the
reflection spectrum from the plunging region may have emission lines, which may affect
the estimate of the parameters of the system if the reflection spectrum from the plunging
region is not properly taken into account.

6.3. Examples of Relativistic Reflection Spectra

Figure 9 shows some relativistic reflection spectra produced by the relxill model [47]
for different values of the black hole spin parameter. The model ignores the radiation from
the plunging region and the effect of the returning radiation. These relativistic spectra are
calculated from the non-relativistic spectra produced by xillver.
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Figure 9. Examples of relativistic reflection spectra produced with relxill [47] for different values
of the black hole spin parameter a∗ = a/M assuming that the disk inclination angle is i = 60◦, the
photon index is Γ = 1.7, the high-energy cutoff is Ecut = 300 keV, the emissivity index is q = 6 (the
emissivity profile is described by a power law, Ie ∝ r−q), the ionization parameter is log ξ = 3 (ξ in
units erg cm s−1), and the electron density log N = 18 (N in units of cm−3).

The effect of the returning radiation can be important when the inner edge of the
accretion disk is very close to the black hole (which is normally possible only for very
fast-rotating black holes) and when the corona illuminates mainly the inner part of the
accretion disk (for instance, in the case of a lamppost corona, this is possible when the
height of the corona is very low). Reflection spectra can be produced even in the absence
of a corona by the returning radiation of the thermal spectrum of the disk. The model
ziji can calculate reflection spectra from thin disks, taking the returning radiation into
account [43,44].

7. Novikov–Thorne Disk

To calculate relativistic reflection spectra, the disk model discussed in Section 2 is
enough. We just assume that the disk is infinitesimally thin and perpendicular to the black
hole spin axis, and that the material in the disk moves on geodesic equatorial circular
orbits. There are no other assumptions. To calculate the relativistic thermal spectra, these
ingredients are not enough. We need a disk model predicting the temperature of the disk
at any radial coordinate. The Novikov–Thorne disk model addresses this point [1,48].
In this section, we consider a simplified version of the Novikov–Thorne model, and we
follow a more heuristic approach than the original publications, without paying attention
to all assumptions.We consider an ideal case, in which the system is in a steady-state
configuration, while the actual model is valid even if the system is highly dynamical and
derives the time-averaged properties of the disk. The details of the complete model can be
found in Refs. [1,48].

7.1. Near Equatorial Metric

The line element of our spacetime is given in Equation (1) in spherical-like coordinates
(t, r, θ, ϕ). For the discussion of the Novikov–Thorne model, it is convenient to change
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the coordinate system and choose cylindrical-like coordinates (t, ρ, z, ϕ). The coordinate
transformation is

ρ = r sin θ , z = r cos θ , (79)

with inverse

r =
√

ρ2 + z2 , θ = arctan
(ρ

z

)
. (80)

Since we are interested in the region near the equatorial plane, we expand the metric
coefficients gρρ, gzz, and gρz around z = 0

gρρ =

[
1 − z2

ρ2 + O
(

z4
)]

grr +

[
z2

ρ4 + O
(

z4
)]

gθθ = grr + O
(

z2
)

,

gzz =

[
z2

ρ2 + O
(

z4
)]

grr +

[
1
ρ2 − 2z2

ρ4 + O
(

z4
)]

gθθ =
gθθ

ρ2 + O
(

z2
)

,

gρz =

[
z
ρ
+ O

(
z3
)]

grr +

[
− z

ρ3 + O
(

z3
)]

gθθ = O(z) . (81)

If we ignore corrections of order z/ρ, the new line element is

ds2 = gttdt2 + 2gtϕdtdϕ + grrdρ2 +
gθθ

ρ2 dz2 + gϕϕdϕ2 . (82)

In many black hole spacetimes (including the Kerr case), gθθ/ρ2 = 1 on the equatorial
plane. If this is not the case, we can always introduce the coordinate dz′ =

√
gθθ/ρ2 dz to

have gz′z′ = 1. In the end, the line element in cylindrical-like coordinates (t, r, z, ϕ) of our
spacetime near the equatorial plane can always be written as

ds2 = g̃ttdt2 + 2g̃tϕdtdϕ + g̃rrdr2 + dz2 + g̃ϕϕdϕ2 . (83)

where the tilde ˜ is used to indicate the near equatorial metric coefficients in cylindrical-like
coordinates (t, r, z, ϕ) and avoid confusion with the metric coefficients in spherical-like
coordinates (t, r, θ, ϕ) in Equation (1). The infinitesimal element of the 4-volume of the
metric in Equation (83) is

dV =
√
−g̃ dt dr dz dϕ =

√
g̃rr

(
g̃2

tϕ − g̃tt g̃ϕϕ

)
dt dr dz dϕ . (84)

7.2. Radial Structure of the Disk

From the laws of conservation of rest-mass ∇µ(ρuµ) = 0 conservation of energy
∇µTtµ = 0, and conservation of angular momentum ∇µTϕµ = 0, we can derive the radial
structure of the accretion disk [1].

Let us consider the conservation of rest-mass ∇µ(ρuµ) = 0, where ρ is the mass density
measured in the rest-frame of the material (ρ = mn, where m is the mean rest-mass per
particle, and n is the particle density in the rest-frame of the material). We integrate this
expression over the 4-volume of the spacetime from t∗ to t∗ + ∆t and from r∗ to r∗ + ∆r
shown in Figure 10, where we collapse the z direction

0 =
∫

V
∇µ(ρuµ)

√
−g̃ dt dr dz dϕ =

∫
V

∂

∂xµ

(√
−g̃ρuµ

)
dt dr dz dϕ =

∫
Σ

√
−g̃ρuµ dσµ , (85)
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where first we use the formula for the covariant divergence of a generic vector Aµ in a
generic spacetime with metric gµν and metric determinant g (see, for instance, Section 5.3
in Ref. [41] for its derivation)

∇µ Aµ =
1√−g

∂

∂xµ

(√
−gAµ

)
, (86)

and then we apply Gauss’s theorem to convert the integral over the volume V to the integral
over its surface Σ. As shown in Figure 10, in our case, we can consider four surfaces: two
cylindrical-like surfaces at, respectively, r = r∗ and r = r∗ + ∆r, and two annulus-like
surfaces at, respectively, t = t∗ and t = t∗ + ∆t. We have, thus, four integrals

