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Abstract: The current accelerated expansion of the Universe remains one of the most intriguing topics
in modern cosmology, driving the search for innovative statistical techniques. Recent advancements in
machine learning have significantly enhanced its application across various scientific fields, including
physics, and particularly cosmology, where data analysis plays a crucial role in problem-solving. In
this work, a non-parametric regression method with Gaussian processes is presented along with
several applications to reconstruct some cosmological observables, such as the deceleration parameter
and the dark energy equation of state, in order to contribute some information that helps to clarify the
behavior of the Universe. It was found that the results are consistent with λCDM and the predicted
value of the Hubble parameter at redshift zero is H0 = 68.798± 6.340(1σ) km s−1 Mpc−1.

Keywords: cosmology; dark energy; Hubble parameter; deceleration parameter; linear regression;
gaussian process

1. Introduction

Nowadays, it is becoming more common to hear that we are currently living in the
Golden Age of Cosmology, whose origin goes back to the early 1990s when the Cosmic
Background Explorer (COBE) satellite was launched in order to provide information about
the Cosmic Microwave Background [1]. This event marked the beginning of a series of
outstanding discoveries such as the necessity to incorporate the Dark Matter (DM) and Dark
Energy (DE) components to account for the structure formation and the current accelerated
expansion of the Universe, which later on gave rise to the standard cosmological model
or Lambda Cold Dark Matter (LCDM) (more on this model later). This Golden Age is
also characterized by the huge amount of observations and data obtained as a result of
several worldwide collaborations, such as Planck [2], SDSS [3], SNLS [4], DESI [5], JWST [6]
and Euclid [7], to mention a few. This was definitely a remarkable achievement since
it provided the community with valuable information to work with, but it also came
with a set of obstacles, such as how to process and analyze the avalanche of new data.
Fortunately, around the same time, a new field of mathematics was starting to grow in
strength: machine learning.

Machine Learning (ML) is the subfield of artificial intelligence dedicated to the math-
ematical modeling of data. It is a method for finding solutions to problems by using
computers, which differs from regular programming since the latter uses data and rules to
return results. In contrast, ML uses data and results to deduce the rules that relate them. An
ML system is said to be trained rather than programmed [8]. ML can be broadly categorized
into three types: supervised, unsupervised, and reinforcement learning [9]. It can handle
a wide variety of problems, but the main goal is to learn the process of mapping inputs

Universe 2024, 10, 464. https://doi.org/10.3390/universe10120464 https://www.mdpi.com/journal/universe

https://doi.org/10.3390/universe10120464
https://doi.org/10.3390/universe10120464
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/universe
https://www.mdpi.com
https://orcid.org/0000-0003-4334-5140
https://orcid.org/0000-0002-2701-5654
https://orcid.org/0000-0002-7401-0864
https://doi.org/10.3390/universe10120464
https://www.mdpi.com/journal/universe
https://www.mdpi.com/article/10.3390/universe10120464?type=check_update&version=1


Universe 2024, 10, 464 2 of 27

into outputs, which can then be used to predict the outputs for new, unseen, inputs. These
algorithms have been widely compared against traditional techniques in related fields,
obtaining promising results in terms of efficiency and performance in favor of ML [10–14].
The main advantage of ML algorithms is that they can automate repetitive tasks such as
data cleaning and pattern recognition that might require direct human intervention with
traditional methods.

ML also contains valuable tools for the process known as reconstructions. In the
absence of a fundamental and/or well-defined theory, a reconstruction is able to analyze a
physical quantity and provide some insights into its general behavior; it can be broadly
categorized into parametric and non-parametric [15]. In parametric reconstructions, the
target quantity is studied by proposing a particular function with free parameters that
should be inferred using observations. These functions are commonly phenomenological
parameterizations to model, for instance, the DE equation of state w(z), which could bring
about some information about the DE’s fundamental nature. Non-parametric reconstruc-
tions, on the other hand, apply numerical or statistical tools directly to the data instead
of focusing on a particular function. This approach allows to decrease the bias towards
a particular behavior; however, they are prone to overfitting or may produce inaccurate
results on extrapolations outside the range spanned by the data. In this work, the main
focus is on non-parametric reconstructions, where ML algorithms shine through. That is,
ML algorithms allow for predicting the behavior of some observable quantities, even when
an exact model of them is not fully specified [16]. Some useful and popular supervised
learning methods that have been applied to cosmology are:

Artificial Neural Networks (ANNs): Named so because of their analogy to the be-
havior of the human brain. ANNs are made up of layers of sets of units called neurons
that individually process data inputs. Each neuron is connected to the others through links
with weights that are evaluated by an activation function, discarding the worst options
and prioritizing the best ones. ANN are commonly used to solve classification and pattern
recognition problems in images, speech, or signals. ANNs also have predictive applications
in the financial [17] or atmospheric [18] sector. The field of cosmology has widely adopted
neural networks across various applications. For example, CosmicNet I [19] and Cosmic-
Net II [20], which are used to accelerate Einstein–Boltzmann solvers; physically-informed
neural networks, which serve as a replacement for numerical solvers in cosmological codes
for differential equations [21,22]; ANNs are applied directly to data to non-parametrically
reconstruct certain cosmological quantities, including the Hubble parameter and structure
formation through f σ8 [23], the deceleration parameter [24], rotation curves [25], on scalar-
tensor theories [26], and testing the cosmic distance ladder [27,28]. Neural networks also
emulate functions such as the power spectrum [29–31] and speed up the computational
processes [32–35]. Genetic algorithms [36] have also been employed in related tasks. For an
introduction to ANN in cosmology, see [37].

