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Abstract: We introduce a notion of residual diffeomorphism covariance in quantum Kantowski–Sachs
(KS) describing the interior of a Schwarzschild black hole. We solve for the family of Hamiltonian
constraint operators satisfying the associated covariance condition, as well as parity invariance,
preservation of the Bohr Hilbert space of the Loop Quantum KS and a correct (naïve) classical limit.
We further explore the imposition of minimality for the number of terms and compare the solution
with those of other Hamiltonian constraints proposed for the Loop Quantum KS in the literature. In
particular, we discuss a lapse that was recently commonly chosen due to the resulting decoupling of
the evolution of the two degrees of freedom and the exact solubility of the model. We show that such
a choice of lapse can indeed be quantized as an operator that is densely defined on the Bohr Hilbert
space and that any such operator must include an infinite number of shift operators.

Keywords: quantum gravity; diffeomorphisms; black holes

1. Introduction

A central epistemic value in science is that of simplicity —that a theory be derived
uniquely from as few principles as possible. It follows that it is important to eliminate,
as much as possible, ambiguities that are present in a theory through physical principles,
particularly when observational data are scarce.

General relativity is based on background independence, which is equivalent to co-
variance under diffeomorphisms [1]. Guided by this principle, loop quantum gravity (LQG)
is a non-perturbative approach to a quantum theory of gravity [1–6], and loop quantum
cosmology (LQC) models arise from applying quantization techniques analogous to LQG
to symmetry-reduced gravitational models [7–9]. In order to ensure that a given LQC
model faithfully reflects the diffeomorphism covariance of full loop quantum gravity, it is
important for this model to also be diffeomorphism-covariant in some sense, a requirement
that can also serve to reduce ambiguities in its construction. Related prior work along these
lines includes the following:

• Lewandowski, Okolow, Sahlmann, and Thiemann [10] proved that the requirement of
invariance under spatial diffeomorphisms—or, more precisely, the unitary implemen-
tation of the action of the diffeomorphism group—establishes the uniqueness of the
kinematics of LQG.

• For LQC, Ashtekar and Campiglia [11] showed that, in the case of the Bianchi I model,
a unique kinematical representation is achieved through invariance under canonical
and, thus, volume-preserving residual diffeomorphisms, i.e., diffeomorphisms that
are not frozen by the gauge fixing required by symmetry reduction.

• The works [12,13] extended the result to single out the standard kinematical Hilbert
space of the homogeneous isotropic case by also requiring invariance under non-
canonical residual diffeomorphisms.
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• The works [14,15] demonstrated, for the cases of homogeneous isotropic LQC and
Bianchi I models, that a family of dynamics can also be derived from residual dif-
feomorphism covariance, and, if desired, uniqueness can be achieved by requiring
minimality—a form of Occam’s razor requiring the Hamiltonian to have a minimal
number of terms, i.e., a minimal number of shift operators—in addition to a further
assumption of planar loops for the Bianchi I case.

In this work, we investigate the choice of dynamics for the loop quantization of the
Schwarzschild black hole interior described by the Kantowski–Sachs (KS) framework. There
is a wide literature discussing different proposals for such a choice (for instance, [16–26]). Here,
instead of quantizing the Hamiltonian directly, we narrow the possibilities by imposing
physically motivated properties, namely, the following:

• Covariance under residual diffeomorphisms. Looking at how the phase-space vari-
ables flow under the action of the residual diffeomorphisms (Section 3), we formulate
a condition for the covariance of the Hamiltonian, which we quantize, establish-
ing a condition of quantum covariance under such diffeomorphisms. The residual
diffeomorphisms are non-canonical, so this requires novel methods (Section 4).

• Covariance under discrete residual automorphisms of the SU(2) principal fiber bundle
(Section 5).

• The correct (naïve) classical limit (Section 6).

In addition to these basic physical criteria, we also consider the consequences of the
additional criterion of minimality—that the quantum Hamiltonian constraint contains a
minimal number of shift operators (Section 7).

The naïve classical limit, which has been used in all of the LQC and loop quantum
KS literature up until now, corresponds to h̄ → 0, the limit in which the Planck length
ℓP :=

√
Gh̄ goes to zero, or, equivalently, the limit under which the length of curves

regularizing curvature and connection factors in the Hamiltonian constraint goes to zero; in
Section 6.1, we show that this is equivalent to the eigenvalues of extrinsic curvature going
to zero. This is the definition of classical limit used in this paper, as the focus of this study is
not to develop a new one. However, this definition of classical limit is limited because the
truly relevant criterion for the classical regime is that four-dimensional curvature scalars
should go to zero, which can happen even if the eigenvalues of extrinsic curvature do
not. Indeed, in KS, this happens at the horizon, where the latter diverge, while the former
remain small compared to the Planck scale. This is, in fact, the regime in which the model of
Ashtekar, Olmedo, and Singh (AOS) [23,26], as well as the earlier models [21,27], perform
better than all other models, and this is remarked upon in Section 8.3.

