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Abstract: In this work, we investigate spacetime and photon dynamics around a charged Hayward
black hole, focusing on the effects of electric charge Q and the length factor l. Our analysis shows that
the maximum charge for black hole existence decreases as l increases, vanishing at l/M ≃ 0.77. The
black hole has both inner and outer horizons, with the outer horizon shrinking and the inner horizon
expanding as spacetime parameters increase. The spacetime curvature, measured by the Kretschmann
scalar, is most pronounced when both parameters are small, resembling the Schwarzschild black hole.
The electric charge strongly influences the curvature and photon sphere size, while the effect of the
length factor is less significant. Additionally, the gravitational redshift of photons is more sensitive to
the electric charge of the compact object than the length factor, diminishing as Q increases and with
greater radial distance from the black hole. Overall, while both spacetime parameters affect black
hole properties, the electric charge has a slightly stronger impact, especially on gravitational redshift
and photon behavior.

Keywords: black hole; general relativity; redshift of photons; photon sphere

PACS: 04.20.-q; 04.50.+h; 04.70.-s; 04.70.Bw; 04.50.-h

1. Introduction

The famous singularity theorem states that under certain conditions, the gravitational
collapse of sufficiently massive stars will inevitably result in the formation of spacetime
singularities [1–7]. One major issue in classical general relativity is the unavoidable pres-
ence of these singularities. The standard black hole solutions, such as the Schwarzschild,
Reissner–Nordström, and Kerr metrics, all contain curvature singularities within their
interiors. This has led to the view that classical general relativity requires modifications
where spacetime curvature becomes infinite, and that these singularities might be resolved
by quantum gravity. However, since there is no fully developed theory of quantum gravity,
efforts to address the singularity inside black holes have turned toward regular models,
which are inspired by quantum principles. Regular black holes typically associated with
classical black hole solutions, have garnered significant attention as viable extensions
of general relativity. These objects are characterized by modifications to the traditional
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Schwarzschild or Kerr spacetimes, often implemented through effective metrics inspired
by quantum gravity, nonlinear electrodynamics, or gravitational decoupling techniques.
Recent works, such as those exploring atemporality in Lorentzian–Euclidean black holes,
have highlighted the role of these models in addressing singularity issues in both static
and dynamic spacetimes [8]. Comprehensive reviews, including [9], provide a detailed
summary of the advancements in the field, emphasizing their theoretical foundations and
astrophysical implications. The dynamics around these regular black holes, particularly the
behavior of geodesics, have been extensively studied. For instance, the analysis of geodesic
motion in Euclidean Schwarzschild geometry offers insights into nonsingular black hole
metrics [10]. Additionally, studies utilizing gravitational decoupling methods have ex-
plored both the spacetime structure and thermodynamic properties of these solutions,
shedding light on their stability and horizon characteristics [11]. It has been suggested by
Sakharov [12] and Gliner [13] that for small values of r, the Einstein tensor takes the form
Gµν = Λgµν with Λ ̸= 0, meaning there is a central de Sitter core that follows the equation
of state P = −ρ. This condition effectively places an upper limit on the scalar curvature.
As a result, the collapsed object reaches a metastable state, where the outward de Sitter
pressure counteracts the inward gravitational pull, eliminating the curvature singularity at
the center. In the presence of a horizon, this leads to what is known as a regular black hole.
Bardeen [14] first implemented this concept to create a model for a regular black hole, which
was later shown to be an exact solution of Einstein’s field equations coupled with nonlinear
electrodynamics (NED) [15–17]. Since then, many other regular black hole models have
been developed and explored [18–23] (see [24] for a comprehensive review). The lack of
central singularities makes challenges like Hawking radiation and the information loss
paradox less severe [25]. Hayward [26] subsequently introduced a model that is particularly
useful for studying the collapse and evaporation processes, describing the formation of a
black hole from a vacuum as a regular black hole, which can also be derived within the
NED framework. When coupled with electric charge, the Hayward black hole becomes a
rich ground for exploring the interplay between spacetime geometry and electromagnetic
fields in a regular black hole setting. It is worth noting that there are several ways to inves-
tigate the given spacetime around black holes. For example, in our previous research, we
have extensively investigated various spacetime metrics around compact objects, utilizing
several different methodologies [27–38]. Particle motion around modified Hayward black
holes has been extensively studied in various works, including [26,39–44]. These studies
provide insights into the geodesic structure and associated dynamical phenomena in such
spacetimes. Additionally, the shadow cast and weak gravitational lensing effects around
electrically charged Hayward black holes have been analyzed in detail in [45].