Decision Trees and Random Forests (RF): Essentially, decision trees learn a hierarchy
of if/else questions and reach an appropriate decision. Decision trees can be used in mar-
keting campaigns [38] or diagnoses of diseases [39], to mention a few examples. Random
forests are based on a set of decision trees that are uncorrelated and merged to create more
accurate data predictions. These types of algorithms are often used to solve classification
problems [40], which can be of great use in the field of cosmology. Some examples are
gravitational waves’ classification [41,42], joint redshift-stellar mass probability distribution
functions [43] and N-body simulations [44–46].

k-Nearest Neighbors (k-NN): This algorithm consists of storing the training dataset
and formulating a method that finds the closest data values to make predictions for a
new test data point. It is possibly the simplest ML method and has a wide spectrum of
applications, such as the creation of customized recommended systems [47]. Given the ease
with which the k-NN finds groups/agglomerations, its use in cosmology has focused on
topics related to structure formation such as galaxy-clustering [48–51].
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There is another ML technique that works as the basis for this paper, and it is
known as Gaussian Process Regression (GPR). Over the last decade, GPR has become
particularly popular in cosmology for testing the concordance model [52–55], cosmo-
graphic studies [56–60], the reconstruction of parameters that characterize the cosmic
expansion [56,61–64], reconstructing dark energy [65–70], constraining spatial curvat-
ure [71–75], exploring the interaction between dark matter and dark energy [76–80], testing
modified theories of gravity [26,81–86], testing consistency among datasets [87], emulating
the matter power spectrum [88], thermodynamic viability analysis [89,90], probing the
cosmic reionization history [91–93] and the classification and identification of blended galax-
ies [94]; among many other research fields that take advantage of the ML capabilities for
analyzing and classifying images, videos, and numerical data. For a pedagogical introduc-
tion to GPR, one can refer to the Gaussian process website (http://gaussianprocess.org/).
Over the course of this work, a GPR will be defined and then tested by applying it to the
prediction of observable quantities in cosmology. Therefore, the main objective of this work
is to provide a basic introduction to Gaussian Processes (GPs) and a presentation of some
applications of this method through examples.

The paper is structured as follows: in Section 2, a general description of the GPR is
given; in Section 3, we explain the types of existing kernels in the context of a GPR; then,
in Section 4, we give a brief review of cosmology that yields to the standard cosmological
model; in Section 5, we make use of the GPR methodology on some cosmological quantities,
and finally, in Section 6, we discuss our results and present our conclusions.

2. Gaussian Processes

In this section, we present some of the relevant concepts before delving into the GPR:

• Random Variable: a function that assigns a value to each event in the sample space
of a random experiment, which could be either discrete or continuous. For example,
when rolling two six-sided dice, the result will be two outcomes n1 and n2. In this
case, a discrete random variable X can be the sum of the result of rolling both dice, i.e.,
X(n1, n2) = n1 + n2. In contrast, a continuous random variable could be the weight or
height of a population. These quantities, once measured, comprise an interval on the
number line, making it continuous when taking an infinite number of possible values.

• Correlation: also called “dependence”, it is a statistical relationship between two
random variables. For example, when comparing the height of a person with that of
their parents, in general, it will be observed that the descendants have heights similar
to the progenitors. This means that there is a connection or positive correlation between
both heights. In general, the presence of consequences does not imply causality.

• Probability distribution: a function that assigns to each event, defined on the random
variable, the probability that said event occurs. They can be discrete or continuous. A
widely used one is the binomial probability distribution (where there are two possible
mutually exclusive events):

P(X = k) =
n!

k!(n− k)!
pk(1− p)k, (1)

where k is the number of times an event has occurred, p the probability that said event
occurs, and n the number of total events.

• Normal distribution: also called Gaussian distribution, it is a type of continuous
probability distribution with the form:

f (x) =
1

σ
√

2π
e−

1
2 (

x−µ
σ )2

, (2)

where x is a random variable, µ is the mean and σ the standard deviation.
• Random process: also called stochastic process, which is an object made up of several

random variables. An example of a stochastic process is the random walker since each

http://gaussianprocess.org/
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step the walker takes is a random variable. The random variables are not necessarily
independent of each other since there may be correlations as in the Markov chains
where the next step in the chain depends on the immediate preceding one.

Let x = X(ω) be the value of a random variable X at ω and f (x) its probability
distribution. We say that X is normally distributed if f has the form of Equation (2), which
is defined only by the mean µ and variance σ2; hence, it can be denoted as

f (x) ∼ N(µ, σ2). (3)

Therefore, N(µ, σ2) is said to be the normal (Gaussian) distribution. If we now have an arbi-
trary number of random variables x1, . . . , xn, then the distribution becomes a multivariate
normal distribution, which can be denoted as:

f̄ = [ f (x1), . . . , f (xn)] ∼ N̄(µ̄, K(x, x′)), (4)

where µ̄ = (µ(x1), µ(x2), . . . , µ(xn)) is the vector that contains the means of the random
variables and

K(x, x′) =


K(x1, x1) K(x1, x2) · · · K(x1, xn)
K(x2, x1) K(x2, x2) · · · K(x2, xn)

...
...

. . .
...

K(xn, x1) K(xn, x2) · · · K(xn, xn)

, (5)

is a matrix with the covariances among the variables. Note that each diagonal element is
the covariance of a random variable with itself, which equals its variance.

This reasoning can be extended to the case of a continuous random variable x where
each value of x is a random variable. In this case, the mean vector becomes a function that
returns the mean of the Gaussian distribution that defines x, and the covariance matrix
has to be a function that gives the covariance between two continuous random variables
x and x′. This generalization of a normal distribution for continuous random variables is
known as a Gaussian Process. Therefore, a GP is an infinite collection of random variables
that is defined by a mean function µ(x) and a covariance function k(x, x′), also known as
the kernel of the process. Usually, the mean µ(x) is taken to be zero for simplicity, but it
can be different with analogous calculations.

There are several types of kernels such as the rational quadratic, exponential or Matern
(which will be further explained in later sections). For example, one of the most commonly
used covariance functions due to its simplicity and infinite differentiability is the squared
exponential kernel, which can be written as:

k(xi, xj) = e−θ(xi−xj)
2
, (6)

where the parameter θ indicates how the correlation is spread, as shown in Figure 1. The
larger the value of θ, the stronger the correlation between variables.