0 =

[∫ t∗+∆t

t∗
dt

∫ h/2

−h/2
dz

∫ 2π

0
dϕ

√
−g̃ρur

]
r=r∗+∆r

−
[∫ t∗+∆t

t∗
dt

∫ h/2

−h/2
dz

∫ 2π

0
dϕ

√
−g̃ρur

]
r=r∗

+

[∫ r∗+∆r

r∗
dr

∫ h/2

−h/2
dz

∫ 2π

0
dϕ

√
−g̃ρut

]
t=t∗+∆t

−
[∫ r∗+∆r

r∗
dr

∫ h/2

−h/2
dz

∫ 2π

0
dϕ

√
−g̃ρut

]
t=t∗

. (87)

where h is the thickness of our disk and, for simplicity, we can assume that the rest-mass
density is ρ = constant for −h/2 < z < h/2, and 0 otherwise. In our simple model in
the steady state, the last two integrals exactly cancel each other because the integrand is
independent of time. The rest-mass accretion rate is

Ṁ =
∫ h/2

−h/2
dz

∫ 2π

0
dϕ

√
−g̃ρur = 2π

√
−g̃ρhur , (88)

and therefore Equation (87) becomes

∆t Ṁ(r∗ + ∆r)− ∆t Ṁ(r∗) = 0 , (89)

so the rest-mass accretion rate (88) is independent of r. This could have been expected
because there are no disk winds or outflows in our model.

  

t* + Δt

t*

t

r* + Δr

r* 

Figure 10. The 4-volume V in Equation (85) is the cylinder-like region of the accretion disk between
the surfaces r = r∗ and r = r∗ + ∆r, and the surfaces t = t∗ and t = t∗ + ∆t. Figure from Ref. [16].
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One can proceed in a similar way with the conservation of energy and angular mo-
mentum to find the energy flux from the surface of the accretion disk and the torque at
every radial coordinate r. The details can be found in Ref. [1]. To calculate the relativistic
thermal spectrum of a disk, we need to have the energy flux from the surface of the disk,
which is given by the following expression:

F (r) =
Ṁ

4πM2 F̂(r) , (90)

where F̂ is the following dimensionless function

F̂(r) = − 1

(E − ΩKLz)
2

∂ΩK

∂r
M2
√−g̃

∫ r

rin

(E − ΩKLz)
∂Lz

∂ϱ
dϱ . (91)

In Equation (91), E and Lz are, respectively, the specific energy and the axial compo-
nent of the specific angular momentum for geodesic equatorial circular orbits given in
Equations (21) and (22), ΩK is the Keplerian angular velocity of the material in the disk
given in Equation (19), and rin is the inner edge of the accretion disk (rin ≥ rISCO).

7.3. Plunging Region

From Equation (88), we can estimate the rest-mass density in the plunging region. If
we assume that the radial component of the 4-velocity of the accreting material is given by
Equation (28) in the plunging region and h is roughly constant (say h ∼ 0.1 or 0.01 M), the
rest-mass density is

ρ(r) =
Ṁ

2π h

[
g̃ϕϕ(EISCO)2 + 2g̃tϕEISCOLISCO

z + g̃tt(LISCO
z )2 − g̃2

tϕ + g̃tt g̃ϕϕ

]−1/2
. (92)

For a fixed background metric, ρ in Equation (92) is only a function of r and Ṁ.

8. Relativistic Thermal Spectrum

If we assume that (i) the material in the accretion disk is in local thermal equilibrium,
(ii) the heat transport along the radial direction is negligible, and the energy and angular
momentum are radiated from the disk surface, we can define an effective temperature Teff
at every radial coordinate by imposing that the energy flux F in Equation (90) is the heat
power emitted from the surface of the disk and using the Stefan–Boltzmann law

F = σSB T4
eff , (93)

where σSB = 5.67 · 10−5 erg s−1 cm−2 K−4 is the Stefan–Boltzmann constant. Figure 11
shows the radial profile of the effective temperature of a Novikov–Thorne disk around
a Kerr black hole with mass M = 10 M⊙ and different values of the black hole spin
parameters a∗, assuming that the black hole mass accretion rate is Ṁ = 1018 g s−1 and that
rin = rISCO. Since Novikov–Thorne disks are realized when the black hole mass accretion
rate is of the order of 10% of the Eddington limit of the source, F turns out to be always
proportional to 1/M, and we can easily see that the effective temperature of the inner part
of a Novikov–Thorne disk should be of the order of 1 keV for M = 10 M⊙ and of the order
of 10 eV for M = 109 M⊙

Teff ∼ 1
(

10 M⊙
M

)1/4
keV . (94)
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Figure 11. Radial profile of the effective temperature Teff in Novikov–Thorne disks around Kerr black
holes with M = 10 M⊙, Ṁ = 1018 g s−1, and different values of the black hole spin parameters a∗.
Figure from Ref. [16].

In the case of accretion disks around stellar-mass black holes, the effective temperature
of the inner part is high, and non-thermal effects (mainly electron scattering in the disk
atmosphere) cannot be ignored. Deviations from the blackbody spectrum can be taken
into account by introducing the color factor (or hardening factor) fcol and defining the
color temperature Tcol = fcolTeff. The specific intensity of the radiation in the rest-frame of
the material in the disk is (for this formula, it can be useful to reintroduce fundamental
constants rather than using natural units):

Ie =
2hν3

e
c2

1
f 4
col

Υ

exp
(

hνe
kBTcol

)
− 1

, (95)

where h is the Planck constant, c is the speed of light, kB is the Boltzmann constant, and
Υ = Υ(ϑe) is a function regulating the angular emission. The two most popular choices
are Υ = 1 (isotropic emission) and Υ = 0.5 + 0.75 cos ϑe (limb-darkened emission). In
the case of a 10 M⊙ black hole with an accretion luminosity of 10% its Eddington limit,
fcol is expected to be in the range 1.5 to 1.9, and it can be evaluated by a model for the
disk atmosphere [49–51]13. Note that Ie = Ie(re) because Tcol (and at some level, even fcol)
depends on the radial coordinate.

