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Abstract: Particle correlations in small collisions systems, like proton–nucleus, lie at the core of the
discussion about whether quark–gluon plasma is produced in small systems. Both initial and final
state explanations have been essayed to describe such correlations. In this work, we focus on the
initial state explanations provided by the quantum effects in the initial wave function of the incoming
hadrons, in the framework of the Color Glass Condensate effective theory. We describe the formalism
indicating the different inputs required for phenomenological applications. We compare the results
from two different models, finding that the results for azimuthal harmonics agree qualitatively, but
show quantitative differences, particularly at transverse momenta above the saturation scale.
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1. Introduction

The “ridge” phenomenon is known to be due to the correlations between the produced
particles that are extended over large intervals of rapidity and peaking at azimuthal angle
zero (referred to as the near-side ridge) and π (referred to as the away-side ridge). This
phenomenon has been observed in small collision systems such as proton–proton (pp) [1–5]
and proton–nucleus (pA) [6–9] at the Large Hadron Collider (LHC). Similar correlations
were observed in AuAu, dAu, and 3HeAu collisions at the Relativistic Heavy Ion Collider
(RHIC) [10–14].

An accepted explanation of the origin of the ridge observed at the RHIC in heavy
ion collisions (HICs) is the collective flow due to strong final state interactions, usually
described in the framework of relativistic viscous hydrodynamics; see the reviews [15,16].
The azimuthal correlations observed in small collision size systems (both pp and pA)
are also successfully described by relativistic viscous hydrodynamics [16,17] (for weak
coupling final state explanations, see, e.g., [18] and the references therein). However, the
hydrodynamic explanation of azimuthal asymmetries in small systems looks tenuous.
This has triggered a many efforts to understand whether the final state particles carry the
imprints of the partonic correlations that exist in the initial state. Several mechanisms
have been suggested to explain the ridge phenomenon within the Color Glass Condensate
(CGC) [19,20] framework (see [21] for a review).

One of the most-successful initial state explanations of the azimuthal correlations
is based on the local anisotropy of the target fields [22–24], whose underlying physics
mechanism can be explained as follows. In this model, the hadronic target is assumed to be
composed of domains of oriented chromoelectric fields in the transverse plane. The size of
these domains is of the order of 1/Qs, where Qs is the saturation momentum of the target.
If the particles in the incoming nucleus are correlated, the transverse distance between
these two particles is much smaller than 1/Qs. Therefore, the incoming particles scatter off
the same domain in the target, and they acquire a common final momentum, which reflects
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the initial state correlations to the final state. Numerical studies based on this model were
performed in [25,26].

Another mechanism that successfully describes the azimuthal correlations from the
initial state point of view is known as the “glasma graph approach” [27–29]. Even though
this approach to two-particle correlations is shown to be very successful in describing many
features of the data [30–35], the physics behind this approach is not clear. This issue was
addressed in [36], where it was shown that a genuine quantum effect, namely the Bose
enhancement of the gluons in the projectile wave function, leads to final state correlations
within the glasma graph approach. In [37–39], it was also shown that another physical
effect, known as the Hanbury-Brown–Twiss (HBT) correlations between the produced
gluons, is present in the glasma graph approach. The correlations between quarks have also
been studied, and it was shown that quarks in the initial state experience Pauli blocking
due to their fermionic nature [40], which leads to (short range in rapidity) anti-correlations
between hadrons originating from quarks.

The standard glasma graph approach is valid for dilute–dilute collisions. The extension
of this approach to the dilute–dense situation applicable to pA collisions was studied
in [41–44] by taking into account multiple scattering effects for double- and triple-inclusive
gluon production1. A similar study was also performed for the double-inclusive quark [47]
and heavy quarkonia [48,49] production in pA collisions. The extension of the glasma
graph approach that includes the multiple scattering effects was also used in [50] to study
the effects of the spatial eccentricity of the projectile shape on the second flow harmonics,
in [51] to study the effects of fluctuations in the multiplicity of the produced particles, and
in [52] to study the correlations between the total multiplicity and second flow harmonic,
as well as the correlations between the mean transverse momentum and second flow
harmonic. Finally, a specific model was used within the extended glasma graph approach
to study three and four gluon production in [53].

