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Abstract: The motion of gravitational axion-like particles (ALPs) around a Kerr black hole is ana-
lyzed, paying attention to the resonance and distribution of spectral radiation. We first discuss the
computation of

√
gR̃µνρρσRµνρσ and its implications with Pontryagin’s theorem, and then a detailed

analysis of Teukolsky’s master equation is carried out. After carefully analyzing the Teukolsky master
equation, we show that this system exhibits resonance when ω ≳ µ, where µ is the mass of the ALP,
while the homogeneous part of the solution exhibits the superradiance. A skew-normal distribution
can approximate the energy distribution of the resonant modes, and we give explicit expressions for
its lifetime.

Keywords: axions; cosmology

1. Introduction

Dark matter permeates much of the current cosmology and particle physics research
because it can help solve many long-standing problems. However, the search for dark mat-
ter encounters difficulties along the way, and, so far, one of the most plausible candidates is
a very light particles called an axion.

Axions are pseudoscalars that were proposed in [1–3] to solve the strong CP problem
and have become the cornerstone of modern particle physics and cosmology.

The axion is described by,

L ⊂ 1
2
(∂φ)2 − 1

2
m2 φ2 + gφF̃µνFµν + · · · , (1)

where F̃µνFµν is the Pontryaguin density for an electromagnetic field, Fµν = ∂µ Aν − ∂ν Aµ

and g is a coupling constant with dimension −1.
The nature of the interaction φF̃µνFµν implies that φ is a pseudoscalar and the solutions

of the equation (plus Maxwell equations),

(□2 + m2)φ = gφF̃µνFµν, (2)

provide the ingredients for axion-detection arguments [4]. This approach is also useful as a
way to study magnetogenesis [5–8], as has been discussed in recent years [9].

In this research, we would like to focus on a different coupling; namely, let us consider
the replacement

Fµν F̃µν → RµνρσR̃µνρσ, (3)

where RµνρσR̃µνρσ is the Pontryagin–Riemann density, which is

RµνρσR̃µνρσ =
1
2

ϵρσαβRµνρσRµν
αβ. (4)
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This kind of system will obey the following system of equations:(
□2 + m2

)
φ = ḡRµνρσR̃µνρσ, (5)

Gµν + Cµν = Tµν, (6)

where □2 = 1√−g ∂µ(gµν∂ν) is the Laplace–Beltrami operator, ḡ is a coupling constant, and
Cµν is defined as [10] (Cotton’s tensor)

Cµν = ∇α φ ϵµβγ(µ∇γRν)
β + (∇σ∇λ)φR̃λ(µν)σ, (7)

with Tµν the energy-momentum tensor for the (pseudo)scalar field in a curved background.
At first sight, the system above retains many properties of the conventional axion but

also differs substantially because, when coupled to gravity, it dynamically becomes a very
different system. These gravitational axions are denoted generically as ALPs. Additionally,
the coupling in (3) is physically well-motivated [11] by the gravitational anomaly and, in
analogy with the chiral anomaly where π0 → 2γ [12,13], we might also expect the decay
φ → 2g, where g are gravitons. It is important to note that this process at this level is
theoretical, as there is currently no existing quantum theory of gravity. On the other hand,
our reasoning here is based on the analogy that a process of this nature will likely also
emerge in quantized gravity.

In this paper, we study the problem of ALPs in a Kerr black hole background, and
we focus mainly on resonance and radiation. There are two important reasons to carefully
consider the phenomenon of resonance. The first is because our research is probably the
first example in which Teukolsky’s master equation can be explicitly worked out order by
order, and the resonance is a manifest phenomenon. The second reason is that a careful
analysis of resonance not only extracts information about the properties of the ALPs but
also can be seen directly from the spectral radiation curves.

It is important to note that, while Detweiler also examined Kerr’s black holes in a
different context in [14], his findings are not relevant to our current discussion due to
various technical reasons that are unique to the Pontryaguin source that we are utilizing.

The paper is structured as follows.
In Section 2, we begin by studying scalar perturbations and focus on the technical

details of the problem. Section 3 considers scalar perturbations and their implications with
ALPs. We will also explain the separation of variables in the Teukolsky equation. Section 4
explains the radial equation with a source in detail and solves it asymptotically. In Section 5,
we study the emission of gravitational radiation by axion-like particles and numerically
calculate the spectral distribution of radiation. Finally, in Section 6, we give our discussion
and conclusions. The Sℓ(x) properties and essential formulas are in Appendix A.

2. Axions as Scalar Perturbations

In this section, we address the problem of solving the equation for axion-like particles
in a Kerr background with a Pontryaguin source. The no-source case has been discussed for
a long time by Press and Teukolsky [15] and Damour et al. [16,17], and updated references
can be found in [18–20].

However, Detweiler, in [21], developed a calculation strategy that seems to us to better
fit our purpose that we use here. Basically, the idea developed in [14,21] is to consider a
Klein–Gordon equation in a Kerr background, and, instead of looking for exact solutions,
asymptotic solutions can be analyzed to capture the essential physical aspects.