With Ie in Equation (95), we can proceed as in the case of the calculation of a relativistic
reflection spectrum discussed in Section 6 and infer the relativistic thermal spectrum of a
source through Equation (62). We consider a distant observer and we fire photons from
the plane of the distant observer to the accretion disk with the photon initial conditions
presented in Section 6.1. When a photon hits the accretion disk (r > rISCO), we calculate
the redshift factor g and, if we do not assume Υ = 1, the emission angle ϑe. We repeat
the calculations for every small element dXdY in the image plane of the distant observer,
and then we integrate over the full image to obtain the relativistic thermal spectrum of
the whole disk. In the Novikov–Thorne model, there is no emission of radiation from the
plunging region. However, there is material even there, and one can include the thermal
spectrum of the plunging region; see, for instance, the model in Ref. [53].
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9. Cunningham’s Transfer Function

The calculations of relativistic reflection spectra and of the relativistic thermal spectra
of thin disks discussed in the previous sections turn out to be very time-consuming. The
geodesic equations are relatively easy and fast to solve, but normally one has to calculate
the trajectories of millions of photons to reach the required accuracy in the final result.
The calculation of non-relativistic reflection spectra requires solving radiative transfer
equations, which are definitively time-consuming. On the other hand, during the data
analysis process, we have to be able to quickly generate many spectra for different values of
the model parameters in order to scan the full parameter space and find the best-fit model,
so we cannot perform the calculations described in the previous sections.

Every point in the image of the accretion disk in the plane of the distant observer is
specified by the Cartesian coordinates (X, Y). After calculating the photon trajectories, for
every point in the image of the accretion disk, we can associate a point on the accretion
disk, and we can determine its emission radius re and its redshift factor g. In the case
of an infinitesimally thin Keplerian accretion disk perpendicular to the spin axis of a
Kerr black hole, every point on the accretion disk is visible to a distant observer: the
circle of the points with the same emission radius re will not be a circle in the image of
the accretion disk in the plane of the distant observer, but it will still be a closed loop.
Moreover, for each of these closed loops, we will have a point with the minimum value of
the redshift factor and a point with the maximum value of the redshift factor. Which points
on the accretion disk have the minimum and maximum redshift factors depends on the
emission radius re and the inclination angle of the disk i (if we fix the background metric
by specifying the black hole spin parameter a∗) because the redshift factor is the result
of the competition/combination between the Doppler boosting (which depends on both
the emission radius and the inclination angle of the disk) and the gravitational redshift
(which depends only on the emission radius). We can thus write gmin = gmin(re, i) and
gmax = gmax(re, i) to indicate the minimum and maximum redshift factor for the emission
radius re and the disk inclination angle i. Since the points on the accretion disk at the same
emission radius form a closed loop on the image of the disk in the plane of the observer,
the point with the minimum redshift factor and the point with the maximum redshift
factor are connected by two branches. It turns out that, in both branches, the redshift factor
monotonically increases when we move from the point with the minimum redshift factor to
the point with the maximum redshift factor14. These results allow us to define the relative
redshift factor g∗ as

g∗ =
g − gmin

gmax − gmin
, (96)

and to parametrize the points of the accretion disk with the emission radius re and the
relative redshift factor g∗.

We can thus recast Equation (62) in the following form [55–57]:

Fo(νo) =
1

D2

∫ rout

rin

dre

∫ 1

0
dg∗

πreg2√
g∗(1 − g∗)

f (1)(g∗, re, i) Ie(νe, re, ϑ
(1)
e )

+
1

D2

∫ rout

rin

dre

∫ 1

0
dg∗

πreg2√
g∗(1 − g∗)

f (2)(g∗, re, i) Ie(νe, re, ϑ
(2)
e ) , (97)

where f is Cunningham’s transfer function [56]

f (i)(g∗, re, i) =
g
√

g∗(1 − g∗)
πre

∣∣∣∣ ∂(X, Y)
∂(re, g∗)

∣∣∣∣ (98)

and at every emission radius, we have two transfer functions f (1) and f (2) because we
have two branches connecting gmin to gmax. rin and rout are, respectively, the inner and the
other radii of the accretion disk. |∂(X, Y)/∂(re, g∗)| is the Jacobian between the Cartesian
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coordinate of the image plane of the distant observer, (X, Y), and the coordinates used on
the accretion disk, (re, g∗). If the specific intensity at the emission point does not depend
on the emission radius, then Ie = Ie(νe, re), and we can rewrite Equation (97) as

Fo(νo) =
1

D2

∫ rout

rin

dre

∫ 1

0
dg∗

πreg2√
g∗(1 − g∗)

[
f (1)(g∗, re, i) + f (2)(g∗, re, i)

]
Ie(νe, re) . (99)

Figures 12 and 13 show some examples of the transfer functions of an infinitesimally
thin Keplerian accretion disk in the Kerr spacetime. In Figure 12, we change the values
of the inclination angle of the disk i. In Figure 13, we change the value of the black hole
spin parameter a∗ = a/M (note that a/M < 0 means that the black hole spin is anti-
parallel to the angular momentum of the disk). The minimum and maximum redshifts
are, respectively, at g∗ = 0 and 1. These two points are connected by two branches. In
Figures 12 and 13, dashed lines are for the transfer functions of the upper branches (say
f (1)), and solid lines are for the transfer functions of the lower branches (say f (2)).

Figure 12. Examples of Cunningham’s transfer functions for an infinitesimally thin Keplerian
accretion disk in the Kerr spacetime. The central black hole has spin parameter a∗ = 0.998 and the
plot shows the transfer functions at the emission radius re = 4 M for different values of the inclination
angle of the disk i. Dashed curves are for the upper branches of the transfer functions, and solid
curves are for the lower branches.

Figure 13. Examples of Cunningham’s transfer functions for an infinitesimally thin Keplerian
accretion disk in the Kerr spacetime. The inclination angle of the disk is i = 60◦ and the plot shows
the transfer functions at the emission radius re = 9 M for different values of the black hole spin
parameter a∗ = a/M. Dashed curves are for the upper branches of the transfer functions, and solid
curves are for the lower branches.
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In the case of a relativistic thermal model, the specific intensity at the emission point is
given by Equation (95). The transfer function f can be pre-calculated and tabulated into a
FITS file15 before the data analysis process. The model for data analysis simply has to solve
the integral in Equation (97), or in Equation (99) if Υ = 1, and call the FITS file to know the
value of the transfer function. This is how the model nkbb works [58].