In this paper, we focus on the computation of double-inclusive gluon production
beyond the glasma graph approximation in pA collisions. In Section 2, we discuss the
different contributions to correlated production, identifying the Bose enhancement and the
HBT correlations following the work performed in [42]. In Section 3, we discuss a specific
model to compute double-inclusive gluon production following the work performed
in [53]. In Section 4, we study numerically the two-particle correlations and compare the
results of the model described in Section 3 with a more-rigorous, but numerically involved
implementation of the Lipatov vertices. Finally, in Section 5, we present a concise summary
and discussion of the double-inclusive gluon production and correlations in pA collisions.

2. Double-Inclusive Gluon Production in Dilute–Dense Scattering at Mid-Rapidity

The two-gluon spectrum with transverse momenta k1, k2 in pA collisions at mid-
rapidity was computed in [54,55], and it reads2

dN
d2k1d2k2

= α2
s (4π)2

∫
z1 z̄1z2 z̄2

eik1·(z1−z̄1)+ik2·(z2−z̄2)

×
∫

x1x2y1y2
Ai(x1 − z1)Ai(z̄1 − y1)Aj(x2 − z2)Aj(z̄2 − y2)

〈
ρa1(x1)ρ

a2(x2)ρ
b1(y1)ρ

b2(y2)
〉

P

×
〈[

U(z1)− U(x1)
]a1c[U†(z̄1)− U†(y1)

]cb1
[
U(z2)− U(x2)

]a2d[U†(z̄2)− U†(y2)
]db2

〉
T

.
(1)

Here, ρa(x) is the color charge density of the dilute projectile with a = 1, . . . , N2
c − 1 the

color index and U(x) is the adjoint Wilson line that accounts for the scattering of a gluon at
transverse position x, which is defined as

U(x)ab = P+ exp
[∫ +∞

−∞
dz+T · A−(z+, x)

]ab
, (2)
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where A−(z+, x) is the background field of the target. ⟨· · · ⟩P(T) corresponds to projectile
(target) averaging, and the Weizsacker–Williams field is given by

Ai(x − y) = − 1
2π

(x − y)i

(x − y)2 =
∫

k
e−ik·(x−y) ki

k2 . (3)

The projectile averaging of the color charge densities is performed by adopting the gener-
alized McLerran–Venugopalan (MV) [56,57] model with the Gaussian weight functional,
which amounts to factorizing the color charge densities into a product of all possible Wick
contractions. Moreover, the average of two color charge densities is given by the following
general form3:

⟨ρa(x)ρb(y)⟩P = δabµ2(x, y). (4)

Then, the projectile averaging of the four color charge densities that appears in Equation (1)
reads〈

ρa1(x1)ρ
a2(x2)ρ

b1(y1)ρ
b2(y2)

〉
P = δa1a2 δb1b2 µ2(x1, x2)µ

2(y1, y2)

+ δa1b1 δa2b2 µ2(x1, y1)µ
2(x2, y2) + δa1b2 δa2b1 µ2(x1, y2)µ

2(x2, y1).
(5)

On the other hand, the dipole and quadrupole operators are defined in the standard way as

D(x, y) =
1

N2
c − 1

tr
[
U(x)U†(y)

]
, (6)

Q(x, y, z, v) =
1

N2
c − 1

tr
[
U(x)U†(y)U(z)U†(v)

]
, (7)

with the corresponding Fourier transforms defined as

D(x1, x2) =
∫

q1,q2

e−iq1·x1+iq2·x2 D(q1, q2) , (8)

Q(x1, x2, x3, x4) =
∫

q1 q2 q3,q4

e−iq1·x1+iq2·x2−iq3·x3+iq4·x4 Q(q1, q2, q3, q4) . (9)

Then, using Equation (5) for the projectile averaging and the definitions of the dipole and
quadrupole operators given above, the double-inclusive gluon spectrum (Equation (1)) can
be written as

dN
d2k1d2k2

=
dN

d2k1d2k2

∣∣∣
A
+

dN
d2k1d2k2

∣∣∣
B
+

dN
d2k1d2k2

∣∣∣
C

, (10)

with

dN
d2k1d2k2

∣∣∣∣
A
= α2

s (4π)(N2
c − 1)

∫
q1,q2,q3q4

〈
Q(q1, q2, q3, q4)

〉
T µ2[(k1 − q1), (k2 + q4)

