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Abstract: The multiplicity distributions of charged particles and their combinants for pp collisions
at LHC energies are studied within the Multipomeron Exchange Model (MEM) that takes into
account the phenomenon of string fusion. It is shown that the use of Gaussian-type distributions for
multiplicity distributions at a fixed number of pomerons allows, within the MEM framework, the
reproduction of the resulting multiplicity distributions and the oscillatory behavior of combinants,
found in the ALICE and CMS pp collision data at LHC energies. It is important that in the proposed
approach, the parameters of these Gaussian-type distributions are not considered free, but are
calculated from the two-particle correlation function of a single string.

Keywords: strong interaction; high energy; multiparticle production; multiplicity; pomeron; string
fusion; two-particle correlations; combinants

1. Introduction

In recent years, in the ALICE and CMS experiments at the LHC, extensive information
has been obtained on the processes of the multiple production of charged particles in the
interaction of protons in the ultra-high-energy region. In particular, the multiplicity distri-
butions of charged particles in pseudorapidity intervals of various widths for several initial
energies of pp collision have been studied in detail [1–4]. Note that these experimental data
also include information related to the rare, most central pp collisions, in which more than
a hundred charged particles are produced [2–4].

The obtained multiplicity distributions, especially in wide rapidity observation win-
dows, display rather complex behavior, which cannot be described by simple distributions
such as the Negative Binomial Distribution (NBD) usually used in this case. As we will see
below, the shape of these distributions, among other factors, also depends on the correla-
tions between the production of individual particles and is therefore of undoubted interest
as a tool that allows one to obtain information about the pp interaction, including its initial
stage, at which quark–gluon strings arise in the interaction of partons.

The form of the obtained experimental distributions imposes serious constraints on
the models used to describe the pp interaction process. Of particular interest are the
regularities found when analyzing the behavior of the combinants of these multiplicity
distributions [5–12].

For a given generating function G(t) of the multiplicity distribution P(N),

G(t) =
∞

∑
N=0

P(N) tN (1)

The combinants, C∗(j), for this multiplicity distribution, P(N), are defined as the
expansion coefficients of the logarithm of the generating function G(t):

Universe 2024, 10, 56. https://doi.org/10.3390/universe10020056 https://www.mdpi.com/journal/universe

https://doi.org/10.3390/universe10020056
https://doi.org/10.3390/universe10020056
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/universe
https://www.mdpi.com
https://orcid.org/0000-0003-1458-8055
https://orcid.org/0000-0003-0437-9292
https://orcid.org/0000-0001-6012-6615
https://doi.org/10.3390/universe10020056
https://www.mdpi.com/journal/universe
https://www.mdpi.com/article/10.3390/universe10020056?type=check_update&version=1


Universe 2024, 10, 56 2 of 17

F(t) = ln G(t) =
∞

∑
j=0

C∗(j) tj. (2)

It turned out [6–8], that the combinants extracted from the experimental distributions
over the multiplicity of charged particles obtained in the ALICE and CMS experiments at
the LHC [3,4] exhibited characteristic oscillations when studying their dependence on their
order j. These oscillations cannot be reproduced in most models used to describe multiple
production in high-energy pp interactions (see, for example, [6,8]).

Note also that a similar oscillatory pattern was found earlier in the so-called Hq
moments, the ratio of cumulant to factorial moments, which is also very sensitive to tiny
details of the multiplicity distribution [13]. This allowed the study of parton correlations
in quark and gluon jets, calculating the moments of their multiplicity distributions in
fixed-coupling QCD. Later, it was also demonstrated that such sign-changing oscillations
can also be well described by the H-function generalization of NBD [14,15].