For a relativistic reflection model, there are a few complications. The specific intensity
at the emission point can be determined after numerically solving radiative transfer equa-
tions rather than from a simple analytical formula as in the case of the thermal spectrum.
The emissivity profile of the accretion disk can be determined after studying how the
corona illuminates the disk. Unlike in the case of the thermal component, we do not know
the actual luminosity of the disk in terms of parameters like the black hole mass and the
mass accretion rate, and therefore we cannot predict the observed flux as a function of the
distance of the source. It is thus convenient to rewrite Equation (97) as

Fo(νo) = C
∫ rout

rin

dre

∫ 1

0
dg∗

πreg2√
g∗(1 − g∗)

f (1)(g∗, re, i) Ie(FX , νe, re, ϑ
(1)
e )

+C
∫ rout

rin

dre

∫ 1

0
dg∗

πreg2√
g∗(1 − g∗)

f (2)(g∗, re, i) Ie(FX , νe, re, ϑ
(2)
e ) , (100)

where C is a normalization constant to be determined when we fit the data, and FX = FX(re)
is the X-ray spectral flux illuminating the disk at the emission radius re. FX is determined
when we study how the corona and the returning radiation illuminate the disk.

Current reflection models for data analysis often employ a simplification to assume
the same non-relativistic reflection spectrum over the whole disk and normalize the specific
intensity through the emissivity profile ϵ(re). Within such an approximation, Equation (100)
can be written as

Fo(νo) = C
∫ rout

rin

dre

∫ 1

0
dg∗

πreg2√
g∗(1 − g∗)

[
f (1)(g∗, re, i) + f (2)(g∗, re, i)

]
ϵ(re) Īe(νe) , (101)

where Īe is the “average” specific intensity over the disk (or some region of the disk if we
divide the disk into a few zones with different specific intensities). It is evaluated from the
weighted sum of specific intensities on the disk (a certain zone of the disk) with different
emission angles16. Now the transfer function f , the emissivity profile ϵ, and the specific
intensity Īe can be pre-calculated and tabulated into three different FITS files before the data
analysis process. In the Kerr spacetime, the transfer function f depends on the black hole
spin parameter a∗ and the inclination angle of the disk i, and once these two parameters
are fixed, it is a function of re and g∗. The emissivity profile ϵ depends on the parameters
of the specific coronal model (for example, in the lamppost setup, it depends only on the
height of the corona) and on the background metric (the black hole spin parameters a∗ in
the case of the Kerr metric): after fixing the coronal model and the background metric, ϵ
only depends on the emission radius re. Īe depends on the X-ray spectral flux illuminating
the disk and the parameters of the accretion disk model. For example, if we assume that
the X-ray spectral flux illuminating the disk can be approximated by a power law with
a high-energy cutoff, we can have five parameters: the photon index Γ, the high-energy
cutoff Ecut, the electron density of the accretion disk N, the ionization parameter ξ, and the
iron abundance AFe. During the data analysis process, the model calls the three FITS files
in which f , ϵ, and Īe are tabulated and quickly calculates different relativistic spectra for
different values of the model parameters.

The emissivity profile produced by a corona of specific geometry can be calculated
with the tools presented in Section 3; see also Refs. [38,59]. If the corona is compact and
close to the black hole, the effect of light bending leads to the illumination of mainly the
inner part of the accretion disk, and the emissivity profile is very steep [39]. If the corona
is compact but not very close to the black hole, at large radii, we recover the Newtonian
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limit, where ϵ ∝ r−3 [39]. For a corona of unknown geometry, it is common to employ a
phenomenological emissivity profile, like a power law (ϵ ∝ r−q, where q is the emissivity
index), a broken power law (ϵ ∝ r−qin for r < Rbr and ϵ ∝ r−qout for r > Rbr, where Rbr
is the breaking radius), or a twice broken power law (ϵ ∝ r−qin for r < Rbr,1, ϵ ∝ r−qmid

for Rbr,1 < r < Rbr,2, and ϵ ∝ r−qout for r > Rbr,2), where the emissivity index/indices
and the breaking radius/radii can be free in the fit and inferred from observations. Steep
emissivities (q > 3) are commonly found in X-ray binaries [28] and active galactic nuclei [60].
Some observations require extremely steep emissivities in the inner part of the accretion
disk (even q > 10), which are beyond the values that we could expect from theoretical
calculations and may point to some deficiency in our theoretical models.

10. Comparison Between Theoretical Predictions and Observational Data

While this tutorial is focused on the relativistic calculations to predict black hole X-ray
spectra, this section is devoted to comparing the predictions of reflection models discussed
in the previous sections with real observational data.

In the analysis of real data, we have to model every component of the source, not
only the reflection and/or the thermal spectra, and this clearly complicates the analysis of
an observation. As an example, here we consider MCG–6–30–15, which is a very bright
Seyfert 1 galaxy at redshift z = 0.007749. This source has been studied by many authors
with different observations and different X-ray missions [24,61–65]. It is the source in which
a relativistically broadened iron line was unambiguously detected for the first time [66].
The spectrum of MCG–6–30–15 often shows a very broad and prominent iron Kα line,
making this source an excellent candidate to test and study reflection models.

XMM-Newton and NuSTAR observed simultaneously MCG–6–30–15 from 29 January 2013
for a total time of ∼315 ks and ∼360 ks, respectively (observation ID 0693781201, 0693781301,
and 0693781401 for XMM-Newton and 60001047002, 60001047003, and 60001047005 for NuS-
TAR). The first study of these data was reported in Ref. [64]. The quality of the data was very
good, but the source was very variable, so the data analysis required some special attention.
Here, we report the analysis of Ref. [67]. We arrange the data into four groups according to
the flux state of the source (low, medium, high, and very-high flux states) requiring a similar
spectral data count for every flux state. The search for the model is described in Ref. [27].