In this work, we investigate the properties of spacetime around a charged Hayward
black hole through photon dynamics, focusing on the impact of both the electric charge and
the length factor. We examine how these parameters affect the horizon structure, spacetime
curvature, photon sphere size, and gravitational redshift of photons. The work may be
interesting due to the following reasons. The detailed analysis of the iron Kα emission line
in the accretion disk of a black hole is a powerful tool for constraining the parameters of the
central black hole. The iron line is emitted when iron atoms in the accretion disk are ionized
by X-ray photons and then transition back to lower energy states, producing characteristic
photons with an energy of approximately 6.4 keV [46,47]. Due to the strong gravitational
field near the black hole, the emitted line profile is modified by relativistic Doppler effects
caused by the disk’s orbital motion, gravitational redshift due to the black hole’s gravity,
and light bending influenced by the curvature of spacetime near the black hole [48,49]. The
resulting line is broadened and asymmetric, with a red wing extending to lower energies,
shaped by gravitational redshift and Doppler shifts, and a blue peak at higher energies,
dominated by emissions from the approaching side of the disk [50]. The shape of this line
encodes critical information about the geometry and dynamics of the accretion disk, as
well as the properties of the black hole. The inner edge of the accretion disk, defined by the
innermost stable circular orbit (ISCO), depends on the black hole’s spacetime parameters.
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For example, in the case of the Kerr black hole, a more extended red wing indicates a
smaller ISCO, corresponding to higher values of spin [51]. Additionally, the gravitational
redshift and Doppler broadening depend on the black hole’s mass. By combining iron
line analysis with other observations, such as X-ray luminosity or variability timescales,
it is possible to estimate key black hole parameters [52]. Observational data from X-ray
observatories like XMM-Newton, NuSTAR, or Chandra are modeled using relativistic line
profiles [53,54]. Models such as RELXILL [54] and KYRLINE [55] simulate the expected
iron line shape based on black hole and disk parameters. Advanced simulations trace
photons from the accretion disk to the observer, incorporating all relevant relativistic effects,
including gravitational lensing and redshift [56]. These simulations refine parameter
estimation by accounting for the complex geometry of the system. Iron line analysis is
often complemented by other methods to constrain black hole properties. The continuum
fitting method uses the thermal emission from the accretion disk to estimate the black hole’s
spin [57], while quasi-periodic oscillations (QPOs) offer additional constraints on the black
hole’s mass, spin, and other parameters [58].

The work is organized in the following way: In Section 2, we provide a brief introduc-
tion to the spacetime metric of the electrically charged Hayward black hole and examine its
basic properties. In Section 3, we solve the equations of motion for photons orbiting the
central black hole. Section 4 outlines the steps for calculating the gravitational redshift of
photons, and the main findings of the work are discussed in Section 5.

Geometrized units (G = c = 1) have been selected in the work. Greek indices can take
values α = 0, 1, 2, 3, and the spacetime signature is chosen to be (–,+,+,+).

2. Spacetime of Charged Nonrotating Hayward Black Hole

The metric for the electrically charged Hayward black hole (CHBH) is expressed as
follows [59]

ds2 = −
(

1 − (2Mr − Q2)r2

r4 + (2Mr + Q2)l2

)
dt2 +

(
1 − (2Mr − Q2)r2

r4 + (2Mr + Q2)l2

)−1

dr2 + r2dθ2 + r2 sin2 θdϕ2. (1)

In this expression, Q represents the electric charge of a black hole, M denotes its mass, and
l is a length parameter that is related to the magnetic charge by the relation g3 = 2Ml2. It
can be verified that as the length parameter approaches zero (l → 0), the metric reduces to
the Reissner–Nordström solution. The radial profile of the lapse function, which can be
defined as

f (r) = 1 − (2Mr − Q2)r2

r4 + (2Mr + Q2)l2 ,

is illustrated in Figure 1. The left panel shows a fixed length parameter with varying
electric charge, while the right panel shows a fixed electric charge with varying length
parameters. Both parameters (Q and l) exhibit almost identical effects, and at asymptotic
infinity, the metric approaches flat Minkowski spacetime. Additionally, increasing either Q
or l enlarges the metric function f (r) near the black hole, while at larger distances, their
effects become insignificant.

The location of the event horizon can be easily determined from the condition grr = 0.
However, it is important to note that an event horizon does not exist for all the values of
the spacetime parameters l and Q. In Figure 2, we display the parameter space, clearly
distinguishing between black hole and non-black-hole regions, separated by the blue
solid line. From the figure, it is evident that in the absence of l, the maximum absolute
value of the electric charge for a black hole is Qmax = M, as in the case of the Reissner–
Nordström black hole. When l is present, however, the maximum allowed electric charge
for which a black hole solution still exists decreases, approaching zero as l/M approaches
approximately 0.77.
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Figure 1. Radial dependence of lapse function of charged Hayward black hole with spacetime
parameters are fixed.
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Figure 2. Black hole/non-black-hole regions in the parameter space of l–Q.
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We can now directly solve grr = 0 to determine the event horizon’s location, as
given in Figure 3. The figure clearly shows that in general, the given black hole solution
possesses two horizons, namely, the inner horizon and outer event horizon which can meet
with the inner one at some specific values of spacetime parameters l and Q. It is clear
that increasing both parameters reduces the event horizon size in a similar manner while
increasing the inner horizon. The plots also demonstrate that an increase in one spacetime
parameter reduces the maximum value of the second to have a black hole solution, as
discussed previously.
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Figure 3. The event horizon radius of the photon that is dependent on spacetime parameters of
charge and length.