The action is

S =
∫

d4x
√
−g
[

R + ḡ RµνρσR̃µνρσ +
1
2
(∂φ)2 + · · ·

]
. (8)
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with ḡ as the coupling constant. The Kerr metric is assumed, and, in Boyer–Lindquist
coordinates, it is

ds2 = −
(

1 − 2Mr
ρ2

)
dt2 − 4Ma r

ρ2 sin2 θdϕdt

+

(
r2 + a2 +

2Mra2 sin2 θ

ρ2

)
sin2 θ dϕ2 +

ρ2

∆
dr2 + ρ2 dθ2, (9)

where

ρ2 = r2 + a2 cos2 θ,

∆ = r2 − 2Mr + a2, (10)

and a = J
M relates the angular momentum with the mass of the black hole.

Note that, when a → 0, the angular momentum vanishes, and Metric (10) reduces to
the Schwarschild one. The singularities appear when ∆ = 0, and we have the event horizons

r+ = M +
√

M2 − a2, (11)

which correspond to the inner and outer event horizons.
The relation ρ = 0 implies that, for r → 0 and θ → π

2 , the metric component gtt → ∞
is the true singularity of the Kerr metric. Indeed, the Kretschmann scalar K = RαβγµRαβγµ

for r → 0 is Kr→0 ∝ M2 sec6 θ, showing that θ → π/2 (together with r → 0) is a singularity
that is independent of coordinates.

The calculation of the source term for the scalar field given the action in (8), in the Kerr
background, yields [22]

√
−gRµρσR̃µνρσ = −96M2a

r cos θ sin θ

(r2 + a2 cos2 θ)5 (3r2 − a2 cos2 θ)(r2 − 3a2 cos2 θ). (12)

Equation (12), although correct, cannot be complete because, otherwise, the topological
properties of a Kerr black hole would have no physical effect. Several reasons indicate that
this is not the case, and vorticity is an example that indicates that a turbulent stage of a
Kerr black hole must be important in the final dynamics.

Although we do not address the turbulence problem, we would like to point out that
the analog of quantized circulation is∫

d4x
√
−g RµρσR̃µνρσ = n, (13)

where n = 0,±1,±2, · · · , and (13) is a standard theorem in geometry [23].
In our case, the direct calculation yields∫

d3x
√
−g RµρσR̃µνρσ = 0, (14)

since, due to (12), the Pontryagin density depends only on r and θ. The static metric
(stationary in this case) does not induce topological properties, and therefore, (14) vanishes
and the winding number n = 0.

However, if n ̸= 0, Integral (14) is not well-defined for a stationary metric, and we
should regularize it using some reasonableness criterion. Which criterion? We think it is
enough that Pontryagin’s theorem is satisfied [24].

Thus, we propose the following modification for the source:√
−g RµρσR̃µνρσ →

√
−g RµρσR̃µνρσδ(x0), (15)

which is consistent with (13).
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The above result has a very interesting physical implication because the factor δ(t)
induces an initial condition to produce gravitational radiation.

Two technical aspects are responsible for these consequences, namely, (i) since the
source depends on r and θ, the angular momentum along φ is conserved, and the general
solution of the Teukolsky master equation is a function of r, θ, and t; (ii) since the LHS is
time-dependent, the presence of the δ-function in the RHS becomes mandatory.

3. Scalar Perturbations

After discussing these mathematical issues, scalar perturbations for a Kerr black hole
can all be written in terms of the Teukolsky master equation [25], which, for the scalar
case, reads

∂

∂r

(
∆

∂Φ
∂r

)
− a2

∆
∂2Φ
∂φ2 − 4Mra

∆
∂2Φ
∂φ∂t

−
(
(r2 + a2)2

∆
− a2 sin2 θ

)
∂2Φ
∂t2

+
1

sin θ

∂

∂θ

(
sin θ

∂Φ
∂θ

)
+

1
sin2 θ

∂2Φ
∂φ2 − µ2(r2 + a2 cos2 θ)Φ = κ (r2 + a2 cos2 θ) R̃µνρσRµνρσ δ(t), (16)

≡ T(x)

with κ a constant with canonical dimension −2, so that LHS and RHS of the previous
equation have dimension +1.

The source term T(x) turns out to be

T(x) = 96κM2 a
r cos θ

(r2 + a2 cos2 θ)5 (3r2 − a2 cos2 θ)(r2 − 3a2 cos2 θ) δ(t),

≡ T (r, θ) δ(t). (17)

Since the source is φ-independent, we look for solutions Φ(t, r, θ) so that Equation (17)
reads

∂

∂r

(
∆

∂Φ
∂r

)
−
(
(r2 + a2)2

∆
− a2 sin2 θ

)
∂2Φ
∂t2 − µ2(r2 + a2 cos2 θ)Φ

+
1

sin θ

∂

∂θ

(
sin θ

∂Φ
∂θ

)
= T (r, θ) δ(t).