If we fit the data with an absorbed power law, we clearly see a broad iron line peaking
around 6 keV and a Compton hump peaking around 20–30 keV; see Figure 14. These are the
two typical signatures indicating strong relativistic reflection features in the X-ray spectra
of a source. The final model is (in XSPEC language)

tbabs×warmabs1×warmabs2×dustyabs×(cutoffpl+RR+NR+zgauss+zgauss),

where tbabs describes the Galactic absorption, warmabs1 and warmabs2 describe two ion-
ized absorbers, dustyabs describes a neutral absorber and only modifies the soft X-ray
band, cutoffpl describes the direct spectrum from the corona, RR and NR indicate, re-
spectively, a relativistic and a non-relativistic reflection component, and zgauss is used to
describe a narrow emission line at 0.8 keV and a narrow absorption line at 1.2 keV (for
more details, see Ref. [27]). We consider three models. Model 1: we use the reflionx
model [18] and we have NR = reflionx and RR = relconv×reflionx. Models 2 and 3:
we use xillver [17] and NR = xillver, while RR = relconv×xillver in Model 2 and
RR = relxill in Model 317. For every model, we consider two emissivity profiles: a simple
power law (ϵ ∝ 1/rq

e, where the emissivity index q is a free parameter in the fit) and a
broken power law (ϵ ∝ 1/rqin

e for re < Rbr and ϵ ∝ 1/rqout
e for re > Rbr, where the inner

emissivity index qin, the outer emissivity index qout, and the breaking radius Rbr are all
free parameters in the fit). Figure 15 shows the the best-fitting models of the low flux states
and the data to best-fitting model ratios. The six fits provide somewhat similar (even if not
completely consistent) estimates of the model parameters (for more details, see Ref. [67]).
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The measurements of the spin and of the inclination angle of the disk are reported in
Table 1.

Figure 14. Data to best-fit model ratio for an absorbed power law (in XSPEC language,
tbabs×cutoffpl) for the low flux state (top left panel), medium flux state (top right panel), high
flux state (bottom left panel), and very-high flux state (bottom right panel). Red crosses are used
for XMM-Newton data, green crosses are used for NuSTAR/FPMA, and blue crosses are used for
NuSTAR/FPMB. Figure from Ref. [67].

Figure 15. Cont.
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Figure 15. Best-fit models of the low flux state and data to best-fit model ratios for Model 1 (top
panels), Model 2 (central panels), and Model 3 (bottom panels), where the emissivity profile is
modeled by a simple power law (left panels) or a broken power law (right panels). In every panel,
the total spectrum is in black, the power-law component from the corona is in red, the relativistic
reflection component from the disk is in blue, and the non-relativistic reflection component from
cold material is in green. Red crosses are used for XMM-Newton data, green crosses are used for
NuSTAR/FPMA, and blue crosses are used for NuSTAR/FPMB. Figure from Ref. [67].

Table 1. Best-fit values of the black hole spin parameter a∗ and of the inclination angle of the
disk i for Model 1 (NR = reflionx and RR = relconv×reflionx), Model 2 (NR = xillver and
RR = relconv×xillver), and Model 3 (NR = xillver and RR = relxill). For every model, the
emissivity profile can be either a simple power law (s) or a broken power law (b). The reported
uncertainties correspond to the 90% confidence level for one relevant parameter (∆χ2 = 2.71). (P)
means that the 90% confidence level reaches the maximum value of the parameter in the model. The
table also shows the value of χ2, the number of degree of freedom (dof), and the value of the reduced
χ2. See Ref. [67] for more details.

Model 1 Model 2 Model 3

s b s b s b

a∗ 0.83+0.03
−0.04 0.88+0.04

−0.08 0.90+0.06
−0.07 0.915+0.024

−0.030 0.997+(P)
−0.04 0.962+0.019

−0.017
i [deg] 24.2+1.6

−1.7 19+5
−5 29.0+2.2

−2.3 30.7+2.2
−2.5 33.3+1.6

−1.6 28.7+1.7
−1.0

χ2 3171.36 3130.26 3094.68 3079.54 3081.74 3024.46
dof 2691 2683 2689 2681 2691 2683
χ2/dof 1.17850 1.16670 1.15087 1.14865 1.14520 1.12727

10.1. Requirements in the Analysis of Reflection Features with Current Reflection Models

Reflection models have several parameters. If we want to measure all parameters from
the spectral fitting, we need high-quality data and a spectrum with strong signatures of
relativistic effects. Without these two ingredients, we are unlikely to be able to break the
parameter degeneracy of the model, and we would be forced to freeze the values of some
parameters in the fit, with the result that the final measurement may be biased.

To have high-quality data, the source must be very bright to have a good statistics
(assuming that our X-ray detector has no pile-up problems), the data should cover a wide
energy band to see both the relativistically broadened iron line and the Compton hump,
and we should have a good energy resolution at the iron line (which is the most informative
part of the spectrum concerning relativistic effects).

In order to have strong relativistic signatures in the reflection spectrum, it is necessary
that the inner edge of the accretion disk is as close as possible to the black hole (which, in
turn, requires selecting very fast-rotating black holes with an inner edge of the disk at the
ISCO radius) and that the corona well illuminates the very inner part of the disk (which, in
turn, requires that the corona is compact and very close to the black hole, so the strong light
bending can focus most of the hard X-ray photons from the corona to the region around the
inner edge of the disk). These two conditions lead to very broadened iron lines in reflection
spectra [39]. In the presence of strong relativistic signatures in the reflection spectrum, it is
possible to break the parameter degeneracy [68,69].
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Since our reflection models assume that the disk is thin, we should only analyze
sources with geometrically thin accretion disks. This condition can be satisfied if we select
sources with an accretion luminosity between ∼5% and ∼30% of the Eddington limit [70],
but this requires having a reliable estimate of the black hole mass and distance. The exact
thickness of the disk is not relevant in the final measurement as long as the disks are thin,
especially if we study very fast-rotating black holes [54,71]. On the contrary, if the black
hole accretes from a thick disk, we can easily obtain precise but non-accurate measurements
of the source [72,73].

10.2. Accuracy of the Theoretical Models

Reflection models have been significantly developed in the past decade [23], but they
still rely on a number of simplifications that may somewhat affect the final measurements.
Even in the example of MCG–06–30–15 at the beginning of this section, we see that the
choice of the reflection model may give somewhat different estimates of some parameters.

The geometry of the corona is not yet well understood, though it is important in
the calculation of reflection spectra because it determines the exact emissivity profile of
the disk. However, the emissivity profiles produced by specific coronal geometries have
been calculated in a number of studies [13,38,59,74], and the conclusion is that a broken
power law (or a twice broken power law) profile should be enough to well approximate
the emissivity profile generated by a corona of arbitrary geometry. In the presence of high-
quality data, the fit should be able to determine all parameters of this phenomenological
emissivity profile. For example, in Ref. [28], it is shown that the spectra that seem to require
a lamppost corona can be also fit with a broken power law profile, always finding consistent
estimates of the model parameters, even if the fit is a bit worse (however, the opposite is
not true, namely, the spectra that require a broken power law profile may not fit with the
less flexible lamppost model).