Figure 1. Changes in the correlation when varying the θ value.
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2.1. Gaussian Process Regression

In order to train a Gaussian Process Regression (GPR) model, a dataset of n points
{(x1, y1), (x2, y2), . . . , (xn, yn)} is needed. Let us define the vectors ~x = (x1, x2, . . . , xn) and
~y = (y1, y2, . . . , yn). The aim of a GPR is to find the posterior probability distribution for the
values of the independent variable P(~w|~y,~x), where ~w is a vector of weights that defines
the model. The posterior is computed by the Bayes’ Rule:

P(~w|~y,~x) =
P(~y|~x, ~w)P(~w)

P(~y|~x) . (7)

Here, P(~w) is referred to as the prior, which is a probability distribution that contains
information about ~w before the observed data; P(~y|~x, ~w) is named the likelihood and it relates
information about the prior distribution with the data; the marginal likelihood P(~y|~x) is a
constant of normalization that guarantees the posterior is a probability (0 ≤ P(~w|~y,~x) ≤ 1),
and it is given by the integral of the numerator over all possible values of ~w:

P(~y|~x) =
∫

P(~y|~x, ~w)P(~w)d~w. (8)

Note that Bayes’ Rule is not restricted to Gaussian distributions; however, in the context
of GPR, the prior and posterior are both a GP and the data are Gaussian (each value is
determined by a mean and a standard deviation). For this particular case, the prior and
posterior are called conjugate distributions with respect to the likelihood function.

The GPR consists of making predictions based on the training data set (also called
observables), assuming the observations are distributed around a model f with an additive
noise ε, which is assumed to be Gaussian with zero mean and variance σ2

n :

~y = f (~x) + ε,
cov(~y) = K(~x,~x) + σ2

n I,
(9)

where I is the identity matrix and K(~x,~x) is the covariance matrix obtained when evaluating
the kernel in the corresponding training points, that is, [K(~x,~x)]ij = k(xi, xj).

Therefore, it is required to find the test outputs ~f∗, which are the values of the model
at the test points ~x∗ ≡ (x1∗, x2∗, · · · , xn∗). The posterior distribution of Equation (7) can be
derived by conditioning the prior on the training observations, such that the conditional
distribution of ~f∗ only contains those functions from the prior that are consistent with the
data set. Using the conditioning and marginalizing properties of the Gaussian distribution
on the joint distribution for ~f∗ and ~y, it can be proven [95] that the mean and covariance of
the predictions for the test set ~x∗ are:

~̄f∗ = ~K>∗ (~K + σ2
n~I)−1~y ,

cov(~f∗) = ~K∗∗ − ~K>∗
(
~K + σ2

n~I
)−1

~K∗ .
(10)

The notation ~K = K(~x,~x), ~K∗ = K(~x,~x∗) and ~K∗∗ = K(~x∗,~x∗) is introduced to simplify
the calculations.

2.2. Maximum Likelihood Estimation

Assuming the cases in the training set are independent of each other, the probability
density of the observations given a set of parameters ~w, which is the likelihood from
Equation (7), can be expressed as a product of individual densities

P(~y|~x, ~w) =
n

∏
i=1

p(yi|xi, ~w) , (11)
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where n is the number of input training points. Therefore, using the fact that the product
of Gaussian distributions is also Gaussian, the marginal likelihood from Equation (8), in
logarithmic form, becomes the log marginal likelihood

log P(~y|~x) = −1
2
~yT(~K + σ2

n~I)
−1~y− 1

2
log |~K + σ2

n~I| −
n
2

log 2π. (12)

Optimal values of the parameters can be estimated by maximizing the log marginal likeli-
hood. This training method used in GPR is known as the maximum likelihood estimation [95].
The maximizing can be performed by any optimizing algorithm, such as gradient descent
or Markov Chain Monte Carlo.

3. GP Kernel

As seen so far, a fundamental feature of GPR that plays an important role in the
fitting of a model is the kernel. A kernel (or covariance function) describes the covariance
(correlation) of the random variables of the GP. Together with the mean function, the kernel
completely defines a GP. In principle, any function that relates two points based on the
distances between them can be a kernel, but it must satisfy certain conditions in order to
represent a covariance function. For a function to be a valid kernel, the associated resulting
matrix in Equation (5) must be positive definite, which implies that it has to be symmetric
and invertible.

The covariance function of the variables x and x′ is said to be stationary if it is a
function only of x− x′ since it is invariant under translations, and non-stationary otherwise.
Moreover, if it is a function only of |x− x′| it is isotropic since it is invariant under rigid
transformations.

As mentioned previously, it is necessary to choose a suitable kernel type for each
particular problem. The process of creating a kernel from scratch is not always trivial, so it
is usual to invoke a predefined kernel in order to model a diversity of processes. Some of
the most used kernels are [40]:

• Radial Basis Function.

k(x, x′) = exp
(
−d(x, x′)2

2l2

)
, (13)

where d(x, x′) represents the euclidean distance between x and x′, and l > 0 is known
as the length parameter. Sometimes it is written in terms of a value θ that depends on
the length parameter, such as in Equation (6). It is known as the Radial Basis Function
(RBF) because it only depends on the radial distance. Notably, this kernel is infinitely
differentiable, making it ideal for modeling smooth functions where high regularity
is expected.

• Matern.

k(x, x′) =
1

Γ(ν)2ν−1

(√
2ν

l
d(x, x′)

)ν

Kν

(√
2ν

l
d(x, x′)

)
, (14)

where Kν is the modified Bessel function of the second kind, Γ(ν) is the Gamma
function, l is the characteristic length scale, and ν is the smoothness parameter that
controls the degree of differentiability of the function. For ν = 1

2 , the Matern kernel
reduces to the exponential kernel, which models processes with rough, non-smooth
behavior. Notably, for ν = 1.5 and ν = 2.5, the kernel corresponds to once and
twice differentiable functions, respectively, allowing for more regular behavior. As
ν→ ∞, the kernel approaches the RBF kernel, which is infinitely differentiable. This
flexibility and control over the smoothness makes the Matern kernel especially useful
for modeling functions that exhibit varying degrees of smoothness, as often seen in
real-world data.
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• Exponential Sine Squared (ESS).

k(x, x′) = exp

(
−2 sin2 (πd(x, x′)/p)

l2

)
, (15)

where p > 0 is the periodicity parameter, controlling the periodicity of the kernel, and
l > 0 is the length scale parameter. This kernel is often called a periodic kernel because
it models periodic functions with a sinusoidal component, where the periodicity is
governed by p. The exponential decay modulates the amplitude of the sine function,
enabling the kernel to capture periodic behaviors with varying smoothness.

• Dot Product.
k(x, x′) = σ2

0 + x · x′, (16)

where σ0 is a parameter that controls the inhomogeneity or offset of the kernel, while
x · x′ represents the dot product between the vectors x and x′. The term σ2

0 allows for a
shift in the kernel’s value, providing flexibility in modeling non-zero means or biases
in the data.