Then, we look for solutions with the form

Φ(t, r, θ) =
1

2π ∑
ℓ

∫
eıωtRℓ(r)Sℓ(c, θ) dω, (18)

where the angular function Sℓ(c, θ) satisfies the equation [26–28]

1
sin θ

d
dθ

[
sin θ

Sℓ

dθ

]
+
(

λℓ + c2 cos2 θ
)

Sℓ = 0, (19)

with c2 = a2(ω2 − µ2), and λℓ is the separation constant, which must be determined (see
Appendix A for details).

The radial equation reads

d
dr

(
∆

dRℓ

dr

)
+

[
ω2(r2 + a2)2

∆
− (µ2r2 + ω2a2 + λℓ)

]
Rℓ = Aℓ(r), (20)

with Aℓ defined through

Aℓ(r) =
∫

T (r, θ) S∗
ℓ (c, θ) d(cos θ), (21)
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that is, the coefficients of the source, T , spanned in the base Sℓ.
Explicitly,

Aℓ(r) = 96 κ M2 a r
∫ 1

−1

x(r2 − 3a2 x2)

(r2 + a2 x2)5 (3r2 − a2 x2) S∗
ℓ(c, x)dx, (22)

It is hard to find analytical solutions of (20), so let us carry out some proper redefini-
tions. It is convenient to define dimensionless variables

y =
r
M

, δ =
a
M

, ω̄ = ω M, µ̄ = µ M,

so that the radial equation now reads

d
dy

(
∆(y)

dRℓ

dy

)
+

[
ω̄2 (y

2 + δ2)2

∆(y)
− (µ̄2 y2 + ω̄2δ2 + λℓ)

]
Rℓ = Aℓ(y), (23)

with
∆(y) = y2 − 2y + δ2,

and

Aℓ(y) = 96
κ

M2 y δ
∫ 1

−1

x(y2 − 3δ2 x2)

(y2 + δ2 x2)5 (3y2 − δ2 x2) S∗
ℓ(c, x)dx.

Note that
c2 = a2(ω2 − µ2) = δ2(ω̄2 − µ̄2). (24)

Finally, note also that, here, M has dimensions of energy−1 and, therefore, Aℓ has
dimensions of energy, the same dimension as Rℓ(y). Then, we define

Yℓ(y) =
M2

96κ
Rℓ(My), (25)

and then the fully dimensionless radial equation can be written as

∆
d

dy

(
∆

dYℓ

dy

)
+

[
ω̄2(y2 + δ2)2 − ∆(µ̄2 y2 + ω̄2δ2 + λℓ)

]
Yℓ

=
M2

96κ
∆ Aℓ (26)

= y δ ∆
∫ 1

−1

x(y2 − 3δ2 x2)

(y2 + δ2 x2)5 (3y2 − δ2 x2) S∗
ℓ(c, x)dx.

≡ Ãℓ(y).

The following sections are devoted to the study of numerical solutions to this equation,
and also to the analysis of asymptotic structure.

4. Radial Equation: Asymptotic Analysis

In this section, we make an asymptotic analysis of the radial equation, which, as we
show below, has important physical consequences in the Teukolsky master equation for
pseudoscalar fields.

In effect, Pontryagin’s term is a very special source because, in the case that we consider
a function of the form F(r, θ), this implies that, for even values of ℓ, the source vanishes
while, for odd values, this is not the case.

To analyze the asymptotic regions, we first change coordinates to tortoise coordinates
y∗ defined through

dy∗
dy

=
y2 + δ2

∆(y)
=

y2 + δ2

y2 − 2y + δ2 . (27)
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Equation (27) reads

(y2 + δ2)
d

dy∗

(
(y2 + δ2)

dYℓ

dy∗

)
+
[
ω̄2(y2 + δ2)2 − ∆(µ̄2 y2 + ω̄2δ2 + λℓ)

]
Yℓ = Ãℓ(y), (28)

where all functions of y are understood as functions of y∗ through y = y(y∗), while
Yℓ(y∗) ≡ R(y(y∗)). By defining the function W(y∗) through

Yℓ(y∗) = (y2 + δ2)−1/2 Wℓ(y∗),

Equation (28) is

d2 Wℓ

dy2∗
+

[
ω̄2 − ∆

(y2 + δ2)2

(
µ̄2 y2 + ω̄2δ2 + λℓ +

1
(y2 + δ2)2

(
∆ δ2 + 2y(y2 − δ2)

))]
Wℓ = Āℓ(y∗), (29)

with

Āℓ(y∗) =
Ãℓ(y)

(y2 + δ2)3/2 . (30)

That is, Wℓ satisfies the Schrödinger-type equation

d2 Wℓ

dy2∗
+ Veff(y∗)Wℓ = Āℓ(y∗). (31)

We are interested in the solutions of (31) in the asymptotic regions y∗ → ∞ (solution
at infinity) and y∗ → −∞ (the near-horizon solution).

We first study the behavior of the source in these limits.