The accuracy of the disk model employed in reflection models was recently tested
with NuSTAR simulations of reflection spectra calculated from GRMHD-simulated disks
in Ref. [37]. The conclusion of that work is that we can recover the correct input parameters
from the spectral analysis of the reflection features with the current reflection models. The
concept of the inner edge of the disk is more likely replaced by the “reflection edge”, which
is still around the ISCO radius and separates the disk from the plunging region [75]. The
plunging region can be optically thick and produce reflection photons, but its density is
so low that the gas is highly ionized: as a result, the reflection process is dominated by
Compton scattering, and the reflection spectrum looks like a power law without emission
lines, so it does not affect the analysis of the reflection features and, in turn, the estimate of
the model parameters [75,76].

The effect of the returning radiation (discussed in Section 5) is normally ignored in
the analysis of current black hole X-ray spectra. In the case of thermal spectra, it was
shown that a thermal spectrum calculated taking the returning radiation into account is
very similar to a thermal spectrum calculated without including the returning radiation
and a slightly higher mass accretion rate [77]. The effect is therefore ignored because it
does not affect the measurement of black hole spins. In the case of the reflection spectra,
the returning radiation has two effects: it alters the original emissivity profile produced
by the corona and changes the reflection spectrum itself because the direct spectrum from
the corona illuminating the disk can be approximated by a power law with a high-energy
cutoff but the spectrum of the returning radiation is a reflection spectrum. Moreover, even
the thermal radiation can return to the disk and produce reflection radiation, and we may
have a reflection spectrum even without a corona and entirely generated by the returning
radiation of the thermal component. Recently, the reflection model relxill included the
effect of the returning radiation on the emissivity profile of the disk, still assuming that the
reflection spectrum is produced by a power law spectrum with a high-energy cutoff [78].
The model ziji can calculate reflection spectra, taking the returning radiation of both the
reflection and thermal component into account [43,44], but it is too slow to analyze data.
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However, it was shown that the analysis of data with a reflection model that ignores the
returning radiation or considers only the effect of the returning radiation in the emissivity
profile of the disk can significantly overestimate or underestimate some model parameters,
especially in the case of fast-rotating black holes with compact coronae close to the inner
part of the accretion disk, which are the kind of systems for which we can have more precise
measurements [43,44].

11. Concluding Remarks

This tutorial reviews the relativistic calculations of the electromagnetic spectrum of
cold, thin, Keplerian accretion disks around black holes. The disk–corona model predicts
a thermal spectrum from the disk, a Comptonized spectrum from the hot corona, and a
relativistically blurred reflection spectrum from the disk. The expressions reported in this
tutorial are valid for a generic stationary, axisymmetric, asymptotically flat, circular black
hole spacetime, and therefore they can be potentially applied to a large class of black hole
solutions. The presentation is intentionally pedagogical in order to help graduate students
to enter this line of research. More details can be found in the papers in the reference list. As
pointed out in this tutorial, current models for data analysis present many simplifications
in order to be able to quickly produce many spectra. Some improvements are already
required for the analysis of XRISM data: the microcalorimeter on XRISM [79] has an energy
resolution of around 5 eV at the iron line, but current non-relativistic reflection models
have tables with an energy resolution of up to 20 eV at the iron line. The analysis of data of
future X-ray missions like Athena [80] will require significantly more advanced models
than those available today.
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Appendix A. Locally Minkowskian Reference Frames

There are situations in which it is convenient to choose the reference frame of a locally
Minkowskian observer. Formally, this is equivalent to a coordinate transformation from
the coordinate system {xµ} to the coordinate system {x′µ} = (T, X, Y, Z)18

dxµ → dx′(α) = E(α)
µ dxµ , (A1)

such that the new metric tensor is the Minkowski metric

gµν → η(α)(β) = Eµ

(α)
Eν
(β)gµν , (A2)

where Eµ

(α)
are the inverse of E(α)

µ , so E(α)
µ Eν

(α)
= δν

µ and E(α)
µ Eµ

(β)
= δ

(α)
(β)

. {Eµ

(α)
} is the tetrad

of the orthogonal basis vectors associated to the reference frame of the locally Minkowskian
observer. If a vector (dual vector) has components Vµ (Vµ) in the coordinate system {xµ},
the components of the vector (dual vector) in the locally Minkowskian reference frame are

V(α) = E(α)
µ Vµ , V(α) = Eµ

(α)
Vµ . (A3)

It is straightforward to see that

Vµ = Eµ

(α)
V(α) , Vµ = E(α)

µ V(α) . (A4)
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Note that the spacetime indices are lowered by gµν and raised by gµν, and the internal
indices of the locally Minkowskian reference frame are lowered by η(α)(β) and raised by
η(α)(β).

The time-like tetrad basis vector Eµ

(T) is the 4-velocity of the locally Minkowskian
observer in the coordinate system {xµ}, say, uµ. In our case, the spacetime metric is
given in Equation (1) in spherical-like coordinates (t, r, θ, ϕ). If the locally Minkowskian
observer is in a circular orbit (not necessarily on the equatorial plane), his/her 4-velocity is
uµ = ut (1, 0, 0, ω), where ut can be inferred from gµν ẋµ ẋν = −1

ut =
1√

−gtt − 2gtϕω − gϕϕω2
(A5)

and ω = uϕ/ut is the angular velocity of the observer with respect to the coordinate system
(t, r, θ, ϕ)19. A natural choice for the tetrad of the orthogonal basis vectors associated to the
reference frame of the locally Minkowskian observer is

Eµ

(T) = ut


1
0
0
ω

, Eµ

(X)
=

1√
grr


0
1
0
0

, Eµ

(Y) =
ut√

g2
tϕ − gttgϕϕ


gtϕ + ωgϕϕ

0
0

−gtt − ωgtϕ

,

Eµ

(Z) =
1√
gθθ


0
0
1
0

. (A6)

The inverse is

E(T)
µ = −ut


gtt + ωgtϕ

0
0

gtϕ + ωgϕϕ

, E(X)
µ =

√
grr


0
1
0
0

, E(Y)
µ = ut

√
g2

tϕ − gttgϕϕ


−ω

0
0
1

,

E(Z)
µ =

√
gθθ


0
0
1
0

. (A7)

