Proposal for an Electromagnetic Mass Formula for the X17 Particle
Abstract
:1. Introduction
2. The Quantized Volkov States of the System of a Charged Particle and Electromagnetic Plane Waves
3. Derivation of an Analytic Formula for the Rest Mass of the Hypothetical X17 Particle
4. Plasmon Interpretation of the Dispersion Relation of the Dressed Radiation—Application to the Hypothetical E38 Particle
5. Summary
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
1 | In the standard representation, the Dirac matrices and have the form , , , , , . In the first three equations, the “” and “” denote 2 × 2 zero and unit matrices, respectively. In the last three equations, are the usual 2 × 2 Pauli matrices. The matrices are defined as and , their commutation relations are , and , where denotes the adjoint (transposed conjugate) of , see e.g., [22]. We shall also use manifestly covariant notations, so we summarize the conventions we follow. The Minkowski metric tensor has the components and if . The scalar product of two four-vectors and is , i.e., , where is the usual scalar product of three-vectors and . Space–time coordinates are denoted by , where . The four-gradient is , and . For products of the type , we use the “slash” notation. |
References
- Krasznahorkay, A.J.; Csatlós, M.; Csige, L.; Gácsi, Z.; Gulyás, J.; Hunyadi, M.; Kuti, I.; Nyakó, B.M.; Stuhl, L.; Timár, J.; et al. Observation of anomalous internal pair creation in 8Be: A possible indication of a light, neutral boson. Phys. Rev. Lett. 2016, 116, 042501. [Google Scholar] [CrossRef] [PubMed]
- Krasznahorkay, A.J.; Csatlós, M.; Csige, L.; Firak, D.S.; Gulyás, J.; Nagy, Á.; Sas, N.J.; Timár, J.; Tornyi, T.G.; Krasznahorkay, A. On the X(17) light-particle candidate observed in nuclear transitions. Act. Phys. Polon. B 2019, 50, 675–684. [Google Scholar] [CrossRef]
- Firak, D.S.; Krasznahorkay, A.J.; Csatlós, M.; Csige, L.; Gulyás, J.; Koszta, M.; Szihalmi, B.; Timár, J.; Nagy, Á.; Sas, N.J.; et al. Confirmation of the existence of the X17 boson. EJP Web Conf. 2020, 232, 04005. [Google Scholar] [CrossRef]
- Krasznahorkay, A.J.; Krasznahorkay, A.; Begala, M.; Csatlós, M.; Csige, L.; Gulyás, J.; Krakó, A.; Timár, J.; Rajta, I.; Vajda, I. New anomaly observed in 12C supports the existence and the vector character of the hypothetical X17 boson. Phys. Rev. C 2022, 106, L061601. [Google Scholar] [CrossRef]
- Krasznahorkay, A.J.; Krasznahorkay, A.; Csatlós, M.; Csige, L.; Timár, J. A new particle is being born in ATOMKI that could make a connection to dark matter. Nucl. Phys. News 2022, 32, 10–15. [Google Scholar] [CrossRef]
- Feng, J.L.; Fornal, B.; Galon, I.; Gardner, S.; Smolinsky, J.; Tait, T.M.P.; Tanedo, P. Protophobic fifth-force interpretation of the observed anomaly in 8Be nuclear transitions. Phys. Rev. Lett. 2016, 117, 071803. [Google Scholar] [CrossRef] [PubMed]
- Feng, J.L.; Tait, T.M.P.; Verhaaren, C.B. Dynamical evidence for a fifth-force explanation of the ATOMKI nuclear anomalies. Phys. Rev. D 2020, 102, 036016. [Google Scholar] [CrossRef]
- Rose, L.D.; Khalil, S.; Moretti, S. Explanation of the 17 MeV Atomki anomaly in a U(1)’-extended two Higgs doublet model. Phys. Rev. D 2017, 96, 115024. [Google Scholar] [CrossRef]
- Kálmán, P.; Keszthelyi, T. Anomalous internal pair creation. Eur. Phys. J. A 2020, 56, 205. [Google Scholar] [CrossRef]
- Abraamyan, K.; Austin, C.; Baznat, M. Check of the structure in photon pairs spectra at the invariant mass of about 38 MeV/c2. EJP Web Conf. 2019, 204, 08004. [Google Scholar] [CrossRef]
- Wong, C.-Y. Anomalous soft photons in hadron production. Phys. Rev. C 2010, 81, 064903. [Google Scholar] [CrossRef]
- Wong, C.-Y. Open string QED meson description of the X17 particle and dark matter. JHEP 2022, 8, 165. [Google Scholar] [CrossRef]
- Wong, C.-Y. QED meson description of the anomalous particles and the X17 particle. In Proceedings of the International Symposium on Multiparticle Dynamics ISMD 2023, Gyöngyös, Hungary, 21–25 August 2023. [Google Scholar]
- Varró, S. Proposal for an electromagnetic mass formula for the X17 particle. In Proceedings of the International Symposium on Multiparticle Dynamics ISMD 2023, Gyöngyös, Hungary, 21–25 August 2023. [Google Scholar]
- Bersons, I.Y. Electron in the quantized field of a monochromatic electromagnetic wave. Zhurnal Éksp. Teor. Fiz. 1969, 56, 1627–1633, English Translation Sov. Phys. JETP 1969, 29, 871–874. [Google Scholar]
- Varró, S. Theoretical Study of the Interaction of Free Electrons with Intense Light. Ph.D. Dissertation, University of Szeged, Szeged, Hungary, 1981. Hung. Phys. J. 1983, 31, 399–454. [Google Scholar]
- Bergou, J.; Varró, S. Nonlinear scattering processes in the presence of a quantized radiation field: I. Nonrelativistic treatment. J. Phys. A Math. Gen. 1981, 14, 1469–1482. [Google Scholar] [CrossRef]
- Bergou, J.; Varró, S. Nonlinear scattering processes in the presence of a quantized radiation field: II. Relativistic treatment. J. Phys. A Math. Gen. 1981, 14, 2281–2303. [Google Scholar] [CrossRef]
- The Royal Swedish Academy of Sciences Has Decided to Award the Nobel Prize in Physics 2023 to Pierre Agostini, Ferenc Krausz and Anne L’Huillier “For Experimental Methods That Generate Attosecond Pulses of Light for the Study of Electron Dynamics in Matter”. Available online: https://www.nobelprize.org/prizes/physics/2023/press-release/ (accessed on 5 October 2023).