4.1. The Source

Since Sℓ is a superposition of Legendre’s polynomial Pℓ(x) (see Appendix A), the
source in (27) is

Ãℓ = y ∆ δ
∫ 1

−1

x(y2 − 3δ2 x2)

(y2 + δ2 x2)5 (3y2 − δ2 x2) S∗
ℓ(c, x)dx, (32)

= y ∆ δ ∑
ℓ′

Bℓ,ℓ′(c)
∫ 1

−1

x(y2 − 3δ2 x2)

(y2 + δ2 x2)5 (3y2 − δ2 x2) P′
ℓ(x)dx,

= y ∆ δ ∑
ℓ′=0

Bℓ,2ℓ′+1(c)
∫ 1

−1

x(y2 − 3δ2 x2)

(y2 + δ2 x2)5 (3y2 − δ2 x2) P2ℓ′+1(x)dx,

= ∑
ℓ′=0

Bℓ,2ℓ′+1(c) I2ℓ′+1(y, δ), (33)

with

I2ℓ′+1(y, δ) = y ∆ δ
∫ 1

−1

x(y2 − 3δ2 x2)

(y2 + δ2 x2)5 (3y2 − δ2 x2) P2ℓ′+1(x)dx. (34)

It can be shown that coefficients B have the following property:

B2m,2n+1 = 0 = B2n+1,2m, m, n ∈ {0, 1, 2, · · · }, (35)

and, therefore,
Ā2n = 0, n ∈ {0, 1, 2, · · · } (36)

In our numerical analysis, we consider ℓ = 0, 1, 2, 3; then, the relevant functions for us
are I1 and I3, shown in Figure 1 for two different values of δ. The maximal contribution
occurs in the region y∗ ≲ 0, that is, toward the outer horizon, while contributions from
y∗ → ∞ are negligible.
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(c)
Figure 1. Panels (a) and (b) show the function Iℓ defined in (34) for two different black holes’ rotation
velocity δ = a/M, for ℓ = 1 and ℓ = 3. Panel (c) shows y(y∗) and the coincidence of y+ (the horizon)
with y∗ → −∞. (a) Function Iℓ vs. rescaled tortoise coordinate y∗ for δ = 0.99, (b) Function Iℓ vs
rescaled tortoise coordinate y∗ for δ = 0.5, (c) The coordinate y as function of y∗ and the horizon y+.

In Figure 1c, we can check that, for δ = 0.99, the horizon is reached at y∗ ≈ 20. Then,
numerically, |y∗| > 30 is a good approximation for the limits y∗ → ±∞.

The source terms in (31) is, therefore, zero for even values of ℓ, while, for the two other
cases under analysis, they are

Ā1(y∗) = (y2 + δ2)−3/2(B1,1(c) I1 + B1,3(c) I3), (37)

Ā3(y∗) = (y2 + δ2)−3/2(B3,1(c) I1 + B3,3(c) I3), (38)

with B1,1, B1,3, B3,1, B3,3 given in Appendix A, and

I1 =
2yδ∆(y2 − δ2)

(y2 + δ2)4 , (39)

I3 =
5∆
2δ4 tan−1

(
δ

y

)
− y∆

6δ3(y2 + δ2)
4

(
15y6 + 55y4δ2 + 73y2δ4 + 57δ6

)
. (40)

4.2. Numerical Solutions

The potential Veff in the limits previously discussed has the following asymptotic
behavior:

Veff =

{
k2 +O(y−1), y∗ → ∞ (y → ∞),
ω̄2 +O(y − y+), y∗ → −∞ (y → y+),

(41)

with k2 = ω̄2 − µ̄2 ≥ 0. We can treat the equation as an homogeneous equation in these
limits since the source can be taken to be zero there, as shown in Figure 1.
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The asymptotic solutions are, therefore

W(+)(y∗) ∼ A(+) eıω̄y∗ + C(+) e−ıω̄y∗ (y∗ → −∞), (42)

W(∞)(y∗) ∼ A(∞) eıky∗ + C(∞) e−ıky∗ (y∗ → ∞). (43)

Following [14], we choose A(+) = 1, C(+) = 0. Numerical solutions for this choice are
displayed in Figure 2 for ℓ = 0, 1.
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Figure 2. The amplitude |W|2 for δ = 0.99, µ̄ = 0.1, and ℓ = 0, 1 for different values of ω̄. (a) |W|2 for
ω̄ ∼ µ̄ and ℓ = 0, (b) |W|2 for ω̄ > µ̄ and ℓ = 0, (c) |W|2for ω̄ ∼ µ̄ and ℓ = 1, (d) |W|2 for ω̄ > µ̄ and
ℓ = 1, (e) |W|2 for ω̄ ∼ µ̄, and ℓ = 3, (f) |W|2 for ω̄ > µ, and ℓ = 3.

As we pointed out before, the source components Āℓ are non-zero for odd ℓ (shown in
Figure 1a,b). It is interesting to compare with the sourceless case.

In Figure 3, we plot the case ℓ = 1 and ℓ = 3 for different values of ω̄, comparing the
solution with and without the source.