A special case is an observer with angular velocity ω = ΩLNRF = −gtϕ/gϕϕ, which is
often referred to as a locally non-rotating frame (LNRF) in the literature [34]20. The 4-velocity
of such an observer is

ut =

√
gϕϕ

g2
tϕ − gttgϕϕ

. (A8)

The tetrad of the orthogonal basis vectors associated to the locally non-rotating ob-
server reduces to

Eµ

(T) =

√
gϕϕ

g2
tϕ − gttgϕϕ


1
0
0
ω

, Eµ

(X)
=

1√
grr


0
1
0
0

, Eµ

(Y) =
1√gϕϕ


0
0
0
1

,

Eµ

(Z) =
1√
gθθ


0
0
1
0

, (A9)
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with inverse

E(T)
µ =

√√√√ g2
tϕ − gttgϕϕ

gϕϕ


1
0
0
0

, E(X)
µ =

√
grr


0
1
0
0

, E(Y)
µ =

√
gϕϕ


−ω

0
0
1

,

E(Z)
µ =

√
gθθ


0
0
1
0

. (A10)

Appendix B. Proper Areas of the Annuli of an Accretion Disk

Let us consider an observer in an equatorial circular orbit with Keplerian angular
velocity. The tetrad and the inverse of the tetrad associated to such an observer are given in
Equations (A6) and (A7) with ω = ΩK, where ΩK is the angular velocity in Equation (19).

First, we want to figure out the proper length of the orbit of this observer. At a certain
time t = t∗, in the coordinate system (t, r, θ, ϕ), we measure the angle dϕ. In his/her locally
Minkowskian reference frame, the observer measures

dY = E(Y)
µ dxµ = ut

√
g2

tϕ − gttgϕϕ dϕ =

√√√√ g2
tϕ − gttgϕϕ

−gtt − 2gtϕΩK − gϕϕΩ2
K

dϕ , (A11)

because dt = 0. If the radial coordinate of the orbit is r = ri, the proper length of the orbit
of the observer is

ℓ(ri) =
∫ 2π

0
dϕ

√√√√ g2
tϕ − gttgϕϕ

−gtt − 2gtϕΩK − gϕϕΩ2
K
= 2π


√√√√ g2

tϕ − gttgϕϕ

−gtt − 2gtϕΩK − gϕϕΩ2
K


r=ri ,θ=π/2

. (A12)

Second, we want to figure out how the same observer measures distances perpen-
dicular to his/her trajectory. If in the coordinate system (t, r, θ, ϕ) we measure dr, the
observer measures

dX =
√

grrdr . (A13)

We can now combine these two results to evaluate the proper area of an annulus of a
Keplerian accretion disk with radial coordinate ri and width ∆ri:

A(ri, ∆ri) =
∫ 2π

0
dϕ

∫ ri+∆ri

ri

dr
√

grr

√√√√ g2
tϕ − gttgϕϕ

−gtt − 2gtϕΩK − gϕϕΩ2
K

= 2π∆ri


√√√√ grr

(
g2

tϕ − gttgϕϕ

)
−gtt − 2gtϕΩK − gϕϕΩ2

K


r=ri ,θ=π/2

. (A14)

This result is used in Equation (48).
In the existing literature, the calculation of A(ri, ∆ri) is normally proposed with a

slightly different approach. First, we consider a locally non-rotating observer on the
equatorial plane. The angular velocity of such an observer is ω = ΩLNRF = −gtϕ/gϕϕ and
the tetrad and the inverse of the tetrad are given in Equations (A9) and (A10), respectively. If
in the coordinate system (t, r, θ, ϕ) we measure the angle dϕ, in his/her locally Minkowskian
reference frame, the locally non-rotating observer measures

dYLNRF = E(Y)
µ dxµ =

√
gϕϕ dϕ . (A15)



Universe 2024, 10, 451 36 of 40

The proper length of the orbit of the locally non-rotating observer with radial coordi-
nate r = ri is

ℓLNRF =
∫ 2π

0
dϕ

√
gϕϕ = 2π

[√
gϕϕ

]
r=ri ,θ=π/2 (A16)

Concerning length measurements perpendicular to his/her trajectory, if in the coordi-
nate system (t, r, θ, ϕ) we measure dr, the locally non-rotating observer measures

dXLNRF =
√

grr dr . (A17)

If we consider a Keplerian accretion disk, the velocity of the material of the disk
with respect to the locally non-rotating observer is u(α) = E(α)

µ uµ, where E(α)
µ is given

in Equation (A10), uµ = ut(1, 0, 0, ΩK) is the 4-velocity of the material in the coordinate
system (t, r, θ, ϕ), and ut is given in Equation (20). Since in a Minkowskian (or locally
Minkowskian) reference frame, the temporal component of the 4-velocity of a particle
corresponds to its Lorentz factor [41], we can evaluate the Lorentz factor γ of the material
of the accretion disk measured by the locally non-rotating observer as

γ = u(T) = E(T)
µ uµ =


√√√√ g2

tϕ − gttgϕϕ

gϕϕ

(
−gtt − 2gtϕΩK − gϕϕΩ2

K
)


r=ri ,θ=π/2

. (A18)

The proper area of an annulus of a Keplerian accretion disk with radial coordinate ri
and width ∆ri can be evaluated as

A(ri, ∆ri) = γALNRF(ri, ∆ri) , (A19)

where ALNRF(ri, ∆ri) is the proper area of the annulus with radial coordinate ri and width
∆ri in the rest-frame of the locally non-rotating observer

ALNRF(ri, ∆ri) =
∫ 2π

0
dϕ

∫ ri+∆ri

ri

dr
√

grrgϕϕ = 2π
[√

grrgϕϕ

]
r=ri ,θ=π/2 ∆ri . (A20)

Equation (A19) is equivalent to Equation (A14), of course.

Notes
1 Generally speaking, an accretion disk is geometrically thin if h/r ≪ 1, where h is the thickness of the disk at the radial coordinate

r, and is optically thick is h ≫ λ, where λ is the photon mean free path in the disk. The accretion disk is instead geometrically
thick if h/r ≳ 1. The accretion disk is optically thin if h ≪ λ.