]
×µ2[− (k1 − q2),−(k2 + q3)

]
Li(k1, q1)Li(k1, q2)Lj(k2,−q3)Lj(k2,−q4),

(11)

dN
d2k1d2k2

∣∣∣∣
B
= α2

s (4π)(N2
c − 1)

∫
q1,q2,q3q4

〈
D(q1, q2)D(q3, q4)

〉
T µ2[(k1 − q1),−(k1 − q2)

]
×µ2[(k2 − q3),−(k2 − q4)

]
Li(k1, q1)Li(k1, q2)Lj(k2, q3)Lj(k2, q4),

(12)

dN
d2k1d2k2

∣∣∣∣
C
= α2

s (4π)(N2
c − 1)

∫
q1,q2,q3q4

〈
Q(q1, q2, q3, q4)

〉
T µ2[(k1 − q1),−(k2 − q4)

]
×µ2[(k2 − q3),−(k1 − q2)

]
Li(k1, q1)Li(k1, q2)Lj(k2, q3)Lj(k2, q4),

(13)
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where Li(k, q) is the Lipatov vertex defined as

Li(k, q) ≡ (k − q)i

(k − q)2 − ki

k2 . (14)

The contributions given in Equations (11)–(13) correspond to the three different contractions
given on the right-hand side of Equation (5) for the projectile averaging.

The next step in the analysis of the double-inclusive gluon production is to understand
the target averaging. For this purpose, we adopted the so-called area-enhancement model
(which was originally introduced in Refs. [58,59] and used in Refs. [41,42]), which can be
explained as follows. The computation of the double-inclusive gluon spectrum requires
integration over four transverse coordinates of the Wilson line structure that appears as
either a quadrupole or double-dipole operator in the spectrum. The leading contribution to
the spectrum is expected to arise when as many points as possible are away from each other
in the transverse plane. This configuration would maximize the result of the transverse
integration, and any other configuration where the points are close to each other would
be suppressed by the transverse area of the projectile. On the other hand, in order for the
scattering matrix to be non-vanishing, the scattering objects must be color singlet operators
with a small transverse size of the order of 1/Qs. Thus, the configuration that maximizes
the spectrum would correspond to the case where four points are combined into two
color singlet pairs and the distance between the pairs is large. Within this model, the
target-averaged quadrupole and double-dipole operators can be approximated as follows:

〈
Q(x, y, z, v)

〉
T → d(x, y)d(z, v) + d(x, v)d(z, y) +

1
N2

c − 1
d(x, z)d(y, v), (15)

〈
D(x, y)D(z, v)

〉
T → d(x, y)d(z, v) +

1
N2

c − 1

[
d(x, v)d(y, z) + d(x, z)d(v, y)

]
, (16)

where, for the simplicity of the notation, we introduced d(x, y) ≡ ⟨D(x, y)⟩T . Finally,
assuming translational invariance of the target-averaged dipole operators:

d(x1, x2) =
∫

q1,q2

e−iq1·x1+iq2·x2 d
(

q1 + q2

2

)
δ(2)(q1 − q2), (17)

the double-inclusive gluon spectrum given in Equation (10), within the area-enhancement
model, can be organized as

dN
d2k1d2k2

= α2
s (4π)2(N2

c − 1)2
∫

q1,q2

d(q1)d(q2)

{
I0 +

1
N2

c − 1
I1 +

1
(N2

c − 1)2 I2

}
, (18)

with
I0 = µ2[(k1 − q1), (q1 − k1)

]
µ2[(k2 − q2), (q2 − k2)

]
× Li(k1, q1)Li(k1, q1)Lj(k2, q2)Lj(k2, q2),

(19)

I1 = µ2[(k1 − q1), (q2 − k2)
]

µ2[(k2 − q2), (q1 − k1)
]

× Li(k1, q1)Li(k1, q1)Lj(k2, q2)Lj(k2, q2)
+ µ2[(k1 − q1), (q1 − k2)

]
µ2[(k2 − q2), (q2 − k1)

]
× Li(k1, q1)Li(k1, q2)Lj(k2, q1)Lj(k2, q2) + (k2 → −k2),

(20)

I2 = µ2[(k1 − q1),−(k1 − q2)
]

µ2[(k2 − q2), (q1 − k2)
]

× Li(k1, q1)Li(k1, q2)Lj(k2,−q1)Lj(k2,−q2) + (k2 → −k2)
+ µ2[(k1 − q1),−(k2 − q2)

]
µ2[− (k1 + q2), (q1 + k2)

]
× Li(k1, q1)Li(k1,−q2)Lj(k2,−q1)Lj(k2, q2) + (k2 → −k2).