To check whether the found locations are indeed coordinate singularities (at which grr →
∞) but not physical singularities, one can analyze the behavior of so-called Kretschmann scalar
K = RαβµνRαβµν (with Rαβµν being Riemann tensor), which is a coordinate-independent
quantity. One can see how the Kretschmann scalar behaves with the change in radial
coordinate, as presented in Figure 4. In the top-left panel, the effect of the electric charge
of a black hole for fixed l is shown, and in the right one, the effect of l for fixed Q is
shown. From the top-left panel, one can see that the effect of the electric charge strongly
depends on the radial coordinate inside a black hole. One can see that it is not monotonic
everywhere near the center. But one thing is clear, in the presence of the length factor, the
given black hole solution is regular always. The top-right panel demonstrates a similar
effect from the length factor for the fixed value of the electric charge of a black hole. One
noticeable point is that when l = 0, the given solution involves physical singularity, since it
recovers the Reissner–Nordström solution. In the middle left panel, we show a density plot
version of the dependence of the Kretschmann scalar from spacetime parameters for the
fixed radial distance inside a black hole (since the outside is predictable). It clearly shows
that the curvature of spacetime is not monotonic everywhere. For example, when both
spacetime parameters tend to zero, one can notice that the curvature of spacetime starts
increasing. One can also see that smaller values of l and bigger values of Q also cause the
curvature of spacetime inside a black hole to increase, and in a faster manner as compared
with the previous case. But one should take into account that the given statements are
true for the selected radial distance. In the middle-right panel, the density plot version
of the dependence of the Kretschmann scalar with the change in radial coordinate and
electric charge of a black hole for fixed l is shown. It is noticeable that the behavior of the
Kretschmann scalar becomes monotonic starting from distances r ≳ 0.5M. As expected,
the curvature starts increasing very fast when the given solution tends to Schwarzschild
case l → 0, Q → 0. In the bottom plot, how the Kretschmann scalar for fixed electric charge
changes with the change in the radial coordinate and length factor l is demonstrated. In
the density plot, we see that in general, smaller values of l and closer distance to the center
result in bigger values of Kretschmann scalar.
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FIG. 4: The change of the Kretschmann scalar with the change of the radial coordinate and spacetime parameters.Figure 4. The change in Kretschmann scalar with the change in the radial coordinate and space-
time parameters.

3. Photon Motion

In this section, we study the motion of photons in the spacetime of CHBH. One way
to do so is by using Hamilton–Jacobi formalism for the given spacetime. The equation of
motion reads as

gµν ∂S
∂xµ

∂S
∂xν

= 0, (2)

where S defines the action and xµ coordinates of photons. If we assume photons are moving
on the equatorial plane, then the action can be written in the form

S = −Eγt + Lγϕ + Sr + Sθ (3)

where Eγ and Lγ are conserved quantities of a photon which refer to its energy and angular
momentum, respectively. Since the spacetime is spherically symmetric, photons that begin
their motion on the equatorial plane will remain confined to that plane, which allows one
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to take θ̇ = 0. Then, one can easily solve the Hamilton–Jacobi equation with respect to ṙ,
which in turn allows one to take the effective potential of photons as

Ve f f (r) = −E2
γ

[
1 − (2Mr − Q2)r2

r4 + (2Mr + Q2)l2

]−1

−
L2

γ

r2 . (4)

One can plot the change of the effective potential with the change of distance from the
central compact object for different values of spacetime parameters Q and l, as shown in
Figure 5. The left panel of the figure shows that the more electric charge a black hole has,
the weaker the effective potential of photons becomes. But, this is noticeable only near the
central compact object, and at further distances, the effect of the electric charge quickly
approaches zero. Similar behavior of the effective potential can be observed in the right
panel of Figure 5, which is for the fixed electric charge of a black hole and different values
of length parameter l. One noticeable difference is that the effect of the latter decreases
faster as compared with the effect of the electric charge with the increase in the distance
from the central compact object.
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Figure 5. The radial dependence of effective potential of photons moving around charged Hayward
black hole.

One of the distinct features of black holes is that, due to their extreme gravitational
field, they can have a region in their close vicinity called a photon sphere. The photon
sphere is a spherical region around a black hole where gravitational forces are strong
enough to cause photons to follow circular orbits. It represents the boundary at which
light can orbit the black hole due to the curvature of spacetime. In Schwarzschild black
holes, the photon sphere is located at a radius of r = 3M. For rotating black holes, such as
Kerr black holes, the photon sphere becomes more complex, with different radii depending
on the photon’s direction of motion (co-rotating or counter-rotating with respect to the
black hole’s spin). Since our spacetime solution is spherically symmetric, the photon sphere
is spherical in shape with a specific radius. The photon sphere is significant because it
marks the closest distance at which light can orbit the black hole stably. Any light that
passes within this sphere either falls into the black hole or escapes to infinity, but it cannot
maintain a circular orbit. One can use the effective potential of photons to obtain the radius
of such photon sphere for the charged Hayward black hole using the following conditions:

Ve f f (r) = 0, V′
e f f (r) = 0 (5)

where prime (′) denotes the derivative with respect to r. The results are shown in Figure 6.
From the left panel, we observe that an increase in the electric charge of a black hole
decreases the size of the photon sphere, and an increase in the length factor shifts the lines
towards a smaller radius of the photon sphere. The right panel demonstrates that the length
factor demonstrates similar behavior as the electric charge, but its effect is considerably
lower compared with the electric charge.
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Figure 6. Influence of spacetime parameters on the photon sphere radius.

4. Gravitational Redshift of Photons

In this work, we employ the Herrera–Nucamendi (HN) method [60] to analyze the
redshift and blueshift of photons emitted by particles orbiting a central black hole. We
begin by introducing the definition of the frequency shift, denoted as z.

1 + z =
ωe

ωd
. (6)

Here, ωe represents the frequency measured by an observer moving with the photon-
emitting particle, while ωd refers to the frequency observed by a distant observer, far from
the emission source. One can express them as

ωe = −kµUµ|e, ωd = −kµUµ|d (7)

In this context, Uµ = (Ut, Ur, Uθ , Uϕ) denotes the 4-velocity of a particle traveling along a
geodesic, while kµ = (kt, kr, kθ , kϕ) represents the 4-momentum of photons moving along
null geodesics, characterized by the condition kµkµ = 0.