• Rational Quadratic (RQ).

k(x, x′) =
(

1 +
d(x, x′)2

2αl2

)−α

, (17)

where α is known as the scale mixture parameter, and l is the length scale. The RQ ker-
nel is a scale mixture of squared exponential kernels, allowing it to model functions with
varying smoothness over different scales. When α = 1, the kernel behaves similarly to
the RBF kernel. The kernel can model processes with longer-range dependencies for
0 < α < 1, while for α > 1, it captures shorter-range correlations.

Each of the values that can be varied within the kernel, such as l, σ0, etc. are called
hyperparameters. It is said that GPR is a non-parametric technique because the number
of hyperparameters is infinite. The reader might have noticed that all kernels described
above are stationary (dependent on |x − x′|), except Dot Product. This dependence on
distance alone makes stationary kernels more rigid, while also presenting poor predictive
power when outside the scope of the used data when compared with their non-stationary
counterparts. Non-stationary kernels are more flexible, which allows for a better estimate
outside the scope covered by the observations. Nevertheless, they are rarely used given the
high number of hyperparameters to optimize, the high complexity, the high computational
costs and a greater risk of overfitting when compared to stationary ones [96–99]. In this
work, we will exclusively use stationary kernels and Dot Product; although, we think that
the idea of using non-stationary ones for cosmological observations might be worth visiting
in future work.

Since the kernel is a key feature of GPR, modifying it might produce different models.
Therefore, it is necessary to establish which kernel is the best option for a particular model.
In a real problem, such as those presented in cosmology, the kind of relationship between
two variables is not always previously known. In these cases, the kernel that results in the
best fit after regression may be chosen from a set of default kernels.

3.1. Kernel Selection Through χ2.

A robust statistical tool, known as the χ2 test, could be employed to determine which
model, derived from various kernels, fits best a specific dataset, thereby enhancing the
regression analysis. This test evaluates the congruence between two datasets by assess-
ing whether a significant discrepancy exists between the observed data values and the
model’s predictions.



Universe 2024, 10, 464 8 of 27

The method consists of defining the objective function χ2 as:

χ2 = ∑
i,j

(
yi − f (xi)

)
C−1

ij
(
yj − f (xj)

)
, (18)

where (xi, yi) are the data points (or training set), Cij is the covariance matrix and f (xi) are
the values of the model at the independent variable of the data points. When the covariance
matrix is diagonal, we obtain a simplified case for the χ2 as:

χ2 = ∑
i

[yi − f (xi)]
2

σ2
yi

, (19)

where σ2
yi

is the variance and the ith element in the diagonal of Cij. The GPR produces
a model data set that can be interpreted as a function f of the independent variable
x. Given an observable (xi, yi), the numerator of Equation (19) represents the squared
distance between the observable and the model for the same value of xi. By computing this
difference over all the available observations (and as such calculating the χ2 function), we
can generate an idea of how well model f fits the data.

If the value of χ2 is obtained for models built with different kernels, the best fit will be
the one that minimizes this objective function. Notice that this method is different from the
maximum likelihood estimation explained in Section 2.2 since it is not used to determine
the hyperparameters as in the training. In this case, the models of regression have been
determined previously for different kernels and tested to find the best model in terms of
the covariance function.

3.2. A Generic Example

In this section, regression models based on Gaussian Processes are constructed from a
mock dataset exhibiting a straight-line behavior. Fortunately, nowadays there is a broad
range of standard developed code and libraries that facilitate performing a Gaussian Process
Regression, such as GPy [100], GPflow [101], GPyTorch [102], PyMC [103], scikit-learn [40]
and GaPP [66]. The latter two are the ones used during the course of this example and the
complete step-by-step procedure can be found in the public repository [104]. To further
simplify, the construction of a GPR model consists of three steps: (1) specify the prior distribu-
tion via the kernel, (2) find the hyperparameters that maximize Equation (12) and (3) evaluate
predictions with Equation (10) using the optimal hyperparameters and observables.

We will use the function GaussianProcessRegressor(), which initializes a GP prior
to regression with a specified kernel and its parameters. The method fit() returns the
same GaussianProcessRegressor() object fitted to the observables using the maximum
likelihood estimation. This method takes two lists as parameters that correspond to the
observational data variables ~x and ~y. Finally, the predict() method returns the means and
standard deviations of the predictions using Equation (10).

In the first of our examples of regression, the variances σ2
yi

or noises of the observational
data are ignored. This approach assumes that the data measurements are exact, thus
implying there are no uncertainties or error bars associated with them.

A mock data set scattered around a linear equation Y = mX + b with m = 3 and
b = −4 is created by adding a random value between −15 and 15 to 10 evaluations of the
equation at different values of X ∈ [0, 10]. The aim of the GPR is to reproduce the graph of
the line that originated the set.

In this case, the χ2 test cannot be used to find an optimal kernel, since Equation (18)
is undefined; thus, an alternative method to determine the kernel must be used. The
predictions of the model using a specific kernel at different values of X will be compared
via the sum of squared Euclidean distances to the points of the original linear relationship
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at the corresponding X-values scaled by the number of data points, n. The result is called
the Mean Squared Error (MSE) and can be written as:

MSE =
1
n ∑

i
[yi − f (xi)]

2. (20)

The regression model that minimizes the MSE is the one that most resembles the
desired line. At this point, without loss of generality, the kernel used in this GPR is the
Matern (Equation (14)).

Figure 2 shows the observational mock dataset (black points), the model predictions
(blue solid line), the line from which the data was obtained (red dash) and the confidence
zones (in lilac colors) that correspond to 2σ and 3σ, respectively. These confidence intervals
will be used for all the regression models throughout this work.

We tested different kernels, and the results achieved are quite similar; however, as
can be seen in Figure 3, the one that minimizes the MSE is the Dot Product kernel. The
Gaussian process regression for each kernel is shown in Figure A1. The Dot Product kernel
produces a linear regression model, so it is usually the best choice when fitting a straight
line. In contrast, for the rest of the kernels, the uncertainty reduces to zero when the
model is evaluated at the observations. This can be interpreted as the model overfitting
the data, which is expected given that the mock data presents no variances [105]. To
mitigate overfitting, one approach is to introduce an additional hyperparameter, σn, for
noise modeling. This hyperparameter accounts for the observational noise, preventing
the model from fitting the data too precisely. However, adding σn increases the model
complexity, requiring careful tuning to balance the bias and variance [95].