In the present article, we analyze this problem within the framework of the Multi-
pomeron Exchange Model (MEM) [16–18]. In this model, each cut pomeron corresponds to
the formation of a pair of quark–gluon strings. An increase in the multiplicity of charged
particles per unit of rapidity with increasing initial pp-collision energy is explained by both
an increase in the average number of cut pomerons and an increase in the average multiplic-
ity from a single string, which effectively takes into account string fusion processes [19–28].
The usual Regge dependence of the distribution over the number of cut pomerons in pp
collisions on the initial energy with standard parameters [29] is used.

In the framework of the MEM, we find the multiplicity distributions of charged
particles and their combinants in pp collisions at LHC energies and compare the calculation
results with the experimental data obtained by the ALICE [3] and CMS [4] collaborations
at CERN. We show that the original version of the MEM with a Poisson distribution of
particles from a single cut pomeron cannot explain the experimental data. Replacing the
Poisson distribution with a Negative Binomial Distribution (NBD), for which the scaled
variance ω>1, also does not allow one to obtain agreement between the results of model
calculations and experimental data.

We demonstrate that the experimental data can be explained using the Gaussian
distribution for non-negative integer values of the argument, normalized to 1, as the
distribution over the multiplicity of charged particles for events with a given number of cut
pomerons. To fix the value of the scaled variance ω, we use the results of the papers [30–34],
in which it was shown that ω−1 is proportional to the width of the observation window
and the integral of the two-particle correlation function of a single source (string) over
the observation window. In these works, this allowed the extraction of the two-particle
correlation function of a single string from ALICE data on forward–backward multiplicity
correlations in pp collisions [35]. Using the values of the parameter ω obtained on the
basis of these works for observation windows of various widths, we obtain a qualitative
description of the experimental data from the ALICE and CMS collaborations at the LHC
on the distribution of the multiplicity of charged particles in pp collisions in the energy
range of 0.9–7 TeV.

Using the obtained multiplicity distributions, we also calculate the corresponding
combinants. Indeed, they turn out to be very sensitive to the shape of the multiplicity
distribution spectra, as noted in [6]. Even minor deviations between the ALICE and CMS
data, within the experimental error, lead to considerable changes in the behavior of the
combinants.

As a result, we show that the combinants calculated in the framework of the MEM,
using the Gaussian distribution at non-negative integer values of the argument as the
multiplicity distribution and fixing the value of the scaled variance ω based on [30–34],
allow us to reproduce the behavior of combinants found in the experimental data of ALICE
and CMS for pp collisions in the energy range of 0.9–7 TeV, in particular, the characteristic
oscillations of their magnitude with an increase in the combinant order.
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2. General Formulas, Combinants, and Modified Combinants

To find the values of combinants C∗(j) for a given distribution over the multiplicity
P(N), it is convenient to use the recursive relation:

N P(N) =
N

∑
j=1

j C∗(j) P(N − j), (3)

directly following from their definition (see Formulas (1) and (2)). Often, instead of the
combinants C∗(j), the so-called modified combinants C(j) are used:

C(j) ≡ j + 1
⟨N⟩ C∗(j + 1), where ⟨N⟩ =

∞

∑
N=1

N P(N). (4)

For modified combinants, the recursive Relation (3) takes the following form:

(N + 1) P(N + 1) = ⟨N⟩
N

∑
j=0

C(j) P(N − j). (5)

A systematic analysis of combinants is of interest, because relations of this type, when
the quantity (N + 1)P(N + 1) is linearly expressed in terms of P(N) with smaller values of
the argument, are found in many phenomenological models, for example, in cascade and
clans models [6,7]. Note that a similar relation arises when analyzing forward–backward
multiplicity correlations in the framework of a two-stage scenario (see Formula (32) in [36]).