(21)

The final result for the double-inclusive gluon spectrum in pA collisions at mid-
rapidity within the area-enhancement model is given in Equation (18). Now, we can discuss
the physical origin of the various terms. First of all, it is straightforward to realize that
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the spectrum is symmetric under (k1, k2) → (k1,−k2), which is known as the “accidental
symmetry of the CGC”. The effects of this symmetry have been widely discussed in the
context of the particle correlations in the literature, and it is argued that it can be broken
by (i) adopting a nonlinear Gaussian approximation for the double-dipole operator [60],
including density corrections to the dilute projectile [61–63] or (ii) including the subeikonal
corrections [64–67] in the computation of the double-inclusive gluon spectrum.

In order to understand the underlying physics mechanism behind each term in the
double-inclusive gluon spectrum, let us first elaborate on the function µ2(k, p), which is
defined as the correlation function of two color charge densities of the projectile and can
have the following general form:

µ2(k, p) = T
(

k − p
2

)
F
[
(k + p)R

]
. (22)

Here, the function T can be understood as the transverse-momentum-dependent distribu-
tion of the valence charges, while the function F can be interpreted as a soft form factor,
which is maximal when its argument is zero and vanishes when its argument is away from
zero. The factor R that appears in the argument of the soft form factor in Equation (22) is
the radius of the projectile. Finally, it is important to remind that (k1 − q1) and (k2 − q2)
are the momenta of the two gluons in the projectile, k1 and k2 are the momenta of the
produced gluons in the final state, and q1 and q2 are the respective momentum transfers to
the produced gluons from the target during the interaction. Using the properties of the soft
form factor F, each contribution in the double-inclusive gluon spectrum can be interpreted
as follows:

• I0 term: This contribution corresponds to the uncorrelated production, which is simply
the square of the single inclusive spectrum.

• I1-first term: The first term in Equation (20) is proportional to

µ2[(k1 − q1), (q2 − k2)
]

µ2[(k2 − q2), (q1 − k1)
]

∝ F2
[(

k1 − q1 − (k2 − q2)
)

R
]
, (23)

where the soft form factor is peaked when the momenta of the two gluons in the projectile
wave function are very close to each other. Therefore, this term contributes to the Bose
enhancement of the gluons in the projectile.

• I1-second term: The second term in Equation (20) is proportional to

µ2[(k1 − q1), (q1 − k2)
]

µ2[(k2 − q2),−(k1 − q2)
]

∝ F2[(k1 − k2)R
]
, (24)

where the soft form factor is peaked when the momenta of the two produced gluons are
close to each other. Therefore, this term is the HBT contribution.

• I2-first term: The first term in Equation (21) is proportional to

µ2[(k1 − q1),−(k1 − q2)
]

µ2[(k2 − q2),−(k2 − q1)
]

∝ F2[(q1 − q2)R
]
, (25)

where the soft form factor is peaked when the momenta of the gluons in the target that
are transferred to the projectile are close to each other. Thus, this term contributes to the
Bose enhancement of the gluons in the target.

• I2-second term: The second term in Equation (21) is proportional to

µ2[(k1 − q1),−(k2 − q2)
]

µ2[− (k1 + q2), (q1 + k2)
]

∝ F2
[(

k1 − q1 − (k2 − q2)
)

R
]
, (26)

where the soft factor is peaked when the momenta of the gluons in the projectile are
close to each other. Therefore, this is a contribution of the Bose enhancement of the
gluons in the projectile. However, compared to the similar contribution in I1, these terms
are suppressed by 1/(N2

c − 1). Thus, the contribution to the Bose enhancement of the
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projectile gluons from the second term in I2 can be interpreted as Nc-corrections to the
ones observed in I1.