Figure 2. Linear model with null variances in the data. A Matern kernel was used for the reconstruc-
tion. It is evident that there is an overestimation of the confidence zone because our data lack errors.

On the other hand, when the observables do have uncertainties (which is the case that
most closely resembles real data), the variances must be added to the diagonal of the kernel
matrix, as shown in Equation (9). If these uncertainties come in the form of a non-diagonal
covariance matrix, then it is also added to the kernel so that:

cov(~y) = ~K + ~C, (21)

with ~C being the covariance matrix of the data. The GaussianProcessRegressor() func-
tion is able to obtain an array alpha as an input whose size is equal to the amount of
data that corresponds to the variances associated with each observation. The outcome
of this approach, illustrated in Figure 4, demonstrates that the prediction more closely
resembles a straight line, especially when compared to the scenario with a mock dataset
with null variances.



Universe 2024, 10, 464 10 of 27

Figure 3. Comparison of the mean squared errors, calculated via Equation (20), for different kernels.
As can be seen, the model that minimizes the MSE corresponds to the Dot Product kernel, which
produces a linear regression.

Figure 4. Linear model with variances in the data. An almost linear behavior is observed as we no
longer have overfitting.

In this scenario, similar to the MSE test performed in Figure 3, a χ2 test can be
employed to determine the kernel that generates the optimal model. This involves creating
a model for each kernel test, computing the χ2 value for each model, and selecting the one
with the lowest χ2. In Figure 5, we plot the results of this test and, by analyzing it, it can be
concluded that the model that yields the best fit to our data is the one utilizing a Matern
kernel, as it produces the lowest value of the objective function. It is crucial to note that the
model with the lowest χ2 is not necessarily the best one, as excessively minimizing χ2 can
lead to overfitting. The linear regression models for each kernel are shown in Figure A2.

Figure 5. Different models with a specific kernel are produced to compute their corresponding χ2

value. The kernel with the lowest χ2 generates the optimal model—in this case, the Matern kernel.
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3.3. Derivatives of a GP

The RBF kernel (Equation (13)) is infinitely differentiable, and the derivative of a GP is
also a GP, which allows for reconstructing the derivatives of a function from data. In order
to reconstruct the derivative, not only the covariance between the observational data is
required but also the covariance between the function and its derivative and among the
derivatives of the reconstruction. All of them can be calculated from the derivative of the
kernel function, as described in [66].

As in Section 2.1, it can be proven that the mean and covariance of the prediction for the
first derivative of this function at test points ~x∗ ≡ (x1∗, x2∗, · · · , xn∗) using a differentiable
kernel k(xi, xj) are:

¯~ ′
∗f = ~K′>∗ (~K + σ2

n~I)−1~y ,

cov(~f ′∗) = ~K′′∗∗ − ~K′>∗
(
~K + σ2

n~I
)−1

~K′∗ .
(22)

Here, ~K′∗ = K′(~x,~x∗) =
∂k(xi ,xj∗)

∂xj∗
and ~K′′∗∗ = K′′(~x∗,~x∗) =

∂2k(xi∗ ,xj∗)
∂xi∗∂xj∗

are introduced to

simplify the notation.
As can be inferred from these equations, the derivative of the kernel must exist in order

to compute the predictions of a derivative using GPR. Therefore, an infinitely differentiable
covariance function is useful when reconstructing a derivative from data, which is why
an RBF kernel (Equation (13)) is preferred among others in this type of problem. If an
RBF kernel is used, the procedure can be generalized to any derivative of the model and,
in particular, the package GaPP [66] allows to compute up to the third derivative of a
function quickly.

In order to verify the reliability of the code, a mock data set of values scattered around
a sinusoidal function y(x) = sin(x) was created by adding a random value between −0.15
and 0.15 for different values of x. Then the standard deviation (the error bar) of each
data point was emulated by a random number between 0.1 and 0.3. The reconstructions
of the function and its derivatives are shown in Figure 6. The red lines represent the
analytical function (the sine function or its derivatives as appropriate) and the blue lines
are the regression models. The confidence zones correspond to the intervals delimited
by 2σ (95%) and 3σ (99%), where σ are the standard deviations of the predictions. Note
that the analytical function is in the 2σ interval for all the cases, which indicates that the
regression is considerably accurate.

Figure 6. Reconstruction of an example test function f (x) = sin x and its derivatives on [0, 2π] from
a mock data set. The red lines represent the analytical function or derivative, and the blue lines are
the predictions.
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Figure 6 only shows the scatter plot of the mock data set because the observables for
the derivatives do not exist. This is an advantage of the technique since it is possible to find
the nth-derivative of a function only from data values of such function.

4. Cosmology

Let us start by considering the Universe as being homogeneous on scales larger than
150 Mpc, which means that the distribution of its components does not depend on the
position of the observer, despite the fact that at short distances, the density of matter is
perceived as random. Likewise, let us also assume the Universe is isotropic, which implies
that its properties are the same regardless of the direction from which they are observed.
The assumption of these two characteristics (homogeneity and isotropy at large scales) is
known as the Cosmological Principle, and it has been adopted to set restrictions on a great
variety of alternative cosmological theories.

It is firmly established by observations that our Universe expands [106]. The standard
Big Bang model proposes that the Universe emerged about 15 billion years ago and it has
been expanding and cooling since then. Measurements using Type IA supernovae as stan-
dard candles have proven that the expansion of the Universe is also accelerating [107,108]
and such acceleration is only possible if a substantial fraction of the total energy density
is a kind of energy with a negative pressure [109]. This energy component is referred to
as Dark Energy (DE) given its unknown nature and origin. Furthermore, along with DE,
another key component, known as Dark Matter (DM), is necessary to explain observations
regarding structure formation. Given the enigmatic nature of both DE and DM, predict-
ing the Universe’s long-term future remains an elusive task. Consequently, DE and DM
represent two of the most compelling and complex challenges in contemporary cosmology.