Below, to quantify the combinants, we will use the variables X(j), which are the
modified combinants multiplied by the average multiplicity:

X(j) ≡ ⟨N⟩C(j) = (j + 1)C∗(j + 1) (6)

This was also the approach in other papers [6,8]. Then, using (5), we find the following
explicit recurrence relation:

X(N) = (N + 1)
P(N + 1)

P(0)
−

N−1

∑
j=0

X(j)
P(N − j)

P(0)
, (7)

which allows us to recursively calculate all X(j) for a known multiplicity distribution P(N).
For example, for the first few X(j), we have

X(0) = P(1), X(1) = 2P(2)− P2
(1), X(2) = 3P(3)− 3P(1)P(2) + P3

(1),

X(3) = 4P(4)− 4P(1)P(3)− 2P2
(2) + 4P2

(1)P(2)− P4
(1). (8)

Here,

P(N) ≡ P(N)

P(0)
.

In the numerical calculations, we use Formula (8) to control our code.

3. Multipomeron Exchange Model (MEM)

In the present work, calculations of multiplicity distributions and modified combinants
were carried out using the Multipomeron Exchange Model (MEM) [16–18]. Within this
model, the distribution over the number of charged particles, N = Nch, is given by the sum
of contributions from events with different numbers of cut pomerons, n = npom:

P(N) =
∞

∑
n=1

P(n) Pn(N). (9)



Universe 2024, 10, 56 4 of 17

In this formula, for the probability of the occurrence of an event with n cut pomerons in
a given pp collision, the known distribution obtained in the framework of the quasi-eikonal
Regge approach [37],

P(n) =
A(z)

n

[
1 − e−z

n−1

∑
l=0

zl/l!

]
, (10)

is used, where

z =
2γC

λ
ξ∆, λ = R2 + α′ξ, ξ = ln(s/s0). (11)

Here, s is the square of the pp collision energy in the center-of-mass system,
s0 ≃ 1 GeV2, and 1 + ∆ and α′ are the intercept and slope of the pomeron trajectory,
respectively. The parameters γ and R describe the vertex of the pomeron coupling to the
scattering hadrons (the protons in our case). The quasi-eikonal parameter C effectively
takes into account the contribution of diffraction processes to this vertex. The factor A(z)
provides the normalization condition

∞

∑
n=1

P(n) = 1, (12)

which means that we consider only Non-Diffractive (ND) processes with at least one
cut pomeron.

We use the standard set of Regge parameters [29]:

∆ = 0.139, α′ = 0.21 GeV−2, (13)

γ = γpp = 1.77 GeV−2, R2 = R2
pp = 3.18 GeV−2, C = 1.5,

With this set of parameters, the distributions of events over the number of cut
pomerons for the pp interaction at

√
s = 0.9 and 7 TeV are shown in Figure 1.
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Figure 1. The distribution of Non-Diffractive (ND) events over the number of cut pomerons for pp
interactions at

√
s = 0.9 and 7 TeV, calculated with the set of Regge parameters from [29].
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In the MEM, it is assumed that each cut pomeron corresponds to the formation of a
pair of quark–gluon strings [38,39]. An increase in the multiplicity of charged particles
per unit of rapidity with an increasing initial pp collision energy is explained by both
an increase in the average number of cut pomerons (see Figure 1) and an increase in
the average multiplicity from a single string, which effectively takes into account string
fusion processes [19–23]. Proceeding from this condition, in papers [16–18], the following
dependence on the initial energy for the multiplicity of charged particles per unit of rapidity
from the decay of a single string k(s) was used:

k(s) = 0.255 + 0.0653 ln
√

s/s0. (14)

For n cut pomerons, this leads to the following average number of charged particles in
the δη-wide rapidity interval:

⟨N⟩n = 2n µstr = 2n δη k(s), (15)

where we also introduce µstr = δη k(s)—the average number of charged particles produced
in this rapidity interval from the decay of a single string.

In the original version of the model, for the distribution over the number of charged
particles from a single string, the Poisson distribution with the average value µstr was assumed,

Pstr(N) = e−µstr
µN

str
N!