3. A Specific Model for Double-Inclusive Gluon Production in Dilute–Dense Scattering

In this section, we review a specific approach to particle production in pA collisions
that was originally introduced in Ref. [53] to use the computations of the three- and four-
particle production. In this approach, a diagrammatic method is introduced that uses the
symmetries between different terms in the computation, which significantly reduces the
number of terms that need to be calculated. Here, we will not discuss the details of this
diagrammatic approach and refer the interested reader to Ref. [53]. In the rest of this section,
we focus on the two-gluon production in this approach and briefly discuss the derivation
and the results.

The analog expression of Equation (27) for the double-inclusive spectrum in this
approach is written as

22(2π)6 dN
d2k1d2k2

=
∫ (

∏2
i=1

d2q2i−1
(2π)2

d2q2i
(2π)2

)〈(
∏2

i=1 g2ρb2i−1(ki − q2i−1)ρ
b2i (ki − 2qi)

)〉
P

×
〈(

∏2
i=1 Maib2i−1

i (ki, q2i−1) M †aib2i
i (ki, q2i)

)〉
T

.
(27)

Here, averaging over the color charge densities in the projectile wave function is per-
formed in the same manner as in Equation (4), but with a different normalization, and it is
performed in momentum space, which simply reads

g2〈ρbi (ki − qi)ρ
bj(kj − qj)

〉
P =

δbibj

N2
c − 1

µ̃2[ki − qi, kj − qj
]
. (28)

In the standard MV model, the profile function of the projectile distribution µ̃2 is chosen to
be a Dirac delta function. For a more-realistic analysis, we use a Gaussian distribution:

µ̃2(k, q) = e
− (k+q)2

4B−1
p (29)

which is peaked around k + q = 0, with Bp the gluonic transverse area of the projectile.
The projectile averaging of the four charge densities appearing in Equation (27) is factorized
into product of the possible Wick contractions as in Equation (5). On the other hand, in
Equation (27), target averaging is encoded in the effective scattering amplitudes, which are
defined as

Mab
i (k, q) = 2i Li(k, q)

∫
y

e−iq·yUab(y), (30)

with Li(k, q) being the Lipatov vertex defined in Equation (14) and Uab(y) the standard
Wilson line in the adjoint representation given in Equation (2). On the target side, the
multiple interactions result in dipole (Equation (6)) and quadrupole (Equation (7)) operators,
as is usual for the double-inclusive gluon production. Target averagings of these operators
are performed again within the area-enhancement model, i.e., quadrupole and double-
dipole operators are factorized into the target-averaged single-dipole operators, as given
in Equations (15) and (16), respectively. Moreover, in this computation, we adopted the
well-known Golec-Biernat–Wüstoff (GBW) model [68,69] for the target-averaged dipole
operators, which in momentum space reads

d(q) =
4π

Q2
s

e−q2/Q2
s . (31)
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The Lipatov vertices appear as a product of two, for each produced gluon in the spectrum:

Li(k, q1)Li(k, q2) =

[
ki

k2 − (k − q1)
i

(k − q1)2

][
ki

k2 − (k − q2)
i

(k − q2)2

]
, (32)

which suffer from infrared divergences. Usually, these divergences are regulated by in-
troducing an infrared cutoff in the integrations over momenta. Here, we followed a
different approach and assumed a “Gaussian regularization” in the collinear limit, where
(k − q)2 ∼ 0. This amounts to using the following expression for the product of two
Lipatov vertices in order to regulate the infrared divergences:

Li(k, q1)Li(k, q2) =
(2π)2

ξ2 exp
{
− 1

ξ2

[
k − (q1 + q2)

2

]2}
, (33)

where ξ2 is a parameter with dimensions of the momentum squared.
A comment is in order here. The main problem in using a Gaussian regularization for

the product of two Lipatov vertices given in Equation (33) is that it only depends on the
momentum of the projectile gluons, ki − qi, and not on the momentum of the produced
gluons, ki. Therefore, the contribution included in Equation (33) is restricted to that when
the gluon is emitted from the projectile color charge density and, then, interacts with the
target. Thus, it is a missing part of the physics included in the standard Lipatov vertices. In
this approach, the final momentum is acquired by the interaction with the target, which
is suitable for the collinear limit of the projectile. In principle, in this limit, the “hybrid
factorization” [70,71] is employed, and it corresponds to the forward production of partons
near the fragmentation region. Even though our approach is more suitable for central
production, with the approximation introduced in Equation (33), its validity is reduced
to the forward limit, but not yet near the proton fragmentation region. In this region, the
projectile partons are defined in terms of the Wigner functions [34,35,47,60,72]. However,
the standard Wigner function approach does not account for quantum correlation effects
such as the Bose enhancement and HBT correlations discussed in the previous section, while
our approach takes into account these quantum effects (see [53] for a detailed derivation).
Thus, for two partons in the projectile, the joint Wigner function that we use reads