The source mainly affects the maxima (peaks) of |W2|, but not the position of these
peaks. Additionally, the amplitude increases for higher values of ℓ, and the highest ampli-
tudes occur for ω̄ ∼ µ̄. This last condition, c ∼ 0, corresponds to the longwave approximation.

Indeed, Equation (22) is analogous to the partial wave method in quantum mechanics
theory but with spheroidal harmonics instead of Legendre polynomials.

In (24), we can write c2 = a2(ω2 − µ2) = a2|p|2 ∼
( a

λ

)2, where |p| is the momentum
of the scalar field, and, therefore, the limit c → 0 is equivalent to a ≪ λ, which is the
well-known long-wave approximation (LWA) introduced by Isaacson [29] in gravitational
radiation. However, we emphasize, and we must not lose sight of this, that c → 0 must be
understood, of course, as ω ≈ µ.
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Figure 3. The amplitude |W|2 for δ = 0.99, µ̄ = 0.1, and ℓ = 1, 3 for the cases with and without source
term. (a) |W|2 for ω̄ ∼ µ̄ and ℓ = 1. Effect of the source term. (b) |W|2 for ω̄ > µ̄ and ℓ = 1. Effect
of the source term. (c) |W|2 for ω̄ ∼ µ̄ and ℓ = 3. Effect of the source term. (d) |W|2 for ω̄ > µ̄ and
ℓ = 3. Effect of the source term.

In this approximation,
Sℓ(c, x) ≈ Pℓ(x), (44)

and λℓ ≈ ℓ(ℓ+ 1).
We can compare the solutions obtained by setting c = 0 with those coming from the

general treatment in the Appendix A. The results are shown in Figure 4.
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Figure 4. Compared amplitudes |W|2 for δ = 0.99, µ̄ = 0.1, and different ℓ. In one case, we use the
long-wave approximation, while the other corresponds to the solution calculated with the pertur-
bative approach described in the Appendix A. (a) |W|2 obtained in the long-wave approximation
compared with the approximated solution for ω̄ = µ̄ and ℓ = 0. (b) |W|2 obtained in the long-wave
approximation compared with the approximated solution for ω̄ > µ̄ and ℓ = 0. (c) |W|2 obtained
in the long-wave approximation compared with the approximated solution for ω̄ = µ̄ and ℓ = 1.
(d) |W|2 obtained in the long-wave approximation compared with the approximated solution for
ω̄ > µ and ℓ = 1.
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The numerical solutions presented in Figures 1–4 show that (a) the source considered
in the present work is relevant in the region near the horizon, but, in the limit y∗ → ±∞,
the equation for the scalar field can be safely taken as (31) with the asymptotic form of
the effective potential given in (41) and sourceless; (b) for numerical purposes, the choice
|y∗| ≳ 100 is enough to guarantee that we are close enough to the horizon and infinity
(depending on the sign of y∗); (c) the case ω ∼ µ can be treated using the long-wave
approximation, or the expressions for λℓ obtained in the Appendix A.

In the following section, we discuss the radiation pattern of the solutions analyzed here.

5. Emission of Radiation

Following [14], the emission of axions’ radiation due to the source in (12), per unit
frequency interval per solid angle dΩ, is

d2Eℓ

dω̄dΩ
=

(
Sℓ(θ)√

2π

)2 1
|2 A(∞)(ω̄)|2

∣∣∣∣∫ ∞

−∞
W(∞)(y∗) Āℓ(y∗) dy∗

∣∣∣∣2. (45)

The angular term S2
ℓ depends on c2 = ω2 − µ2 but we omit this in the analysis since

it represents a small contribution, as seen in the appendix, where this term is plotted as a
function of the frequency.

The term |A(∞)(ω̄)|−2 ≡ Q(ω̄) is obtained from the numerical solution of (31) with
initial conditions

W(y∗) = eıω̄y∗ , W ′(y∗) = ıω̄ eıω̄y∗ , (y∗ → −∞),

and, therefore,

A(∞)(ω̄) = lim
y∗→∞

(√
ω̄2 − µ̄2 W(y∗)− ıW ′(y∗)

2
√

ω̄2 − µ̄2

)
, (46)

Another interesting quantity to characterize the radiation emission is the fractional
energy gain from the monochromatic wave sent from infinity. In our case, this quantity is

Z =

∣∣∣∣∣C(∞)

A(∞)

∣∣∣∣∣
2

− 1, (47)

where C(∞) is calculated in a similar way as A(∞):

C(∞)(ω̄) = lim
y∗→∞

(√
ω̄2 − µ̄2 W(y∗) + ıW ′(y∗)

2
√

ω̄2 − µ̄2

)
, (48)

Figure 5 shows Q and Z for ℓ = 0 and ℓ = 1. For the case ℓ = 0 (and for all even
values of ℓ), the source term is zero; however, for even values of ℓ, the source is relevant.
Figure 5c,d shows how different the factors Z and Q are when the source is considered.