The expansion of the Universe is described by the Friedmann equations, obtained
as solutions of the Einstein field equations for the Friedman–Lemaitre–Robertson–Walker
(FLRW) metric and a perfect fluid with density ρ and pressure p. The equations in standard
form are:

H2 =

(
ȧ
a

)2
=

8πG
3

ρ− kc2

a2 ,

ä
a
= −4πG

3

(
ρ +

3p
c2

)
, (23)

where a is known as the scale factor, which is a dimensionless function of time and is
related to the size of the Universe; ȧ and ä denote the first and second derivative of a
with respect to the cosmic time; H is the Hubble parameter, which describes how fast
the Universe is expanding; G is the gravitational constant; c ≈ 3× 105 km/s is the speed
of light in vacuum; and k is the curvature parameter, which determines the shape of the
Universe [110].

One of the most favored models by evidence is the ΛCDM. This model proposes that
the DM component of the Universe is non-relativistic (cold) and only interacts gravita-
tionally, while the DE is due to an unknown component represented by the cosmological
constant Λ. As mentioned previously, DE is an exotic component in the energy budget of
the Universe, which is theorized to be responsible for its accelerated expansion. Most cos-
mological models consider DE to be a perfect fluid, which means that it is incompressible
and has a viscosity of zero. Then, it follows that for a perfect fluid, its equation of state
(EoS) is characterized by a dimensionless value w. In the case of barotropic fluids w given
by the proportionality function between its pressure p and energy density ρ:

p = c2wρ.

For perfect fluids, such as baryonic matter and relativistic matter (radiation), their EoS’s
are w = 0 and w = 1/3, respectively. Understanding the behavior of the Dark Energy’s
equation of state is a focal point of contemporary cosmology. It is established that the
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pressure exerted by DE must be negative, given its role in driving cosmic expansion instead
of contraction. Furthermore, accelerated expansion is predicted to occur when the equation
of state parameter falls below −1/3. When working with the ΛCDM model, one assumes
that w = −1 for the DE, giving it the characteristic behavior of a cosmological constant.

For the standard cosmological model, taking into consideration the equations of state
for every component when solving Equation (23), the Hubble parameter obtained from the
first Friedmann equation in terms of the present values of the density parameters Ωi is:

H(z) = H0

√
Ωr,0a−4 + Ωm,0a−3 + Ωk,0a−2 + ΩΛ,0, (24)

where the density parameters are Ωr,0 for radiation, Ωm,0 for the matter sector, which
includes DM and baryons, Ωk,0 to account for the spatial curvature, ΩΛ,0 to describe the
vacuum density in the form of a cosmological constant (this represents the DE component)
and H0 the Hubble parameter, known as the Hubble constant. The subscript “0” means
that they are evaluated at the present time. For a spatially flat model (Ωk = k = 0), we have
Ωm + Ωr + ΩΛ = 1.

In order to determine a concept of distance between two objects in the Universe, it is
convenient to present some common definitions of distance measures in Cosmology [111,112],
these include:

1. Comoving distance: Due to the homogeneity of the Universe, it is possible to define a
coordinate system that considers the expansion of the Universe. The distance between
two objects in this system remains constant, so the comoving distance is defined as

dC(z) = dH

∫ z

0
dz′

H0

H(z′)
, (25)

where dH = c
H0

is the Hubble distance.
2. Transverse comoving distance: When considering the curvature intrinsic to the geom-

etry of space-time, expressed by the parameter Ωk, the transversal comoving distance
is defined as,

dM =


dH√
Ωk

sinh
(√

ΩkdC(z)
dH

)
if Ωk > 0,

dC(z) if Ωk = 0,
dH√
−Ωk

sin
(√
−ΩkdC(z)

dH

)
if Ωk < 0,

(26)

which is equal to the comoving distance in the case of a flat space-time, i.e., for Ωk = 0.
3. Luminosity distance: Comparing the absolute and apparent magnitudes between two

objects, that is, the actual brightness emitted by an object compared to the brightness
observed from Earth, the luminosity distance is defined, which is written in terms of
the transverse comoving distance as:

dL(z) = (1 + z)dM(z). (27)

From the above equations, the normalized comoving distance is also obtained as,

D(z) =
1

dH

(
1

1 + z

)
dL(z). (28)

In the particular case of a flat Universe, a simple expression for the derivative of the
normalized comoving distance can be obtained:

D′(z) =
H0

H(z)
. (29)

The cosmological quantities are broadly categorized into two groups—the physical (dynam-
ical) quantities like the DE equation of state parameter w, vs the kinematical (cosmograph-
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ical) quantities that are defined as time derivatives of the scale factor a, for example, the
Hubble H, deceleration q and jerk j parameters. The deceleration parameter is defined as:

q = − äa
ȧ2 , (30)

which can be written in terms of the derivatives of D(z) with respect to the redshift z, as

q(z) = −1− D′′(z)
D′(z)

(1 + z), (31)

or in terms of H(z) and its derivative H′(z), as

q(z) = −1− H′(z)
H(z)

(1 + z) . (32)

The deceleration parameter is a measure of the acceleration of the expansion of space, and
it is said to be accelerating when q becomes negative [111].

Furthermore, with DE having a time-varying dynamical equation of state w(z) (ig-
noring the contribution from spatial curvature and radiation), we can write the Hubble
parameter H(z) by integrating the Friedmann Equation (23) as,

H2(z)
H2

0
= Ωm,0(1 + z)3 + (1−Ωm,0)e3

∫ z
0

1+w(x)
1+x dx. (33)

On differentiating the above equation, one can arrive at this expression for the DE equation
of state w(z) as

w(z) =
2(1 + z)H(z)H′(z)− 3H2(z)

3H2(z)−Ωm,0H2
0(1 + z)3

. (34)

As the deceleration parameter q is now estimated and found to be evolving, we focus
on the next higher-order derivative, the jerk parameter j, defined as

j =
...
a

aH3 . (35)

It can be rewritten as a function of redshift z, in terms of the Hubble parameter H along
with its derivatives H′(z) and H′′(z), as

j(z) = 1− 2(1 + z)
H′

H
+ (1 + z)2

(
H′′

H
+

H′2

H2

)
. (36)

For the ΛCDM model, j is exactly unity. Therefore, any non-monotonic evolution of j can
help in understanding the nature of dark energy in the absence of any convincing physical
theory [113,114].