Wb1b2b3b4(b1, p1, b2, p2) =
1

(N2
c −1)

1
π4ξ4B2

p
e−(p2

1+p2
2)/ξ2

e−(b2
1+b2

2)/Bp
[
δb1b2 δb3b4

+ δb1b3 δb2b4 2π Bp δ(2)(b1 − b2) e−(p1+p2)
2/(2B−1

p )

+ δb1b4 δb2b3 2π Bp δ(2)(b1 − b2) e−(p1−p2)
2/(2B−1

p )
]
.

(34)

Finally, by using the MV model for computing the projectile averaging via Equations (28) and (29),
adopting the area enhancement argument given in Equations (15) and (16), using the
GBW model (Equation (31)) for the dipole operator for computing the target averages, and
using a Gaussian form for the product of two Lipatov vertices (Equation (33)) that mimics
the Wigner function approach, the double-inclusive gluon spectrum can be organized
as follows:

dN
d2k1d2k2

= T0 +
1

N2
c −1

[(
T1 + T2

)
+ (k2 → −k2)

]
+ 1

(N2
c −1)2

[(
T3 + T4

)
+ (k2 → −k2)

]
,

(35)

with the classical contribution

T0 =
1

π2(ξ2 + Q2
s )

1
(ξ2 + Q2

s )
exp

{
−

(k2
1 + k2

2)

(ξ2 + Q2
s )

}
, (36)
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with the leading Nc quantum correlations:

T1 = 1
π2(ξ2+Q2

s )
1[

Q2
s+ξ2(1+BpQ2

s )
]

× exp
{
− 2ξ2Bp(k1+k2)

2+
[

Q2
s+ξ2(1+BpQ2

s )
]
(k2

1+k2
2)

(ξ2+Q2
s )
[

Q2
s+ξ2(1+BpQ2

s )
] }

,
(37)

T2 =
1

π2(ξ2 + Q2
s )

1
ξ2 exp

{
−

2ξ2(k2
1 + k2

2) + (BpQ2
s ξ2 + Bpξ4 + Q2

s )(k1 + k2)
2

2ξ2(ξ2 + Q2
s )

}
, (38)

and the subleading Nc quantum correlations:

T3 =
1

π2(ξ2 + Q2
s )

1
ξ2(1 + BpQ2

s )
exp

{
−

2ξ2(k2
1 + k2

2) + Q2
s (k1 + k2)

2

2ξ2(ξ2 + Q2
s )

}
, (39)

T4 = 1
π2
[

Q2
s+ξ2(1+BpQ2

s )
] 1

ξ2

× exp
{
− Bpξ4(k1−k2)

2+(Q2
s+BpQ2

s ξ2)(k1+k2)
2+2ξ2(k2

1+k2
2)

2ξ2
[

Q2
s+ξ2(1+BpQ2

s )
] }

.
(40)

4. Two-Particle Azimuthal Harmonics

In this section, we proceed to undertake the computation of the azimuthal harmonics
derived from the two-particle distribution given in Equation (1)4. To effectively investigate
the azimuthal harmonics inherent in two-particle correlations, we adopted the cumulant
method5. The primary objective of this method is to diminish the influence of what is
commonly referred to as the “non-flow” correlation. This term encompasses contributions
to the correlation function originating from processes divergent from genuine collective
flow, such as resonance decays or jet correlations. The use of the cumulant method is
instrumental in refining the definition of azimuthal harmonics, thereby providing a more-
accurate characterization of the true collective flow dynamics. Within this framework, the
2-particle azimuthal harmonics of order n read as follows:

vn{2} = (cn{2})1/2, cn{2} =
〈

ein(ϕ1−ϕ2)
〉
≡ κn{2}

κ0{2} , (41)

where κn{2} is the nth harmonic distribution of the 2-particle production:

κn{2} =
∫

k1,k2

dN
d2k1d2k2

ein(ϕ1−ϕ2). (42)

In the model introduced in Section 3, specifically through the Gaussian regularization
of the Lipatov vertices in Equation (33), we can perform an analytical computation of
two-particle azimuthal harmonics, as presented in Ref. [53]. In Figure 1, we plot the
relationship between vn{2} (n = 2, 4) and the dimensionless variables BpQ2

s and ξ2/Q2
s ,

keeping Nc = 3 constant. Notably, at a fixed Qs, the behavior of even azimuthal harmonics
undergoes discernible changes as we vary the proton area and ξ. A noteworthy observation
is the rapid growth of even azimuthal harmonics when both Bp and ξ approach zero.
Conversely, a gradual decrease is observed as these parameters attain larger values.