With these results, we numerically calculate the total energy radiated to infinity up to
the constant coming from the solid angle integration, that is,

dE
dω̄

=
1

|2 A(∞)(ω̄)|2

∣∣∣∣∫ ∞

−∞
W(∞)(y∗) Āℓ(y∗) dy∗

∣∣∣∣2, (49)

which is not zero only for odd values of ℓ. In our case, this is ℓ = 1, 3. The results are
plotted in Figure 6.
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Figure 5. Factors Q and Z defined in the text for different values of ℓ and µ̄. In all panels, δ = 0.99.
(a) Factors Q and Z for µ̄ = 0.1 and ℓ = 1. (b) Factors Q and Z for µ̄ = 0.3 and ℓ = 1. (c) Factors Q
and Z for µ̄ = 0.1 and ℓ = 3. (d) Factors Q and Z for µ̄ = 0.3 and ℓ = 3.
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Figure 6. Radiated energy as a function of ω̄ for different masses and ℓ = 1, δ = 0.99. Factors Q and
Z for ℓ = 0.

Let us comment on the results shown in this numerical analysis. According to De-
tweiler in [14], a sharp maximum in Q signals a resonant frequency at which a black hole
resonance occurs. In our case, this resonance does not happen, as seen in Figure 5.

To understand this, first note that our initial condition (numerical integration condi-
tion) is |W|2 = |A(+)|2 = 1 near the horizon (y∗ → −∞ or, numerically, y∗ = −100). On
the other hand, functions Z and Q start from zero at the initial frequency ω̄ = µ̄, then Z
increases while Q decreases, which happens during a frequency interval, let us say ∆ω̄. By
denoting the half of such an interval as ω̄c, the function Z behaves as follows:

Z =

{
0 ω̄ ⪅ ω̄c − ∆ω̄,
−1 ω̄ ⪆ ω̄c + ∆ω̄,

(50)

and a similar expression for Q, changing the last line to 1.
From the definition of Q and Z, previous behavior is understood due to the follow-

ing. For ω̄ ⪅ ω̄c − ∆ω̄, the denominator in (46) produces a divergence that is respon-
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sible for Q → 0. Instead, for Z, such divergence is not present since Z depends on the
ratio C(∞)/A(∞) (see the definition of C(∞) in (48)) and then, for this frequency range,
|C(∞)|2 ∼ |A(∞)|2.

Instead, for ω̄ ⪆ ω̄c + ∆ω̄, the conditions |A(∞)|2 ∼ 1 and |C(∞)|2 ∼ 0 are consistent
with the behavior of the Z and Q factors.

The Z factor is the fractional energy gain of a wave of frequency k =
√

ω̄2 − µ̄2 sent
from infinity that is scattered from the BH. In the zone where Z ∼ 0, part of the incoming
wave is scattered (indeed, in this frequency range, |C(∞)| ∼ |A(∞)|, while, in the region
in which Z → −1, no scattered wave is present, indicating a complete absorption of
the signal).

Therefore, the energy radiated should be centered in the transition zone, the ∆ω region.
Figures 6 and 7 precisely show this behavior.
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μ
-
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Figure 7. Radiated energy as a function of ω̄ for different masses and ℓ = 1, δ = 0.99. Factors Q and
Z for ℓ = 0.

6. Conclusions

This research paper explores the movement of gravitational axions in a Kerr black
hole background using analytical and numerical methods. One interesting finding is
that resonance occurs when ω ≳ µ, similar to the Detweiler resonance discussed in [14].
However, the Detweiler resonance is related to a massless scalar. This research concludes
that this resonance always occurs if ℓ is odd and a Pontryaguin-like source is present.

Another important observation is that Figures 6 and 7 show that the spectral maxima
shift to the right and the radiated power decreases with ω̄. Additionally, the maximum
becomes significantly smaller when ℓ grows. However, it is interesting to note qualitatively
that the curves can be reasonably approximated as Gaussian for small µ̄.

For µ̄ ≳ 0.3, the Gaussian starts to be asymmetric with a deviation to the right. We
found that the function

f (ω̄) = a e−
(x−ξ)2

2 σ2

(
1 + erf

(
α (x − ξ)√

2 σ

)
,
)

(51)

is well-fitted to the curves of the radiated power. Here, erf(x) is the error function

erf(x) =
2√
π

∫ x

0
e−t2

dt.

The function f in (51) is proportional to the probability density of a skew-normal
distribution, with proportionality constant a and, for this distribution, it is known that the
mean value is

Mean = µ +

√
2
π ασ

√
1 + α2

,
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and the variance is

Var = σ2
(

1 − 2α2

π(1 + α2)

)
.

So, an estimation of the mean width of the curves in Figures 6 and 7 is given by 2
√

Var,
that is,

∆ω̄ ≈ 2σ

√
1 − 2α2

π(1 + α2)
.

We summarizes these results in Table 1.

Table 1. The mean value and variance for different ℓ and µ̄ from Figures 6 and 7.