We begin by calculating Uµ and kµ, which can be derived using the following Euler–
Lagrange equations:

∂L
∂xµ − d

dt

(
∂L
∂ẋµ

)
= 0 (8)

with Lagrangian L that can be written as

L =
1
2

gµν ẋµ ẋν (9)

L =
1
2
(gtt ṫ2 + grr ṙ2 + gθθ θ̇2 + gϕϕϕ̇2). (10)

Here, ẋµ = dxµ/dλ and λ is an affine parameter that parameterizes the particle’s trajec-
tory. Owing to the presence of spacelike and timelike Killing vectors that correspond to
symmetries in the t and ϕ coordinates, the conserved quantities along the geodesics can be
expressed as follows:

pt =
∂L
∂ṫ

= gtt ṫ = gttUt = −E (11)

pϕ =
∂L
∂ϕ̇

= gttϕ̇ = gϕϕUϕ = L (12)

Then, one can write the expressions for t and ϕ components of the 4-velocity as

Ut = − E
gtt

=
E

f (r)
, Uϕ =

L
gϕϕ

=
L

r2 sin2 θ
(13)
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Then, with the use of the normalization condition

−1 = gtt(Ut)2 + grr(Ur)2 + gθθ(Uθ)2 + gϕϕ(Uϕ)2 , (14)

one can easily obtain
(Ur)2 + f (r)We f f = 0. (15)

Here, We f f corresponds to the effective potential of massive particle emitting electromag-
netic radiation and has the following form:

We f f = 1 + r2Uθ − E2

f (r)
+

L2

r2 sin2 θ
. (16)

We now examine the 4-momentum kµ of photons by utilizing the Lagrangian (10). The
constants of motion, which are the energy and the angular momentum perpendicular to
the azimuthal direction, are given by

Eγ = f (r)kt, Lγ = r2 sin2 θkϕ. (17)

As a result, the components of the 4-momentum kt and kϕ can be linked to Eγ and Lγ,
respectively. We can now reframe the expression for 1 + z introduced in (7) as

1 + z =
(EγUt − LγUϕ − Urkr/ f (r)− r2Uθkθ)|e
(EγUt − LγUϕ − Urkr/ f (r)− r2Uθkθ)|d

. (18)

In observational astronomy, frequency shift data are typically expressed through a
kinematic frequency shift zkin, defined as zkin = z − zc. Here, zc represents the central
frequency shift, corresponding to the gravitational redshift of a photon emitted by a particle
that is stationary along the line extending from the center to a distant observer. This gives

1 + zc =
(EγUt)|e
(EγUt)|d =

Ut
e

Ut
d

. (19)

The expression for zkin becomes

zkin =
(Ut − bUϕ − 1

Eγ f (r)Urk2 − 1
Eγ

r2Uθkθ)|e

(Ut − bUϕ − 1
Eγ f (r)Urk2 − 1

Eγ
r2Uθkθ)|d

− Ut
e

Ut
d

, (20)

where the quantity b = Lγ/Eγ is introduced as the apparent impact parameter of photons.
When both Eγ and Lγ remain conserved along null paths from emission to detection, it
follows that be = bd.

In this study, the focus is on analyzing zkin. For this we calculate the redshift for
a photon emitted by an observer moving freely along a circular orbit as observed by
a stationary observer at infinity. This configuration is particularly relevant because it
models scenarios commonly encountered in astrophysical contexts, such as the emission
of radiation from particles in the accretion disks of compact objects, where particles are
often assumed to move along circular orbits. The stationary observer at infinity represents
a typical approximation for a distant astronomer observing the system, thereby making
the results directly applicable to observational studies. Moreover, this setup simplifies the
analysis while retaining physical significance, allowing for the isolation of key relativistic
effects such as gravitational redshift, Doppler shift, and the interplay between them in
curved spacetime. This clarity provides valuable insights into the underlying physics
without introducing unnecessary complexities from more general trajectories.
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When Uθ = 0 in the equatorial plane, the simplified expression for Equation (20) is

zkin =
Ut

eUϕ
d bd − Ut

dUϕ
e be

Ut
d(U

t
d − bdUϕ

d )
. (21)

This equation does not account for gravitational light bending. For this, one would need to
calculate b = b(rc), where rc is the radius of the photon emitter’s circular orbit. For photons
emitted on either side of the compact object, where kr = 0 and kθ = 0, kt and kϕ are defined
by (17). From kµkµ = 0, one obtains

b± = ±
√
−

gϕϕ

gtt
= ± r√

f (r)
. (22)

For a distant observer, i.e., when r → ∞, we have Ur = Uθ = Uϕ = 0 and Ut = 1 = E.
Consequently, Equation (21) simplifies to

zkin = −Uϕbe. (23)

In Equation (22), the impact parameter b(r) and the kinematic frequency shift zkin may
have different signs. A redshift (zr > 0) corresponds to an emitter moving away, while a
blueshift (zb < 0) indicates an approaching emitter.