2 This is normally a very acceptable approximation. Let us consider, for example, a 10 M⊙ black hole in an X-ray binary. Its
Eddington luminosity is LEdd ∼ 1039 erg s−1. Its Eddington mass accretion rate can be found from the relation LEdd = ηṀEdd,
where η ∼ 0.1 is the radiative efficiency, and we have ṀEdd ∼ 10−7 M⊙/yr. In a typical outburst of a black hole binary, the
luminosity of the source is around 10% of its Eddington limit and the outburst lasts for about a month, so the total mass in the
accretion disk is roughly 10−9 M⊙ and the ratio between the mass of the disk and the mass of the black hole is of order 10−10.
Even if the mass of the disk were confined in a relatively small space region (which is not the case), it could produce only a very
small perturbation on the background metric. We can thus conclude that the gravitational field of the disk can be ignored. See,
for instance, Ref. [32] for more details.

3 We note that we are not considering the motion of the single particles in the accretion disk (ions and electrons) but the motion of
a “parcel” of particles.

4 We use the term “specific” because the Lagrangian of a point-like free particle is L = 1
2 m

(
gtt ṫ2 + 2gtϕ ṫϕ̇ + grr ṙ2 + gθθ θ̇2 + gϕϕϕ̇2),

and we set m = 1 in Equation (12).
5 Here we ignore the “quasi” and we assume that the material in the disk follows geodesic equatorial circular orbits. However, the

“quasi” is important to have accretion onto the black hole. It is indeed necessary a mechanism to transport energy and angular
momentum outward, so the material of the disk can slowly inspiral onto the black hole. In reality, the magnetorotational instability
is the mechanism responsible to transport energy and angular momentum outward and to permit the accretion process [33].
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6 The subindex K is used to indicate that this is the Keplerian angular velocity of the material in the accretion disk and to avoid
confusion in the formulas between such a quantity and the infinitesimal solid angle dΩ.

7 If the emission is isotropic, we can divide the sky of every emission point in small solid angles ∆Ω = constant and fire a photon
from each of these directions. Since dΩ = sin χ dχ dψ, we need a grid of constant ∆(cos χ) and ∆ψ.

8 For the proper area of an annulus in the plunging region, we can consider a locally non-rotating observer as described in
Appendix B and evaluate the Lorentz factor γ with Equation (A18) by using the 4-velocity of the material in the plunging region
for uµ.

9 In models in which gravity does not universally couple to matter, we can have, for example, the phenomenon of variation
of “fundamental” constants, namely constants like the fine structure constant α, the electron mass me, etc., may not be actual
constants and may change in space and/or time [42]. For example, their value in the strong gravitational field of a black
hole may be different from their value in our laboratories on Earth. In such a context, the atomic physics may depend on the
gravitational field.

10 The public version of xillver has several “flavors”. One can choose among three types of incident spectra: (i) a power law with
a high-energy cutoff (2 parameters: photon index Γ and high-energy cutoff Ecut); (ii) a Comptonized spectrum (2 parameters:
photon index Γ and electron temperature of the corona kTe, while the temperature of the seed photons is kTs = 10 eV); a blackbody
spectrum (1 parameter: blackbody temperature kTbb). The cold material is characterized by the ionization parameter ξ, the iron
abundance AFe (while all other elements have Solar abundances), and in some flavors there is also the electron density N. The
emission angle ϑe is another parameter of the model, while the incident angle is ϑi = 45◦ and cannot be changed.

11 While current X-ray observatories do not have the necessary angular resolution to resolve the accretion disk of a black hole and
the system appears as a point-like source, we have to consider an ideal observer with an excellent angular resolution in order to
calculate the theoretical spectrum of an accretion disk within our model.

12 Starting from Ref. [45], ray-tracing codes to calculate images of accretion disks around black holes have been significantly
developed and today there are a number of public codes that can do these calculations.

13 In the soft state, when the X-ray spectrum of black hole X-ray binaries is dominated by the thermal spectrum of the disk,
powerful disk winds are common [52]. While current calculations of the color factor ignore disk winds, the latter may affect the
color temperature.

14 These results, strictly speaking, are valid in the case of infinitesimally thin Keplerian accretion disk in Kerr spacetimes. They
are normally valid even in the case of infinitesimally thin Keplerian accretion disk in non-Kerr spacetimes, but exceptions are
possible. In the case of accretion disks of a finite thickness, some parts of the disk may not be visible to a distant observer, so the
image of the points on the accretion disk at the same emission radius may not be a closed loop [54].

15 FITS (Flexible Image Transport System) is a common format for astronomical data files that can store multidimensional arrays
and tables.

16 This approach is motivated by the need to be able to calculate quickly a relativistic reflection spectrum. Note that the ionization
parameter is ξ(r) = 4πF/n, where F is the total flux illuminating the disk at the radial coordinate r and n is the electron density of
the disk at the same radial coordinate. A model in which the ionization parameter ξ and the disk electron density n are constant
over the disk would require that F is constant too. This is not how most of the current models work: they employ Īe, which is
calculated for certain values of ξ and n, and model the emissivity profile with ϵ(re).

17 In Model 1, we have the inclination angle of the disk i in relconv, while reflionx does not have the emission angle ϑe as a
parameter of the model. In Model 2, the value of the inclination angle of the disk i in relconv is tied to that of the emission angle
ϑe in xillver, even if the two angles are different, in general, and ϑe should change value over the disk. In Model 3, there is only
the inclination angle of the disk i in relxill: the model calculates the averaged emission angle and extracts the corresponding
spectrum from the xillver table.

18 The transformation (A1) reduces the metric tensor gµν to the Minkowski metric at a point of the spacetime, which is always
possible because it is equivalent to make diagonal a symmetric matrix with constant coefficients and then rescale the coordinates
to reduce the diagonal elements to ±1. See, for example, Ref. [41] for more details.

19 Please note the notation adopted in this tutorial. ω is used to indicate a generic angular velocity, while the Keplerian angular
velocity of the material in the disk is indicated by ΩK and the angular velocity of a locally non-rotating reference frame is
indicated by ΩLNRF.

20 From Equation (14) we see that a particle with Lz = 0 has a non-vanishing angular velocity in the coordinate system (t, r, θ, ϕ):
dϕ/dt = ϕ̇/ṫ = −gtϕ/gϕϕ. A locally non-rotating observer is thus an observer with vanishing Lz and its non-vanishing angular
momentum is due to the frame dragging of the spacetime.
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