This reduction in even azimuthal harmonics with increasing Bp aligns with our expec-
tations in the color domain model of particle correlation. The rationale behind this trend
lies in the influence of the number of domains, denoted by BpQ2

s . As this quantity increases,
the likelihood of two gluons undergoing scattering within the same domain diminishes,
resulting in an overall decrease in correlation.
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Figure 1. The relationship between the even 2-particle azimuthal harmonics, represented as vn{2}, is
examined in terms of its dependence on ξ2/Q2

s (left panel) and BpQ2
s (right panel). The left panel

presents the variation of azimuthal harmonics while keeping BpQ2
s = 12, while the right panel

explores the impact of changes in BpQ2
s with a fixed value of ξ2/Q2

s = 1/4.

Likewise, the azimuthal harmonics vn can be expressed as a function of the transverse
momentum. To achieve this, integration is performed over one of the particle transverse
momenta in Equation (42), holding the other constant. Consequently, the computation and
definition of the differential azimuthal harmonics are given as follows:

vn{2} =

√
κ̃n{2}
κ̃0{2} , κ̃n{2}(p⊥) ≡

∫ 2π

0
dϕ1

∫
k2

dN
p⊥dp⊥dϕ1d2k2

ein(ϕ1−ϕ2). (43)

Analogous to the integrated azimuthal harmonics, the use of the Gaussian regular-
ization outlined in Equation (33) facilitates an analytical computation of the differential
harmonics. The outcomes of v2n{2}(p⊥) for n = 1, 2, 3 are depicted in Figure 2, where
Bp = 6 GeV−2, ξ = Qs/2, Q2

s = 2 GeV2, and Nc = 3. While our primary focus does not
involve a direct comparison with experimental data, it is noteworthy that the obtained
values qualitatively agree with empirical observations. In fact, the experimental values for
v2{2} lie in the range 10–20% for p⊥ ∼ 1–2 GeV/c [6–9,12,13]. It is essential to highlight
that, given the Gaussian forms employed, our results may not be deemed reliable for p⊥
significantly exceeding Qs.

0.0 0.5 1.0 1.5 2.0 2.5

p  [GeV]

0.00

0.05

0.10

0.15

0.20

0.25

0.30

v n
{ 2} (p

)

Q 2
s = 2 GeV2

Bp = 6 GeV−2

ξ 2 = 0.5 GeV2

n= 2

n= 4

n= 6

Figure 2. Dependence of the differential 2-particle even azimuthal harmonics, denoted as
v2n{2}(p⊥), with respect to transverse momentum p⊥. The parameters employed in this analy-
sis are Bp = 6 GeV−2, ξ = Qs/2, Q2

s = 2 GeV2, and Nc = 3.

Finally, we undertake a comparative analysis of the azimuthal harmonics, com-
puted using the Gaussian regularization applied to the Lipatov vertices as detailed in
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Equation (33), with those derived from the same computation using the actual expression
presented in Equation (32), albeit subject to regularization:

Li(k, q1)Li(k, q2) =

[
ki

k2 + µ2
g
− (k − q1)

i

(k − q1)2 + µ2
g

][
ki

k2 + µ2
g
− (k − q2)

i

(k − q2)2 + µ2
g

]
, (44)

where the parameter µ2
g serves as an effective mass introduced to address and regularize

the infrared divergences6.
To conduct the comparison, we fixed the values for the parameters: µg = 0.5 GeV,

Q2
s = 2 GeV2, ξ2 = 0.5 GeV2, Bp = 6 GeV−2, and Nc = 3. We start by a comparative

analysis of the integrated momentum distribution, defined as follows:

dN
dp⊥

≡
∫ 2π

0
dϕ

∫
k2

dN
p⊥dp⊥dϕd2k

. (45)

In Figure 3, we compare the distributions obtained using the regularization schemes spec-
ified in Equation (33), denoted as Gaussian, and Equation (44), denoted as Lorentzian.
Notably, both results exhibit comparable magnitudes; however, the Lorentzian regulariza-
tion manifests a more-restrained tail, aligning with our expectations (see the comments
on the lack of dependence on the transverse momentum of the produced gluons below
Equation (33)). This observation suggests that, with Gaussian regularization, there is an
overestimation of high p⊥ particles, indicating the unreliability in this regime.