ℓ µ̄ ⟨ω̄⟩ ∆ω̄

1

0.1 0.38 0.16
0.3 0.44 0.16
0.5 0.61 0.15
0.7 0.81 0.15
0.9 1.01 0.15

3

0.1 0.78 0.15
0.3 0.80 0.15
0.5 0.84 0.14
0.7 0.90 0.14

We estimate the mean lifetime of these resonances as (dimensionful quantities)

τ ≈ (∆ω)−1 =
M

∆ω̄
≈ 5 × 1038

(
M

M⊙

)
[s]

Then, for example, primordial black holes with their masses ranging from Planck
mass (∼ 10−37M⊙) to masses of order 103M⊙ will cause pulses with a mean lifetime from
10−1 [s] up to 1041 [s]∼ 1034 years, that is (in the last case), a mean lifetime well beyond the
universe’s age.

It is worth noting that the resonance for gravitational axions discussed in this paper is
distinct from the one studied in Detweiler’s work. In Detweiler’s case [14], the resonance is
observed as a divergence of the factor Q(ω̄), whereas, in our case, Q(ω̄) approaches 1 as ω̄
tends to infinity.

In conclusion, observing sharp resonances in radiation patterns is possible, depending
on the black holes’ mass. For instance, if the black holes have masses between 100 and
1000 M⊙, the lifetime of these resonances falls within the range of observability in LIGO [18].

Finally, it is important to point out that superradiance is a phenomenon that appears
naturally in the homogeneous part of Equation (17), and it is for this reason that it is not
relevant in the treatment of the Teukolsky equation.

Author Contributions: All authors (J.G. and F.M.) have equally contributed to the manuscript. All
authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by The Alexander von Humboldt Foundation(JG), and FONDE-
CYT through the grants 1221463 (J.G.), and DICYT-USACH through the grant 042231MF (F.M.).

Data Availability Statement: No new data were created or analyzed in this study.

Acknowledgments: J.G. thanks Christophe Grojean for the pleasant hospitality in DESY (Hamburg);
he also thanks Thomas Biekötter and Mathias Pierre for the pleasant discussions at the DESY lunch,
and also mainly to Andreas Ringwald and Pierre Sikivie for sharing their knowledge of axions with
him. We thank Manu Paranjape for clarifying discussions on subtle aspects of this paper.

Conflicts of Interest: The authors declare no conflict of interest.



Universe 2024, 10, 463 14 of 17

Appendix A. The Angular Equation

In this appendix, we review the solution of (19) following the analysis by S. Teukolsky
in [25]. First, define, as usual, x = cos θ, so that the angular equation is now

d
dx

[
(1 − x2)

dS
dx

]
+ (λ + c2x2)S = 0. (A1)

In reference [25], a method for treating the case of any spin s and third component of
angular momentum, m, is discussed. However, we restrict here to the case of interest for
us, that is, m = 0 and s = 0, which is just the previous equation.

The idea is to treat the c2x2 term as a perturbation (not necessarily infinitesimal). The
order-zero operator is

d
dx

[
(1 − x2)

dS
dx

]
= −λS, (A2)

with the known (normalized) solution

Sℓ(x) =

√
2ℓ+ 1

2
Pℓ(x), (A3)

with λ = ℓ(ℓ+ 1) ( ℓ = 0, 1, 2 · · · ), and Pℓ(x) is the Legendre’s polynomial of degree ℓ.
The continuation method [30] for calculating eigenfunction and eigenvalues in (A1)

considers c as a parameter, and then the equation under study is[
(1 − x2)S′

ℓ

]′
+ (λℓ(c) + c2x2)Sℓ = 0, (A4)

with ′ denoting derivatives with respect to x and Sℓ = Sℓ(c, x).
By taking the derivative with respect to c in the previous equation (denoted by a dot

in what follows), one obtains[
(1 − x2)Ṡ′

ℓ

]′
+ (λ̇ℓ + 2cx2)Sℓ + (λℓ + c2x2)Ṡℓ = 0. (A5)

From here, it is possible to find a set of first-order differential equations for λℓ(c) and
Sℓ. Indeed, multiplying the last equation by Sℓ followed by an x integration, one obtains∫

dxSℓ

[
(1 − x2)Ṡ′

ℓ

]′
+
∫

dxSℓ(λ̇ℓ + 2cx2)Sℓ +
∫

dxSℓ(λℓ + c2x2)Ṡℓ = 0. (A6)

The first term can be integrated by parts twice, giving (boundary terms cancel)∫
dx Sℓ

[
(1 − x2)Ṡ′

ℓ

]′
=

∫
dx Ṡℓ

[
(1 − x2)S′

ℓ

]′
,

= −
∫

dx Ṡℓ(λℓ + c2x2)Sℓ. (A7)

Then, the first and second terms cancel in (A6). Finally,

λ̇ℓ = − 2c
|Sℓ|2

∫
dx Sℓ x2 Sℓ, (A8)

with |Sℓ|2 =
∫

SℓSℓdx.