- Volkov, D.M. Über eine Klasse von Lösungen der Diracschen Gleichung. Z. Phys. 1935, 94, 250–260. [Google Scholar]
- Varró, S. Quantum optical aspects of high-harmonic generation. Photonics 2021, 8, 269. [Google Scholar] [CrossRef]
- Bjorken, J.D.; Drell, S.D. Relativistic Quantum Mechanics; McGraw-Hill: New York, NY, USA, 1964. [Google Scholar]
- Bloch, F.; Nordsieck, A. Notes on the radiation field of the electron. Phys. Rev. 1937, 52, 54–59. [Google Scholar] [CrossRef]
- Jauch, J.M.; Rohrlich, F. The Theory of Photons and Electrons; 2nd Expanded Edition, Second Corrected Printing 1980; Springer-Verlag: Berlin/Heidelberg, Germany; New York, NY, USA, 1976. [Google Scholar]
- Wentzel, G. New aspects of the photon self-energy problem. Phys. Rev. 1948, 74, 1070–1075. [Google Scholar] [CrossRef]
- Tomonaga, S. On a relativistically invariant formulation of the quantum theory of wave fields. Progr. Theor. Phys. 1946, 1, 27–42, Translated from the paper. Bull. I. P. C. R. (Riken-Iho) 1943, 22, 545, appeared originally in Japanese. [Google Scholar]
- Schwinger, J. Quantum electrodynamics. I. Covariant formulation. Phys. Rev. 1948, 74, 1439–1461. [Google Scholar] [CrossRef]
- Pohl, R.; Antognini, A.; Nez, F.; Amaro, F.D.; Biraben, F.; Cardoso, J.M.R.; Covita, D.S.; Dax, A.; Dhawan, S.; Fernandes, L.M.P.; et al. The size of the proton. Nature 2010, 466, 213–216. [Google Scholar] [CrossRef] [PubMed]
- Trinhammer, O.L.; Bohr, H.G. On proton charge radius definition. EPL 2019, 128, 21001. [Google Scholar] [CrossRef]
- Born, M.; Wolf, E. The Principles of Optics; 7th Expanded, Fifth Printing; Cambridge University Press: Cambridge, UK, 2009. [Google Scholar]
- Anderson, P.W. Plasmons, gauge invariance, and mass. Phys. Rev. 1963, 130, 439–442. [Google Scholar] [CrossRef]
- Jackiw, R. Celebration of Gerry. Phys. Perspect. 2011, 13, 104–109. [Google Scholar] [CrossRef]
- The Royal Swedish Academy of Sciences Has Decided to Award the Nobel Prize in Physics for 2013 to François Englert and Peter W. Higgs “For the Theoretical Discovery of a Mechanism That Contributes to Our Understanding of the Origin of Mass of Subatomic Particles, and Which Recently Was Confirmed through the Discovery of the Predicted Fundamental Particle, by the ATLAS and CMS Experiments at CERN’s Large Hadron Collider”. Available online: https://www.nobelprize.org/uploads/2018/06/advanced-physicsprize2013.pdf (accessed on 3 January 2024).
- Dirac, P.A.M.; Fock, V.A.; Podolsky, B. On quantum electrodynamics. Phys. ZS. Sowietunion 1932, 2, 468–479, reprinted in Schwinger, J. (Ed.) Selected Papers on Quantum Electrodynamics; Dover Publications: New York, NY, USA, 1958; pp. 29–38. [Google Scholar]
- Günther, M. The relativistic configuration space formulation of the multi-electron problem. Phys. Rev. 1952, 88, 1411–1421. [Google Scholar] [CrossRef]
- Nagy, K.L. On the deduction of the Dirac-Fock-Podolsky equations from the quantum theory of fields. Acta Phys. Hung. 1957, 6, 143–147. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Varró, S. Proposal for an Electromagnetic Mass Formula for the X17 Particle. Universe 2024, 10, 86. https://doi.org/10.3390/universe10020086
Varró S. Proposal for an Electromagnetic Mass Formula for the X17 Particle. Universe. 2024; 10(2):86. https://doi.org/10.3390/universe10020086
Chicago/Turabian StyleVarró, Sándor. 2024. "Proposal for an Electromagnetic Mass Formula for the X17 Particle" Universe 10, no. 2: 86. https://doi.org/10.3390/universe10020086
APA StyleVarró, S. (2024). Proposal for an Electromagnetic Mass Formula for the X17 Particle. Universe, 10(2), 86. https://doi.org/10.3390/universe10020086