5. Cosmological Functions with GPR
5.1. Hubble Parameter

In cosmology, the aim is to find a mathematical description that explains the char-
acteristics of the Universe and predicts its evolution over time. Thus, determining the
dependency of H as a function of z is one of the main topics of study in cosmology.

For the above, the regression method with GP is a very useful tool as it allows to
reconstruct the evolutionary model from certain observational data. In this case, the data
will be Hubble parameter observations for different redshifts from cosmic chronometers
as an alternative to the commonly used data from Type Ia Supernovae. There is a set of
31 data points for H(z) obtained by different authors, which have been gathered and used
in many works, such as [115,116]. Using the developed code that contains variances and
the Hubble parameter data, the model shown in Figure 7 is obtained.
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Figure 7. Hubble parameter reconstruction model using a Matern kernel.

The curve for H(z) in the ΛCDM model was created from Equation (24), and the
values for the density parameters given by Planck results [2], were obtained under the
assumption of a flat Universe as ΛCDM.

Various models were tested with different kernels, as shown in Figure 8. The model
that minimizes χ2 for H(z) was produced by a Matern kernel with the default initial
characteristic length of l = 1 and an order of ν = 1.5. The optimized hyperparameter after
the training is l = 4.1. One key result to stress is that from the family of kernels, the least
preferred corresponds to the Dot Product, that is, the equation of state for the dark energy
is inclined to be anything else except a linear regression, in particular, a constant equation
of state.

Figure 8. Models with different kernels were produced for both the Hubble Parameter and the Dark
Energy functions, and its χ2 values were computer. As observed, the optimal covariance function
was the Matern for the Hubble Parameter and the Rational Quadratic for the Dark Energy.

Evaluating the model for z = 0, the value for the Hubble constant H(0) = H0 =
68.79 ± 6.34(1σ) km Mpc−1 s−1 is obtained as can be seen in [104]. While the current
analysis focuses solely on the cosmic chronometer Hubble data, it is worth noting that
incorporating other datasets, such as the Type Ia Supernovae (SNIa) [117,118] or Baryon
Acoustic Oscillations (BAO) [119–121], could provide a more comprehensive approach to
determining H0. However, unlike the cosmic chronometers, both these datasets do not
offer independent measurements of H0. For SNIa, astrophysical modeling of the absolute
magnitude MB is required, and for BAO, the sound horizon rd must be known. This calls for
additional modeling to properly handle the GP kernel hyperparameters and cosmological
parameters in a coherent manner [122], which is beyond the scope of the present work.
However, we plan to expand the analysis by incorporating these additional datasets, which
could improve the precision of H0 estimates [64,77,115,123,124] and offer a more robust
comparison in future studies.
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5.2. Dark Energy Equation of State

If the DE is considered a dynamic component, then its EoS should be different from
−1 (so as to differentiate itself from ΛCDM), or it could present a dependence on redshift
as w(z). As proof of the concept and using the previously established methods, we will use
a mock dataset, which contains information about the BAO and SNIa datasets (the data
points used here come from a model-independent reconstruction of the DE EoS from [125])
from the dark energy equation of state as a function of z to reconstruct it. As such, a
non-parametric model of w(z) with GPR using an RQ kernel will be obtained (Figure 9). In
Figure 8, a comparison of the values of χ2 for models obtained using different kernels is
shown and the different models can be seen in Figure A4. Note that when reconstructing
H(z), the RQ kernel was the best option since it returned the minimum values. As already
stated earlier, the ΛCDM model EoS for DE is proposed as a constant of value −1, so if
there are cracks in the standard model then our reconstruction should find deviations from
this value. In our case, it was found, from the mock dataset that w = −1 is well within
1σ bounds of the reconstruction using GPR, which can be interpreted as minor evidence
against ΛCDM. For the sake of comparison, we perform the reconstruction of w(z) through
Equation (34), but now by using the cosmic chronometers dataset. In general terms, the
results obtained in Figure 10 resemble the ones presented in Figure 9, with a maximum
value around z∼1 and the crossing of the phantom divide line (w = −1) at about z∼1.5.
Error bars correspond to Ωm,0 = 0.3, and to examine the sensitivity of the reconstruction,
we have included two more values of Ωm,0.

Figure 9. Reconstruction model for the dark energy equation of state, using a mock dataset.

Figure 10. Reconstruction model for the dark energy equation of state, from the reconstructionof
H(z) using cosmic chronometers through Equation (34).

5.3. Reconstruction of the Deceleration Parameter

By using H(z) data from cosmic chronometers, the predicted value of
H0 = 68.798 km Mpc−1 s−1 and Equation (29), we can obtain a derived dataset of D′(z).
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To obtain the variances/errors of this new dataset, it is straightforward to use the approxi-
mation of ratio distribution for uncorrelated variables (the variance of a ratio distribution
X
Y of two uncorrelated random variables X and Y can be approximated with a Taylor

expansion around µX and µY as [126]: Var
(

X
Y

)
=

µ2
X

µ2
Y

[
Var(X)2

µ2
X

+ Var(Y)2

µ2
Y

]
). Thus far, the

Matern kernel has presented the most suitable models (at least regarding the χ2 obtained);
henceforth, this kernel will be used for the reconstruction. The resulting GPR prediction
for D′(z) from the derived dataset and a comparison with the ΛCDM values computed
by combining Equations (24) and (29) with the corresponding density parameters and the
value of H0 = 67.32 km Mpc−1 s−1 from Planck results [2] are shown in Figure 11.

From the same dataset of D′(z), the derivative D′′(z) is reconstructed using the GaPP
package, as explained in Section 3. On the other hand, Equation (29) can be differentiated
analytically and evaluated for the ΛCDM density parameters to obtain D′′(z). Figure 12
shows the predictions for D′′(z) and a comparison with ΛCDM. Finally, from Equation (31)
and the GPR predictions of D′(z) and D′′(z), a model of the deceleration parameter is
produced as in the previous cases. The regression is compared with ΛCDM in Figure 13. We
see again some agreement between our reconstruction and the standard model, although
an important thing to note is that there is a region where ΛCDM remains outside the 1σ
contour, and it is really close to being outside the 2σ one. This could indicate some actual
evidence in favor of our reconstruction or at least highlight a tension existing within ΛCDM.
Similar discrepancies have been noted in previous studies, where deviations from ΛCDM
behavior were observed in various cosmological datasets [58,123,127,128]. These findings
suggest potential new physics beyond the standard cosmological model or the need for
refined cosmological parameters, which calls for further investigation.