We repeat the calculation, but multiplying now by Sℓ̄ with ℓ̄ ̸= ℓ, and performing the
integral to obtain ∫

ṠℓSℓ̄ dx = −2c
∫ Sℓ x2 Sℓ̄

λℓ − λℓ̄
dx. (A9)



Universe 2024, 10, 463 15 of 17

Finally, with the help of the completeness relation, one obtains

Ṡℓ = −2c ∑̄
ℓ ̸=ℓ

Sℓ̄(x)
λℓ − λℓ̄

∫
Sℓ(x′) x′2 Sℓ̄(x′) dx′. (A10)

Equations (A8) and (A10) are a system of differential equations to be solved (numeri-
cally) to determine the eigenvalues λℓ(c) and eigenfunctions Sℓ(c, x) in Equation (A1).

In this perturbative approach, the solution of the problem at zero order is given by
(A3); then, we look for solutions of (A8) and (A10) with the form

Sℓ(c, x) = ∑
ℓ′ ,ℓ′′

Bℓ,ℓ′(c)

√
2ℓ′ + 1

2
Pℓ′(x), (A11)

which, once replaced in the equations, give rise to

dλℓ

dc
= − 2c

|Bℓ,ℓ|2 ∑
ℓ′ ,ℓ′′

Bℓ,ℓ′Bℓ,ℓ′′⟨ℓ′|ℓ′′⟩ (A12)

dAℓ,ℓ′

dc
= −2c ∑̄

ℓ ̸=ℓ
L′ ,L′′

Bℓ̄,ℓ′

λℓ − λℓ̄
Bℓ,L′⟨L′|L′′⟩Bℓ̄,L′′ , (A13)

with

⟨m|n⟩ = [(2m + 1)(2n + 1)]1/2

2

∫ 1

−1
Pm(x) x2 Pn(x)dx, |Aℓ,ℓ|2 = ∑

ℓ′
(Aℓ,ℓ′)

2.

Equations must be solved with the following initial conditions:

λℓ(0) = ℓ(ℓ+ 1), Bℓ,ℓ′(0) = δℓ,ℓ′ . (A14)

Expressions (A12) and (A13) are those in [25]. In Teukolsky’s approach, the normaliza-
tion |Sℓ|2 = 1 is assumed, specified in our case for the massive scalar field, and the third
component of angular momentum equals zero.

The case c2 < 0 can be treated similarly, and the only effect is a change of signs in the
RHS of (A12) and (A13). However, this case is not interesting since it produces divergent
solutions for r ≫ r+.

Our analysis focuses on the cases c ≥ 0. The numerical solutions are obtained by
summing up to ℓ′ = 10 in (A11) and subsequent expressions. The solutions are fitted to a
polynomial function, and we found that the best fit (for 0 < c < 5) is obtained for order-five
or higher polynomials.

The results for eigenvalues λℓ with ℓ = 0, 1, 2, 3 are the following:

λ0(c) = −0.0298 c − 0.297 c2 − 0.00746 c3 − 0.0372 c4 + 0.00352 c5 (A15)

λ1(c) = 2 − 0.00112 c − 0.6 c2 + 0.00294 c3 − 0.00964 c4 + 0.000834 c5 (A16)

λ2(c) = 6 + 0.00412 c − 0.5350 c2 + 0.00998 c3 − 0.00844 c4 + 0.000553 c5 (A17)

λ3(c) = 12 + 0.0018 c − 0.513 c2 − 0.00176 c3 + 0.00572 c4 − 0.000794 c5 (A18)

The coefficients B in (A11), on the other hand, are the following:

B1,1(c) = 1 − 0.000774 c + 0.00169 c2 − 0.00104 c3 − 0.000193 c4 + 0.0000372 c5 (A19)

B1,3(c) = 0.00156 c + 0.022 c2 + 0.00366 c3 − 0.00148 c4 + 0.000105 c5 (A20)

B3,1(c) = −0.00144 c − 0.0223 c2 − 0.00339 c3 + 0.00139 c4 − 0.0000965 c5 (A21)

B3,3(c) = 1 − 0.000666 c + 0.00143 c2 − 0.000842 c3 − 0.000355 c4 + 0.0000446 c5 (A22)
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These coefficients are the non-zero ones, which are relevant to our approximation.
For example,

S1 =

√
1
2

B1,1(c) P1(cos θ) +

√
5
2

B1,3(c) P3(cos θ) + · · · ,

S3 =

√
3
2

B3,1(c) P1(cos θ) +

√
7
2

B3,3(c) P3(cos θ) + · · · ,

and similar expressions for S2, S3, with the coefficient listed before.
Finally, note that, for the radiation emission, the quantities of interest are |Sℓ|2, which,

once integrated into the solid angle, will be 1. However, our approach has an explicit
dependence on c: ∫ 1

−1
|S1|2 d(cos θ) = | B1,1(c)|2 + |B1,3(c)|2 + · · · ,∫ 1

−1
|S3|2 d(cos θ) = |B3,1(c)|2 + |B3,3(c)|2 + · · · .

Figure A1 shows that, even if there is such a dependence, these integrals can be
approximated to 1 in our numerical analysis.
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Figure A1. Contribution of c = δ
√

ω̄2 − µ̄2 to the normalization of Sℓ functions.
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