, (16)

which leads to the Poisson distribution with the average value, given by (15), for n
cut pomerons:

Pn(N) = e−⟨N⟩n
⟨N⟩n

N

N!
. (17)

The charged particle multiplicity distribution calculated by (9) for this case, along
with the corresponding experimental data of the ALICE [3] and CMS [4] collaborations at
the LHC, is shown in Figure 2. In Figure 3, we see that, assuming a Poisson distribution
of particles from a single string (or pomeron) (the original version of the MEM), it is not
possible to describe the behavior of the distribution by the number of charged particles in
the region of low multiplicities (N < 10). This also leads to the absence of oscillations in the
dependence of the modified combinants on their order (see Figure 3), which is observed
when analyzing the experimental data (see [6–8] and Figure 9 below in Section 7).

Note also that the shape of the spectrum presented in Figure 2, calculated here within
the framework of the original version of the MEM, agrees with the spectra given by the
authors of the model for a narrower observational pseudo-rapidity window, δη = 1 (see,
for example, Figures 6 and 14 in [18]).

In the present work, we try to modify the original version of the MEM so that it
provides a more adequate description of the distribution of charged particles by multiplicity,
including the case of wider rapidity observation windows. This, in particular, makes it
possible to obtain experimentally observed oscillations in the magnitude of modified
combinants as their order increases.
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Figure 2. Multiplicity distribution of charged particles for the pseudorapidity interval |η|<1.5 in
pp interactions at

√
s =7 TeV. The curve is the result of calculations in the original version of the

MEM, which assumes a Poisson distribution of particles from a single string. The points are the
corresponding experimental data from the ALICE [3] (△) and CMS [4] (◦) collaborations at the LHC.
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Figure 3. Dependence of the value of modified combinants (6) on their number for the multiplicity
distribution in Figure 2, calculated in the original version of the MEM, assuming a Poisson distribution
of particles from a single string.

4. Width of Multiplicity Distribution from String Fragmentation

Since we plan to use a more sophisticated distribution than the Poisson distribu-
tion, (16), for the multiplicity distribution of charged particles from the fragmentation of a
single string, we need to know, in addition to the average value of the number of charged
particles ⟨N⟩str = µstr (see Formula (15)), the width of the distribution from one string.
Conveniently, it is characterized by the scaled variance:
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ωstr ≡
⟨N2⟩str − ⟨N⟩2

str
⟨N⟩str

. (18)

(In the case of the Poisson distribution, ωstr = 1.)
The properties of any source, in particular a string, can be characterized by one- and

two-particle pseudo-rapidity distributions of particles produced from the fragmentation of
this source:

λ(η) ≡ dN
dη

, λ2(η1, η2) ≡
d2N

dη1 dη2
. (19)

For the production of N particles in a certain pseudo-rapidity interval δη as a result of
the decay of such a source, we have [40]∫

δη
dη λ(η) = ⟨N⟩,

∫
δη

dη1

∫
δη

dη2 λ2(η1, η2) = ⟨N(N − 1)⟩. (20)

Instead of a two-particle pseudo-rapidity distribution, λ2(η1, η2), it is convenient
to use the two-particle correlation function Λ(η1, η2), which describes the correlations
between particles produced from the decay of a given string:

Λ(η1, η2) ≡
λ2(η1, η2)

λ(η1)λ(η2)
− 1. (21)

If we have no correlation between the production of particles with η1 and η2, then
λ2(η1, η2) = λ(η1)λ(η2) and Λ(η1, η2) = 0. Using the Formulas (18), (20) and (21), we can
express ωstr through λ(η) and Λ(η1, η2) [30]:

ωstr = 1 +

∫
δη dη1

∫
δη dη2 λ(η1)λ(η2)[1 + Λ(η1, η2)]∫

δη dηλ(η)
−

∫
δη

dη λ(η). (22)

From this formula, we see in particular that if there is no correlation between the
production of particles from a given source, then Λ(η1, η2) = 0, and we have ωstr = 1.