0.0 0.5 1.0 1.5 2.0 2.5 3.0

p  [GeV]

0.000

0.005

0.010

0.015

0.020

0.025

dN
dp

Gaussian

Lorentzian

Figure 3. The single-particle momentum distribution, as expressed in Equation (45), is illustrated as a
function of the transverse momentum. The blue line corresponds to the spectrum employing Gaussian
regularization, while the red line corresponds to the spectrum using Lorentzian regularization.

In Figure 4, the two-particle integrated azimuthal harmonic is depicted as a function
of Bp employing both Gaussian and Lorentzian regularizations. Notably, as the projectile
area increases, both results exhibit a decrease, yet the Gaussian regularization yields
harmonics approximately four-times larger. A similar trend is observed in Figure 5, where
the differential harmonics are plotted against the transverse momentum. While both
results follow a comparable trend, the Gaussian regularization generates significantly
higher harmonics.

While both approaches, Gaussian and Lorentzian, give results that lie in the ballpark of
the experimental data as mentioned before, our study shows that large uncertainties remain.
Besides, we should take into account other effects like fragmentation, the contribution from
the quark channel, and the possibility of final state effects. Also, non-eikonal contributions
may be sizable at RHIC energies. All these considerations prevent us from a quantitative
comparison to experimental data.
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Figure 4. The 2-particle azimuthal harmonic is presented as a function of Bp. The blue line corresponds
to the spectrum employing Gaussian regularization, while the red line corresponds to the spectrum
using Lorentzian regularization.
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Figure 5. The 2-particle differential azimuthal harmonic is portrayed as a function of transverse
momentum. The blue line signifies the spectrum employing Gaussian regularization, while the red
line denotes the spectrum utilizing Lorentzian regularization.

5. Conclusions

In this manuscript, we described the approach to two-particle correlations in the
Color Glass Condensate effective theory. After describing the formalism and the physical
mechanisms at work in two-particle inclusive distributions, we went through the different
model-dependent ingredients required for phenomenological applications. We presented
a Gaussian model developed in [53], based on the use of Wigner functions, that allows
analytic computations. This model oversimplifies the treatment of the large transverse
momentum tails in particle production and should be valid for transverse momenta of the
order of the saturation scale.

Then, we numerically computed the azimuthal harmonics vn=2,4,6 and studied their
dependencies on different parameters in the model. Finally, we compared the results of this
model with a more-numerically involved implementation, which keeps the perturbative
form of the Lipatov vertex, albeit with a regularization in the IR. We showed that this
implementation results in smaller azimuthal harmonics, particularly at the transverse
momentum larger than the saturation scale. We concluded that the uncertainties resulting
from the details of the modeling required for phenomenological applications may be
significant and have to be considered for a meaningful comparison with experimental data.
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Notes
1 Triple and quadruple gluon production were studied in [45,46] in the dilute–dilute limit of the glasma graph approach.
2 Throughout the manuscript, we use

∫
z ≡

∫
d2z and

∫
k ≡

∫ d2k
(2π)2 as the shorthand notation for coordinate and momentum space

integrals in the transverse direction.
3 Since we do not assume translational invariance of the projectile wave function, the function µ2(x, y) depends both on the

difference x − y and the center of mass coordinate (x + y)/2.
4 Note that, in the eikonal approximation employed in this work, the results are independent of the energy of the collision and of

the rapidity of the produced gluons.
5 The correlations that we computed are those between the final-state gluons before hadronization and neglecting any kind of

final-state effects between them or with additional partons produced in the collision, or among final-state hadrons.
6 The sensitivity of azimuthal harmonics to the value of the effective mass was explored in [65] within the glasma graph approxi-

mation including non-eikonal corrections.
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