Figure 11. Reconstruction of the first derivative of the normalized comoving distance.

Figure 12. Reconstruction of the second derivative of the normalized comoving distance.
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Figure 13. Reconstruction of the deceleration parameter.

5.4. Deceleration Parameter Reconstruction with a Mock Data Set from ΛCDM

If the observables are indeed produced by the ΛCDM model (that is to say that the
standard model is the “real” one), a regression using artificial data that were produced by
the ΛCDM model should be quite similar to the model obtained from the “real” data. To
verify this, we produced a mock dataset of H(z) around the values obtained by evaluat-
ing Equation (24) for the density parameters given by ΛCDM cosmology from Planck’s
results [2]. Then, the whole procedure to obtain q(z) was repeated but this time using the
mock dataset so that a comparison with the previous reconstruction could be made. The
result and comparison are shown in Figure 14. As expected, the mock data set regression
model is into the 2σ confidence level of the reconstruction from the observations. This
indicates that, even if the standard model does not reproduce the observables exactly or
does it with some caveats, it can emulate the general observed behavior pretty well.

Figure 14. Comparison between the reconstruction of q(z) and ΛCDM model using a mock data set.

5.5. Reconstruction of the Jerk Parameter

From the same D′(z) dataset, derived in Section 5.3, one can further reconstruct
the third derivative D′′′(z) along with the second derivative D′′(z) employing the GaPP
package, as explained in Section 3. With these reconstructed functions, the evolution of
the cosmological jerk parameter can be obtained from Equation (36), as a function of the
redshift z. This regression is compared with the ΛCDM case in Figure 15. We find that our
reconstruction includes the ΛCDM model (i.e., j = 1) within the 1σ confidence level. The
mean of the reconstructed function clearly indicates that j has a non-monotonic evolution,
which is in agreement with the previous findings [77].
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Figure 15. Comparison between the reconstruction of j(z) and ΛCDM model.

5.6. Using GPR as an Interpolation in a Model-Independent Way

Throughout this work, we have demonstrated how a GPR can be utilized in a non-
parametric manner to study cosmological quantities. However, there is an alternative
approach to leverage the properties of a GPR that we would like to mention. This method
also employs a Gaussian process but in a model-independent manner, as it involves
inferring parameter values using datasets and Bayesian statistics. By doing so, we can
directly compare our model-independent reconstruction against the standard model using
Bayesian evidence and maximum log-likelihood.

The GPR in this approach is performed “nodes”. These nodes can vary in height
(their ordinate position), and these “variable heights” work as the new parameters of the
reconstruction [129,130]. For n nodes, we have n variable heights and, as such, n new
parameters that need to be inferred. This method has been used before with the equation
of state of Dark Energy [131], the interaction kernel of an IDE (interacting Dark Energy)
model [80], and the cosmic reionization history [92,93].

6. Discussion and Conclusions

Although Gaussian Process Regression (GPR) does not yield an explicit form of the
relationship between variables, it remains a robust method for making predictions given a
particular set of observables. It reconstructs functions effectively without needing prior as-
sumptions about their behavior, leveraging libraries like GaPP to predict higher derivatives,
such as D′′(z) and H′(z), which is particularly valuable in cosmological analyses.

GPR has been extensively applied in cosmology, spanning from reconstructing the
dark energy equation of state w(z) to cosmographical studies. This flexibility allows
GPR to adapt to diverse datasets, making it a powerful tool for probing dark energy
and other cosmological phenomena. In gravitational wave cosmology, GPR has been
instrumental in reconstructing the luminosity distance from simulated data [132], enabling
non-parametric inference of the Hubble parameter and forecasting deviations from the
standard ΛCDM model. Additionally, GPR has been employed in large-scale structure
studies, such as reconstructing the growth rate of cosmic structures f σ8(z) from redshift
space distortions [63,70]. These applications highlight GPR’s versatility in handling diverse
cosmological datasets and addressing critical questions within the cosmological context.

However, GPR is constrained by the range of observed data, limiting its predictive
accuracy outside this interval. Furthermore, uncertainties in derivative function reconstruc-
tions increase beyond the data range, which can impact the reliability of extrapolations. The
choice of the kernel function in GPR is pivotal, influencing prediction means and covariances
significantly. Despite methods like cross-validation and Bayesian model selection to aid kernel
selection, the optimal choice remains non-trivial, affecting the quality of reconstructions.

Furthermore, random number generation plays a subtle but crucial role in GPR applica-
tions. While tools like scikit-learn utilize robust generators like Permuted Congruential
Generator 64-bit (PCG-64) [133], the quality of these generators in high-dimensional spaces,
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as highlighted in prior studies [134–136], warrants scrutiny. Though we found no im-
mediate issues with the generators used in this work, exploring alternatives like RANLUX
(http://luscher.web.cern.ch/luscher/ranlux (accessed on 19 November 2024)) [135], known
for its high-quality randomness, could further ensure reliability. Such considerations are
important in cosmological contexts, where multi-parameter reconstructions are common,
and small biases can propagate into significant systematic errors [137,138].

Comparing GPR with other parametric and non-parametric methods, principal compo-
nent analysis [139] (PCA), logarithmic parametrization [140], rational parametrization [141],
Bayesian methods [142], reveals trade-offs between flexibility and interpretability. While
PCA simplifies data dimensionality effectively, it may overlook intricate data complexities
that GPR can capture. Bayesian methods provide comprehensive probabilistic frameworks
but often require detailed prior information and intensive computational resources.

In summary, Gaussian processes offer a powerful and flexible tool for cosmological
analyses, enabling model-independent reconstructions and effective uncertainty handling.
Despite computational challenges and kernel sensitivity, their widespread application in
cosmology demonstrates their potential to provide nuanced insights into the evolutionary
history of our Universe.
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Appendix A. GPR Figures

Figure A1. Models obtained from different kernels for the same linear regression with null variances.

https://github.com/JesusUg2497/GP_in_Cosmology
https://github.com/JesusUg2497/GP_in_Cosmology
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Figure A2. Linear regression models from different kernels with non-zero variances.

Figure A3. Regression models of Hubble Parameter for different kernels.
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Figure A4. Regression models of Dark Energy for different kernels.
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