Formula (22) can be simplified in the region of central rapidities at LHC energies. In
this region, the constant distribution in rapidity for particles produced from a string decay
is a good approximation:

λ(η) =
µstr

δη
, µstr ≡ ⟨N⟩. (23)

It is also usually assumed that in this region there is translational invariance in rapidity,
which leads to the dependence of the two-particle correlation function Λ(η1, η2) only on
the difference in the rapidities of the observed particles:

Λ(η1, η2) = Λ(η1 − η2). (24)

Under these assumptions, instead of (22), we find [31]

ωstr = 1 + µstr J, J ≡ 1
δη2

∫
δη

dη1

∫
δη

dη2 Λ(η1−η2). (25)

This formula was apparently used for the first time in [41]. It is important to note that,
as is immediately clear from the connection (25), the Poisson form of the distribution over
the number of particles produced from the decay of a string is possible only in the complete
absence of correlations between them, i.e., when Λ(η1 − η2) = 0.

In paper [30], the two-particle correlation function Λ(∆η, ∆ϕ) between particles sep-
arated in rapidity, ∆η = η1−η2, and in azimuth, ∆ϕ = ϕ1−ϕ2, was extracted from the
ALICE experimental data on forward–backward multiplicity correlations in pp collisions
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at 0.9, 2.76, and 7 TeV [35]. In papers [31–33], it was shown that after integration over
azimuthal angles

Λ(∆η) =
1
π

∫ π

0
Λ(∆η, ∆ϕ) d∆ϕ, (26)

the resulting Λ(∆η) is well approximated by the following exponential dependence:

Λ(∆η) = Λ0e−
|∆η|
ηcorr , (27)

with parameters Λ0 and ηcorr depending on the collision energy. For this simple form of
Λ(η1 − η2), the integral J in (25) can be calculated explicitly [34]:

J =
2Λ0 ηcorr

(δη)2

[
δη − ηcorr

(
1 − e−δη/ηcorr

)]
. (28)

Then, using in (28) the values of the parameters Λ0 and ηcorr found in [31] for the initial
energies of 0.9 and 7 TeV, we calculate by Formula (25) the values of the scaled variances
ωstr for window widths of δη = 3 and 4.8 units of rapidity. The results are presented in
Table 1.

Table 1. Scaled variance of multiplicity from a single string. ωstr (18), calculated using the string
two-particle correlation function Λ(η1−η2) from [31], according to Formulas (25) and (26)–(28) for
two widths of rapidity windows δη = 3 and 4.8 at initial energies of pp collision 0.9 and 7 TeV.

√
s, TeV 0.9 7.0

δη = 3 3.1 3.5
δη = 4.8 3.6 4.0

5. MEM with the Negative Binomial Multiplicity Distribution from String Decay

In this section, instead of the Poisson distribution (16), we try to use the Negative
Binomial Distribution (NBD) as the multiplicity distribution from a single string:

PNBD
str (N) =

pN

qN+κ0

Γ(N + κ0)

Γ(κ0) N!
, (29)

where Γ(...) is the Gamma function, and the parameters p and q are connected by the relation
q = p + 1, with p > 0 and κ0 > 0. This distribution corresponds to the generating function

gNBD (t) = (q − p t)−κ0 . (30)

Distribution (29) leads to the NBD of multiplicity for events with n cut pomerons, in
which 2n strings are formed:

PNBD
n (N) =

pN

qN+κ

Γ(N + κ)

Γ(κ) N!
. (31)

The parameters p, q, and κ are expressed through µstr and ωstr as follows:

q = p + 1 = ωstr, κ = 2n κ0, κ0 =
µstr

p
=

µstr

ωstr − 1
. (32)

Note that the mean ⟨N⟩n and the scaled variance ω for distribution (31) are given by

⟨N⟩n = κ p = 2n κ0 p = 2n µstr, ω ≡ ⟨N2⟩n − ⟨N⟩2
n

⟨N⟩n
= q = ωstr. (33)

Using these formulas and the value of ω = ωstr from Table 1 found in Section 4, we
calculate the charged particle multiplicity distribution by (9) for this case. As an example,
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the calculation results of the multiplicity distribution in pp collisions for a window width
δη = 3 units of rapidity at an initial energy for the pp collision of 7 TeV are presented in
Figure 4, along with the corresponding experimental data of the ALICE [3] and CMS [4]
collaborations at the LHC.