In the equatorial plane, the effective potential takes the simple form

We f f = 1 +
E2

gtt
+

L2

gϕϕ
= 1 − E2

f (r)
+

L2

r2 . (24)

For circular orbits, both We f f and its derivative
dWe f f

dr must vanish. Using these conditions,
one can derive general expressions for the constants of motion E2 and L2 in any static
spherically symmetric spacetime:

E2 =
g2

ttg
′
ϕϕ

gttg′ϕϕ − g′ttgϕϕ
=

2 f 2(rc)

2 f (rc)− rc f ′(rc)
, (25)

L2 =
g2

ϕϕg′tt
gttg′ϕϕ − g′ttgϕϕ

=
r3

c f ′(rc)

2 f (rc)− rc f ′(rc)
. (26)

For circular orbit stability, an additional condition W ′′
e f f > 0 is required. Using

Equations (25) and (26), W ′′
e f f is expressed as

W ′′
e f f = −E2

[
g′′ttgtt − 2(g′tt)

2

g3
tt

]
− L2

[
g′′ϕϕgϕϕ − 2(g′ϕϕ)

2

g3
ϕϕ

]
=

g′ϕϕg′′tt − g′ttg
′′
ϕϕ

gttg′ϕϕ − g′ttgϕϕ
+

2g′ttg
′
ϕϕ

gttgϕϕ
(27)

=
2[r f (r) f ′′(r) + 3 f (r) f ′(r)− 2r f ′(r)]2

r f (r)[2 f (r)− r f ′(r)]
. (28)

From (13), one can easily derive the expressions for the 4-velocities:

Uϕ =

√
f ′(r)

r(2 f (r)− r f ′(r))
, Ut =

√
2

2 f (r)− r f ′(r)
. (29)

As a result, the angular velocity of particles in circular orbits can now be expressed as

Ω =

√
− g′tt

g′ϕϕ

=

√
f ′(r)
2r

. (30)
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Using the explicit expressions for Uϕ
e and be, the frequency shift can be written as

z = Uϕ
e be+ =

√
−gϕϕg′tt

gtt(g′ϕϕgtt − gϕϕg′tt)
=

√
rc f ′(rc)

f (rc)(2 f (rc)− rc f ′(rc))
. (31)

This allows us to analyze how the red/blueshifts of light, emitted by particles following
circular geodesics at radius rc, depend on the parameters of the spacetime. Since, for
spherically symmetric spacetimes, the redshift and blueshift only differ in sign, further
analysis can focus on the positive frequency shift (i.e., redshift).

For the specific spacetime under consideration, the lapse function f (r) is provided
in (1). By substituting this function into (31), the radial dependence of the photon frequency
shift can be determined for different values of the spacetime parameters as given in Figure 7.
In the top-left plot, which is for fixed l and various Q, it is clearly shown that an increase
in the electric charge of a black hole reduces the gravitational redshift of photons coming
from the vicinity of a black hole. This in turn can be interpreted as follows: In the previous
sections, we have seen that an increase in electric charge reduces the overall gravitational
field of a black hole so, for weaker gravitational fields, one can expect a smaller shift
in frequencies as well. It is also evident that the redshift of photons goes down quickly
with the increase in the distance from the central compact object. Similar behavior is
presented in the top-right panel of Figure 7, where we fix the electric charge and vary the
length factor l. By comparing it with the top-left panel, one can notice that the effect of
l is slightly stronger than that of the electric charge of the central black hole in the closer
vicinity of a black hole, while in the further distances, its effect becomes weaker than the
latter. In the middle-left panel, the density plot of the gravitational redshift of photons
is shown in the l–Q parameter space for a fixed radial distance. It can be observed that
the gravitational redshift is stronger for smaller values of both spacetime parameters and
reaches its maximum for the Schwarzschild case. It is also clearly demonstrated that the
redshift value is more sensitive to the electric charge of the black hole compared with the
length factor. In the middle-right and bottom panels, the change in the redshift of photons
with varying radial coordinates and one spacetime parameter is shown, while keeping the
other spacetime parameter fixed. One can ensure from plots that the redshift of photons
decreases fast with the increase in the radial distance from the central black hole. They
further demonstrate that the variation in redshift is less sensitive to changes in the length
factor l compared with the electric charge Q.
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FIG. 7: Density Plot version of the results for the dependence of the redshift of photons from the radial coordinate and the
space-time parameters of charged Hayward black hole.

Figure 7. Cont.
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Figure 7. Density Plot version of the results for the dependence of the redshift of photons from the
radial coordinate and the spacetime parameters of a charged Hayward black hole.

5. Conclusions

In this study, we explored the behavior of spacetime and photon dynamics around
a Hayward black hole with an electric charge. We mapped the regions of spacetime that
admit black hole solutions, noting that the presence of the length factor l reduces the
maximum allowed electric charge for which a black hole can exist. Without l, the maximum
charge aligns with the Reissner–Nordström limit, but this limit decreases as the length
factor increases, vanishing at l/M ≃ 0.77. The black hole in this spacetime exhibits both
inner and outer horizons. As both the electric charge Q and length factor l increase, the
outer event horizon shrinks, while the inner horizon expands, indicating a reduction
in the size of the black hole’s event horizon for higher values of both parameters. The
Kretschmann scalar, representing the curvature of spacetime, is strongly dependent on
the values of l and Q. Spacetime curvature reaches a maximum when both parameters
approach zero, mimicking the behavior of a Schwarzschild black hole. Interestingly, the
effects of spacetime parameters inside a black hole strongly depend on the radial coordinate
and are not monotonic everywhere. It was also demonstrated that in the presence of the
length factor, we always have a regular black hole solution.