In Figure 4, we see that using the NBD for the description of particle production from
a single string, instead of the Poisson distribution used in the original version of the MEM,
gives a better description of the multiplicity distribution in pp collisions. However, it
is not yet possible to correctly describe the first few points (N < 5). Nevertheless, these
few starting points have a strong influence on the behavior of the combinants, since the
combinants for a known multiplicity distribution P(N) are calculated recursively using
Relation (7). As can be seen from Figure 5, the oscillations of combinants with an increase
in their order are still not observed when we use the NBD for the multiplicity from a single
string. Conversely, for combinants calculated from experimentally measured multiplicity
distributions P(N), such oscillations take place (see [6–8] and Figure 9 below in Section 7).

10
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7000 GeV    |η|<1.5
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ALICE NSD

Figure 4. Multiplicity distribution of charged particles for the pseudorapidity interval |η|<1.5 in
pp interactions at

√
s = 7 TeV. The curve is the result of calculations in a version of the MEM, which

assumes an NBD of particles with a given value of scaled variance for the multiplicity distribution
from string decay, ωstr = 3.5, obtained from the two-particle correlation function Λ(η1−η2) of a
single string found in [31] (see Table 1). The points are the corresponding experimental data from the
ALICE [3] (△) and CMS [4] (◦) collaborations at the LHC.
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Figure 5. Dependence of the value of modified combinants (6) on their number for the multiplicity
distribution in Figure 4, calculated in a version of the MEM, which assumes an NBD of particles
with a given value of scaled variance for the multiplicity distribution from string decay, ωstr = 3.5,
obtained from the two-particle correlation function found in [31] (see Table 1).

6. MEM with Gaussian-Type Multiplicity Distributions

In this section, we will use Gaussian-type distributions to describe the production of
particles from n pomerons. For this purpose, we will use the distributions

Pn(N) = C exp
[
− (N − 2nµstr)2

2ωstr 2nµstr

]
, (34)

limiting it to only non-negative integer values of N. This leads to a normalization condition
fixing the normalization constant C:

∞

∑
N=0

Pn(N) = 1, C−1 =
∞

∑
N=0

exp
[
− (N − 2nµstr)2

2ωstr 2nµstr

]
. (35)

Note that at 2nµstr ≫ 1 from (34), we have

⟨N⟩n ≡
∞

∑
N=1

N Pn(N) → 2nµstr (36)

and

ωn[N] ≡ ⟨N2⟩n − ⟨N⟩2
n

⟨N⟩n
→ ωstr. (37)

In distribution (34), we use the same values of the parameters: µstr = k(s) δη is given
by Formula (14), and ωstr, which was calculated from the string two-particle correlation
function Λ(η1−η2), is given by Table 1.

The results of the calculation by Formula (9) of the resulting distribution over the
multiplicity of charged particles using Gaussian distribution (34) over the multiplicity
of particles for a fixed number of pomerons with the above parameters are presented in
Figures 6 and 7. From these figures, we see that the use of Gaussian distribution (34) for
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non-negative integer values of the argument gives a good (within the experimental error)
description of the resulting distribution over the multiplicity of charged particles. This
is also confirmed by the oscillatory behavior of the combinants of these distributions as
functions of their numbers, as shown in Figure 8.

Analyzing the behavior of combinants as functions of their numbers, as presented
in Figure 8, which was obtained in this version of the MEM, one can see the following
characteristic features. The period and amplitude of the resulting oscillations increase with
an increasing initial energy and increasing pseudo-rapidity observation window width. At
the same time, they also become less damped.
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Figure 6. Multiplicity distribution of charged particles for the pseudo-rapidity intervals |η|< 1.5
(upper plot) and |η|<2.4 (lower plot) in pp interactions at

√
s = 7 TeV. The curves are the result of

calculations in a modified MEM, with Gaussian-type multiplicity distributions from n pomerons (34)
and values of the parameter ωstr = 3.5 and 4 obtained from the string two-particle correlation function
found in [31] (see Table 1). The points are the corresponding experimental data from the ALICE [3]
(△) and CMS [4] (◦) collaborations at the LHC.
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Figure 8. Dependence of the values of modified combinants (6) on their numbers for the multiplicity
distributions in Figures 6 and 7 at the initial energies

√
s = 0.9 TeV (left plots) and 7 TeV (right plots)

and the pseudorapidity intervals |η|<1.5 (upper plots) and |η|<2.4 (lower plots) in a modified MEM,
with Gaussian-type multiplicity distributions from n pomerons (34) and values of the parameter ωstr

obtained from the string two-particle correlation function found in [31] (see Table 1).

7. Comparison of Combinants with Experimental Data

A comparison of the behavior of combinants calculated using the MEM and Gaussian
distribution for a multiplicity of particles from a fixed number of pomerons, (34), with
experimental data from the ALICE [3] and CMS [4] collaborations at the LHC is shown
in Figure 9. From this figure, it can be seen that the values of the calculated combinants
demonstrate approximately the same oscillations with an increasing combinant number as
the value of combinants extracted from the experimental data of the ALICE [3] and CMS [4]
collaborations at the LHC, although with a certain phase shift.

Additional research showed that this phase shift in the oscillations of combinants
compared to the experimental data in Figure 9 can be explained by the fact that model
calculations using Formula (9) assume the presence of at least one cut pomeron (two strings)
in each event. This means that the theoretical analysis corresponds to the case of so-called
Non-Diffractive (ND) processes, which exclude the contribution of both Single Diffractive
(SD) and Double Diffractive (DD) processes. Conversely, the experimental data used are
related to the so-called NSD (Non-Single Diffractive) processes, which exclude SD processes
but include DD processes.

It is clear that the main influence of DD processes on the studied multiplicity distribu-
tions in the region of central rapidities at high energies of the LHC is reduced only to the
appearance of additional events with the absence of particles in the observation window
at central rapidities, i.e., with an increased value of the zero bin, P(N=0), due to the DD
contribution. Indeed, in all the graphs in Figure 6 and 7, we actually observe that for the
NSD data all experimental values of P(0) have a significant excess compared to the general
course of the P(N) dependencies at N>0. Therefore, it seems appropriate to eliminate the
contribution of DD processes by adjusting the zero bin value, P(0), of the data so that its
value corresponds to the overall smooth behavior of P(N) up to N=0.

The results of comparing our model calculations of combinants with experimental
data of the ALICE [3] and CMS [4] collaborations at the LHC, with the exclusion of the DD
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process contribution as indicated above, are presented in Figure 10. From this figure, we see
that after eliminating the contribution of DD processes, the systematic phase shift observed
in Figure 9 disappears. As a result, the agreement between the model calculations of the
combinants and the experimental data is significantly improved—the deviations of the
calculations from the experiment turn out to be approximately the same as the deviations
between the results of the two experiments, ALICE [3] and CMS [4].
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Figure 9. Comparison between combinants calculated in a modified MEM, with Gaussian-type
multiplicity distributions from n pomerons (34) and the value of the parameter ωstr = 3.5 obtained
from the string two-particle correlation function found in [31] (see Table 1) for the pseudorapidity
interval |η| < 1.5 and pp interactions at