The size of the photon sphere, where light can orbit the black hole, decreases as the
electric charge of a black hole increases and shifts to smaller radii with larger values of
l. However, the influence of l on the photon sphere is less substantial compared with
that of the electric charge. By investigating the redshift of photons, we observed that the
gravitational redshift of photons is more sensitive to the electric charge than to the length
factor. As Q increases, the redshift diminishes, reflecting a weakening of the gravitational
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field. The redshift also decreases rapidly with increasing distance from the black hole, and
while the effect of l is noticeable, it remains weaker than that of Q at further distances.

Overall, the results indicate that both the electric charge and the length factor signifi-
cantly impact black hole properties, such as horizon structure, spacetime curvature, and
photon dynamics. However, the electric charge exerts a more dominant influence, partic-
ularly in relation to gravitational redshift and photon behavior. These findings enhance
our understanding of black hole solutions in modified gravity frameworks and provide
insights into the role of additional spacetime parameters in shaping black hole physics.

Author Contributions: Investigation, B.S., Formal analysis, B.S., Writing—original draft, B.S., B.N.,
A.A. and B.A., Methodology, B.S., B.N., A.A., M.K. and B.A., Project administration, B.N., A.A., M.K.
and B.A., Supervision, B.N., A.A., M.K. and B.A., Writing—review and editing, B.N., A.A., M.K. and
B.A. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Penrose, R. Gravitational collapse and space-time singularities. Phys. Rev. Lett. 1965, 14, 57–59. [CrossRef]
2. Hawking, S. The occurrence of singularities in cosmology. III. Causality and singularities. Proc. Roy. Soc. Lond. A 1967,

300, 187–201. [CrossRef]
3. Hawking, S.W.; Penrose, R. The Singularities of gravitational collapse and cosmology. Proc. R. Soc. Lond. A 1970, 314, 529–548.

[CrossRef]
4. Iorio, L. Editorial for the Special Issue 100 Years of Chronogeometrodynamics: The Status of the Einstein’s Theory of Gravitation

in Its Centennial Year. Universe 2015, 1, 38–81. [CrossRef]
5. Debono, I.; Smoot, G.F. General Relativity and Cosmology: Unsolved Questions and Future Directions. Universe 2016, 2, 23.

[CrossRef]
6. Vishwakarma, R.G. Einstein and Beyond: A Critical Perspective on General Relativity. Universe 2016, 2, 11. [CrossRef]
7. Beltrán Jiménez, J.; Heisenberg, L.; Koivisto, T.S. The Geometrical Trinity of Gravity. Universe 2019, 5, 173. [CrossRef]
8. Capozziello, S.; De Bianchi, S.; Battista, E. Avoiding singularities in Lorentzian-Euclidean black holes: The role of atemporality.

Phys. Rev. D 2024, 109, 104060. [CrossRef]
9. Lan, C.; Yang, H.; Guo, Y.; Miao, Y.G. Regular Black Holes: A Short Topic Review. Int. J. Theor. Phys. 2023, 62, 202. [CrossRef]
10. Battista, E.; Esposito, G. Geodesic motion in Euclidean Schwarzschild geometry. Eur. Phys. J. C 2022, 82, 1088. [CrossRef]
11. Misyura, M.; Rincon, A.; Vertogradov, V. Non-singular black hole by gravitational decoupling and some thermodynamic

properties. Phys. Dark Univ. 2024, 46, 101717. [CrossRef]
12. Sakharov, A.D. Nachal’naia stadija rasshirenija Vselennoj i vozniknovenije neodnorodnosti raspredelenija veshchestva. Sov. Phys.

JETP 1966, 22, 241.
13. Gliner, E. Algebraic Properties of the Energy-Momentum Tensor and Vacuum-Like States of Matter. Sov. Phys.-JETP 1966,

22, 378–382.
14. Bardeen, J. Non-singular general relativistic gravitational collapse. In Proceedings of the Conference Proceedings of GR5, Tbilisi,

Georgia, 9–16 September 1968; p. 174.
15. Ayón-Beato, E.; García, A. Regular Black Hole in General Relativity Coupled to Nonlinear Electrodynamics. Phys. Rev. Lett. 1998,

80, 5056–5059. [CrossRef]
16. Ayon-Beato, E.; Garcia, A. Nonsingular charged black hole solution for nonlinear source. Gen. Rel. Grav. 1999, 31, 629–633.

[CrossRef]
17. Ayon-Beato, E.; Garcia, A. The Bardeen model as a nonlinear magnetic monopole. Phys. Lett. B 2000, 493, 149–152. [CrossRef]
18. Dymnikova, I. Vacuum nonsingular black hole. Gen. Relativ. Gravit. 1992, 24, 235–242. [CrossRef]
19. Dymnikova, I. Regular electrically charged structures in nonlinear electrodynamics coupled to general relativity. Class. Quant.

Grav. 2004, 21, 4417–4429. [CrossRef]
20. Bronnikov, K.A. Regular magnetic black holes and monopoles from nonlinear electrodynamics. Phys. Rev. D 2001, 63, 044005.

[CrossRef]
21. Bronnikov, K.A.; Fabris, J.C. Regular Phantom Black Holes. Phys. Rev. Lett. 2006, 96, 251101. [CrossRef]
22. Berej, W.; Matyjasek, J.; Tryniecki, D.; Woronowicz, M. Regular black holes in quadratic gravity. Gen. Relativ. Gravit. 2006,

38, 885–906. [CrossRef]
23. Burinskii, A.; Hildebrandt, S.R. New type of regular black holes and particlelike solutions from nonlinear electrodynamics. Phys.