√
s = 7 TeV (•), and the combinants obtained for NSD

processes from the experimental data of the ALICE [3] (△) and CMS [4] (◦) collaborations at the LHC.
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Figure 10. The same as in Figure 9, but for ND processes (after eliminating the DD contribution,
see above).
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8. Discussion and Conclusions

Within the framework of the Multipomeron Exchange Model (MEM) [16–18], the
distributions of the multiplicity of charged particles and their modified combinants in
pp collisions at LHC energies were calculated, and the results were compared with ex-
perimental data obtained by the ALICE [3] and CMS [4] collaborations at CERN. It was
found that the initial version of the MEM with a Poisson distribution of particles from a
single pomeron, which corresponds to the scaled variance ωstr = 1 for string decay, cannot
explain the experimental data (see Figure 2).

Replacing the Poisson distribution with a Negative Binomial Distribution (NBD) pos-
sessing a scaled variance ωstr >1 improves the description of the multiplicity distribution
in pp collisions (see Figure 4). However, it is not yet possible to correctly describe the first
few points, which have a strong influence on the behavior of the combinants. Indeed, when
calculating the combinants, we see in Figure 5 that this version of the MEM also cannot
describe the oscillatory behavior of the combinants observed in the experimental data (see
Figure 9)).

As a result, we showed that the experimentally observed dependences of the ALICE [3]
and CMS [4] collaborations at the LHC can be explained when a Gaussian distribution
limited to non-negative integer values of the argument, (34), is used to describe multiplicity
distributions for a fixed number of pomerons. Note that in the presented approach, the
value of the parameter ωstr in these distributions is not free, but is fixed based on our previ-
ous works [30–34], in which it was shown that ωstr − 1 is proportional (see Formula (25))
to the integral of the two-particle correlation function of a string, Λ(η1−η2), over the
observation window.

We calculated the values of the parameter ωstr from the two-particle correlation
function Λ(η1−η2) by Formulas (25) and (26–28) for observation windows of various
widths (see Table 1). Using these values, we obtained a good description of the ALICE and
CMS experimental data [3,4] on the multiplicity distributions of charged particles in pp
collisions in the energy range of 0.9–7 TeV (see Figures 6 and 7).

Using the obtained multiplicity distributions, we calculated the corresponding mod-
ified combinants. They turned out to be very sensitive to the shape of the spectra of
multiplicity distributions, as noted in [6]. We also observed this in the experimental data
(see Figure 9). Even minor deviations in the ALICE and CMS data, within the error bars,
led to significant changes in the behavior of combinants, especially high-order combinants.
We showed that the results of our calculations of combinants within the framework of the
MEM, using Gaussian distributions for non-negative integer values of the argument as
multiplicity distributions for a given number of pomerons and the values of the parameter
ωstr obtained from the two-particle correlation function Λ(η1−η2) of a single string (see
Table 1), allowed us to also reproduce, qualitatively well, the oscillatory behavior of combi-
nants for observation windows of different widths (see Figures 8 and 10) discovered in the
ALICE and CMS experimental data [3,4] for pp collisions in the energy range of 0.9–7 TeV.

9. Summary

It was found that the initial version of the Multipomeron Exchange Model (MEM) with
a Poisson distribution of particles from a single pomeron cannot reproduce the multiplicity
distributions observed in pp collisions by the ALICE and CMS collaborations at the LHC.
Replacing the Poisson distribution with a Negative Binomial Distribution improved the
agreement with the experimental data, excluding the region of low multiplicities, which
did not enable us to obtain the oscillations of multiplicity distribution combinants observed
in the data with an increase in their order.

It was shown that using Gaussian-type distributions as multiplicity distributions for
a fixed number of pomerons within the MEM allowed us to reproduce both the resulting
multiplicity distributions and the oscillatory behavior of combinants discovered in the
ALICE and CMS pp collision data for observation windows of different widths in the
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energy range of 0.9–7 TeV. Here, the parameters of these Gaussian-type distributions are
not free, but are calculated from the two-particle correlation function of a string.
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