Rev. D 2002, 65, 104017. [CrossRef]

http://doi.org/10.1103/PhysRevLett.14.57
http://dx.doi.org/10.1098/rspa.1967.0164
http://dx.doi.org/10.1098/rspa.1970.0021
http://dx.doi.org/10.3390/universe1010038
http://dx.doi.org/10.3390/universe2040023
http://dx.doi.org/10.3390/universe2020011
http://dx.doi.org/10.3390/universe5070173
http://dx.doi.org/10.1103/PhysRevD.109.104060
http://dx.doi.org/10.1007/s10773-023-05454-1
http://dx.doi.org/10.1140/epjc/s10052-022-11070-w
http://dx.doi.org/10.1016/j.dark.2024.101717
http://dx.doi.org/10.1103/PhysRevLett.80.5056
http://dx.doi.org/10.1023/A:1026640911319
http://dx.doi.org/10.1016/S0370-2693(00)01125-4
http://dx.doi.org/10.1007/BF00760226
http://dx.doi.org/10.1088/0264-9381/21/18/009
http://dx.doi.org/10.1103/PhysRevD.63.044005
http://dx.doi.org/10.1103/PhysRevLett.96.251101
http://dx.doi.org/10.1007/s10714-006-0270-9
http://dx.doi.org/10.1103/PhysRevD.65.104017


Universe 2024, 10, 454 14 of 15

24. Ansoldi, S. Spherical black holes with regular center: A Review of existing models including a recent realization with Gaussian
sources. arXiv 2008, arXiv:0802.0330.

25. Ashtekar, A.; Bojowald, M. Black hole evaporation: A Paradigm. Class. Quant. Grav. 2005, 22, 3349–3362. [CrossRef]
26. Hayward, S.A. Formation and Evaporation of Nonsingular Black Holes. Phys. Rev. Lett. 2006, 96, 031103. [CrossRef]
27. Hakimov, A.; Abdujabbarov, A.; Narzilloev, B. Quantum interference effects in conformal Weyl gravity. Int. J. Mod. Phys. A 2017,

32, 1750116. [CrossRef]
28. Rayimbaev, J.; Narzilloev, B.; Abdujabbarov, A.; Ahmedov, B. Dynamics of Magnetized and Magnetically Charged Particles

around Regular Nonminimal Magnetic Black Holes. Galaxies 2021, 9, 71. [CrossRef]
29. Narzilloev, B.; Rayimbaev, J.; Abdujabbarov, A.; Ahmedov, B. Regular Bardeen Black Holes in Anti-de Sitter Spacetime versus

Kerr Black Holes through Particle Dynamics. Galaxies 2021, 9, 63. [CrossRef]
30. Narzilloev, B.; Ahmedov, B. Radiation Properties of the Accretion Disk around a Black Hole Surrounded by PFDM. Symmetry

2022, 14, 1765. [CrossRef]
31. Narzilloev, B.; Ahmedov, B. Observational and Energetic Properties of Astrophysical and Galactic Black Holes. Symmetry 2023,

15, 293. [CrossRef]
32. Narzilloev, B.; Abdujabbarov, A.; Hakimov, A. Redshift of photons emitted from the accretion disk of a regular black hole

surrounded by dark matter. Int. J. Mod. Phys. A 2022, 37, 2250144. [CrossRef]
33. Mirzaev, T.; Li, S.; Narzilloev, B.; Hussain, I.; Abdujabbarov, A.; Ahmedov, B. Simulated image of the shadow of the Kerr-

Newman-NUT-Kiselev black hole in the Rastall gravity with a thin accretion disk. Eur. Phys. J. Plus 2023, 138, 47. [CrossRef]
34. Narzilloev, B.; Ahmedov, B. The eye of the storm: Optical properties. Int. J. Mod. Phys. A 2023, 38, 2350026. [CrossRef]
35. Abdulxamidov, F.; Benavides-Gallego, C.A.; Narzilloev, B.; Hussain, I.; Abdujabbarov, A.; Ahmedov, B.; Xu, H. Dynamics of

spinning test particles around the Kerr-Newman-NUT black hole with quintessence in the Rastall gravity. Eur. Phys. J. Plus 2023,
138, 635. [CrossRef]

36. Alibekov, H.; Narzilloev, B.; Abdujabbarov, A.; Ahmedov, B. Frequency Shift of Photons in the Spacetime of Deformed RN BH.
Symmetry 2023, 15, 1414. [CrossRef]

37. Alloqulov, M.; Narzilloev, B.; Hussain, I.; Abdujabbarov, A.; Ahmedov, B. Energetic processes around electromagnetically charged
black hole in the Rastall gravity. Chin. J. Phys. 2023, 85, 302–317. [CrossRef]

38. Narzilloev, B.; Ahmedov, B. Thermal radiation of thin accretion disk around Taub-NUT black hole. Int. J. Mod. Phys. D 2023,
32, 2350064. [CrossRef]

39. Gao, B.; Deng, X.M. Bound orbits around modified Hayward black holes. Mod. Phys. Lett. A 2021, 36, 2150237. [CrossRef]
40. Zhao, S.S.; Xie, Y. Strong deflection gravitational lensing by a modified Hayward black hole. Eur. Phys. J. C 2017, 77, 272.

[CrossRef]
41. Hu, J.P.; Zhang, Y.; Shi, L.L.; Duan, P.F. Structure of geodesics in the regular Hayward black hole space-time. Gen. Relativ. Gravit.

2018, 50, 89. [CrossRef]
42. Amir, M.; Ghosh, S.G. Rotating Hayward’s regular black hole as particle accelerator. J. High Energy Phys. 2015, 7, 15. [CrossRef]
43. Pedraza, O.; López, L.A.; Arceo, R.; Cabrera-Munguia, I. Geodesics of Hayward black hole surrounded by quintessence. Gen.

Relativ. Gravit. 2021, 53, 24. [CrossRef]
44. Abbas, G.; Sabi Ullah, U. Geodesic Study of Regular Hayward Black Hole. Astrophys. Space Sci. 2014, 352, 769–774. [CrossRef]
45. Kumar, R.; Ghosh, S.G.; Wang, A. Shadow cast and deflection of light by charged rotating regular black holes. Phys. Rev. D 2019,

100, 124024. [CrossRef]
46. Fabian, A.C.; Iwasawa, K.; Reynolds, C.S.; Young, A.J. Broad Iron Lines in Active Galactic Nuclei. Publ. Astron. Soc. Pac. 2000,

112, 1145–1161. [CrossRef]
47. Miller, J.M. Relativistic X-ray Lines from the Inner Accretion Disks Around Black Holes. Ann. Rev. Astron. Astrophys. 2007,

45, 441–479. [CrossRef]
48. Laor, A. Line Profiles from a Disk around a Rotating Black Hole. Astrophys. J. 1991, 376, 90. [CrossRef]
49. Reynolds, C.S.; Nowak, M.A. Fluorescent iron lines as a probe of astrophysical black hole systems. Phys. Rep. 2003, 377, 389–466.

[CrossRef]
50. Tanaka, Y.; Nandra, K.; Fabian, A.C.; Inoue, H.; Otani, C.; Dotani, T.; Hayashida, K.; Iwasawa, K.; Kii, T.; Kunieda, H.; et al.

Gravitationally Redshifted Emission Implying an Accretion Disk and Massive Black Hole in the Active Galaxy MCG:-6-30-15.
Nature 1995, 375, 659. [CrossRef]

51. Brenneman, L.W.; Reynolds, C.S. Constraining Black Hole Spin via X-ray Spectroscopy. Astrophys. J. 2006, 652, 1028–1043.
[CrossRef]

52. Reynolds, C.S. Measuring Black Hole Spin Using X-ray Reflection Spectroscopy. Space Sci. Rev. 2014, 183, 277–294. [CrossRef]
53. Wilms, J.; Reynolds, C.S.; Begelman, M.C.; Reeves, J.; Molendi, S.; Staubert, R. XMM-EPIC observation of MCG-6-30-15: Direct

evidence for the extraction of energy from a spinning black hole? Mon. Not. R. Astron. Soc. 2001, 328, L27–L31. [CrossRef]
54. García, J.; Dauser, T.; Lohfink, A.; Kallman, T.R.; Steiner, J.F.; McClintock, J.E.; Brenneman, L.; Wilms, J.; Eikmann, W.; Reynolds,

C.S.; et al. Improved reflection models of black hole accretion disks: Treating the ionization balance with XSTAR. Astrophys. J.
2014, 782, 76. [CrossRef]

55. Dovčiak, M.; Karas, V.; Yaqoob, T. KYRLINE: Relativistic line model. Astrophys. J. Suppl. Ser. 2004, 153, 205–221. [CrossRef]

http://dx.doi.org/10.1088/0264-9381/22/16/014
http://dx.doi.org/10.1103/PhysRevLett.96.031103
http://dx.doi.org/10.1142/S0217751X17501160
http://dx.doi.org/10.3390/galaxies9040071
http://dx.doi.org/10.3390/galaxies9030063
http://dx.doi.org/10.3390/sym14091765
http://dx.doi.org/10.3390/sym15020293
http://dx.doi.org/10.1142/S0217751X22501445
http://dx.doi.org/10.1140/epjp/s13360-022-03632-4
http://dx.doi.org/10.1142/S0217751X23500264
http://dx.doi.org/10.1140/epjp/s13360-023-04283-9
http://dx.doi.org/10.3390/sym15071414
http://dx.doi.org/10.1016/j.cjph.2023.07.005
http://dx.doi.org/10.1142/S0218271823500645
http://dx.doi.org/10.1142/S0217732321502370
http://dx.doi.org/10.1140/epjc/s10052-017-4850-5
http://dx.doi.org/10.1007/s10714-018-2411-3
http://dx.doi.org/10.1007/JHEP07(2015)015
http://dx.doi.org/10.1007/s10714-021-02798-z
http://dx.doi.org/10.1007/s10509-014-1992-x
http://dx.doi.org/10.1103/PhysRevD.100.124024
http://dx.doi.org/10.1086/316610
http://dx.doi.org/10.1146/annurev.astro.45.051806.110555
http://dx.doi.org/10.1086/170257
http://dx.doi.org/10.1016/S0370-1573(02)00584-7
http://dx.doi.org/10.1038/375659a0
http://dx.doi.org/10.1086/508146
http://dx.doi.org/10.1007/s11214-013-0006-6
http://dx.doi.org/10.1046/j.1365-8711.2001.05066.x
http://dx.doi.org/10.1088/0004-637X/782/2/76
http://dx.doi.org/10.1086/421115


Universe 2024, 10, 454 15 of 15
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