In Section 6.3, we present a discussion of a choice of lapse used in the literature that
greatly simplifies the classical and (with further assumptions) effective equations, rendering
them analytically solvable. In particular, we prove that the quantum Hamiltonian operator
resulting from such a choice can be densely defined on the usual Bohr Hilbert space
motivated by loop quantum gravity only with an infinite number of shift operators.

For completeness—and to fix the notation—we start with a background review of the
KS framework and its loop quantum kinematics (Section 2). To finish, we compare our
conclusions with other proposals in the literature (Section 8).

2. Background
2.1. Kantowski–Sachs in Ashtekar–Barbero Variables

The interior region of a Schwarzschild black hole can be foliated in homogeneous
3-manifolds of topology R× S2, which are invariant under the Kantowski–Sachs group
R× SO(3). We introduce standard coordinates (θ, ϕ) on the S2 factor and a coordinate
x on the R factor, as well as a fiducial cell of coordinate length Lo in the non-compact x
direction as an infrared cutoff, to prevent integrations from diverging. The physical results
are required to be independent of this parameter.
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The geometry is characterized by a symmetry-reduced phase space described by two
conjugate pairs of variables (b, pb) and (c, pc), with Poisson brackets

{b, pb} = Gγ , {c, pc} = 2Gγ. (1)

In terms of these, the Ashtekar–Barbero connection and densitized triad are given by

A1
a = −b sin θ∂aϕ , Ea

1 = − pb
L0

ϕa,

A2
a = b∂aθ , Ea

2 =
pb
L0

sin θθa, (2)

A3
a =

c
L0

∂ax + cos θ∂aϕ , Ea
3 = pc sin θxa

where ϕa, θa, and xa denote the coordinate vector fields. The corresponding homogeneous
spacetime metric is given by

ds2 = −N2dτ2 +
p2

b
|pc|L2

0
dx2 + |pc|dΩ2, (3)

which can be identified with the Schwarzschild interior metric

ds2 = −
(

2m
τ

− 1
)−1

dτ2 +

(
2m
τ

− 1
)

dx2 + τ2dΩ2,

for τ < 2m by choosing the lapse and consequent evolution of the momenta to be

|pc| = τ2, p2
b = L2

0

(
2m
τ

− 1
)

τ2, N2 =

(
2m
τ

− 1
)−1

. (4)

Returning now to the case of the general lapse, from Equation (2), one can calculate
the Hamiltonian constraint to be

Hcℓ[N] = − N
2Gγ2

b sgn pc√
|pc|

(
pb

(
b +

γ2

b

)
+ 2cpc

)
, (5)

for an arbitrary lapse N. Letting V = 4π|pb|
√
|pc| denote the physical volume of the

fiducial cell, we choose a family of lapses of the form

N = Vn =

(
4π|pb|

√
|pc|

)n
, (6)

for n > −3. This covers the cases of proper time (n = 0, as in [17,20]) and the harmonic
time gauge (n = 1, as in [19]), among others—for instance, the case n = −1 appears when
considering unimodular gravity [25]. From now on, we will assume this choice of lapse and
simply represent Hcℓ[N] as Hcℓ. There is a choice of lapse prominent in the literature that
does not fall into this family; we discuss this choice in Section 6.3. The restriction n > −3
will be needed in Section 4.2. The classical Hamiltonian constraint (5) then becomes

Hcℓ = − (4π)n|pb|n|pc|
(n−1)

2 b sgn pc

2Gγ2

(
pb

(
b +

γ2

b

)
+ 2cpc

)
= − Vn+1

8πGγ2 sgn pb

(
b2 + γ2

pc
+

2bc
pb

)
. (7)

2.2. Quantum Kinematics

The basic configuration variables with direct quantum analogs in loop quantum
gravity and loop quantizations of symmetry-reduced models are always some class of
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holonomies he[A]. For the Kantowski–Sachs framework, one considers holonomies along
curves parallel to the x axis along x = constant curves that are geodesic with respect to the
two-sphere metric:

hx[A] = exp
(
−i

λc
2

σ3

)
= cos

(
λc
2

)
I− i sin

(
λc
2

)
σ3

hθ [A] = exp
(
−i

µb
2

σ2

)
= cos

(
µb
2

)
I− i sin

(
µb
2

)
σ2 (8)

hϕ[A]|θ= π
2
= exp

(
i
µb
2

σ1

)
= cos

(
µb
2

)
I+ i sin

(
µb
2

)
σ1.

where σi are the Pauli matrices. The matrix elements of these holonomies generate the
algebra of almost-periodic functions, which are composed of elements of the form

f (b, c) =
N

∑
j=1

f je
i
2 (µjb+λjc), (9)

where N is possibly infinite, f j ∈ C, and µj, λj ∈ R. The space of such functions endowed
with—and normalizable with respect to—the inner product〈

e
i
2 (µjb+λjc)

∣∣∣e i
2 (µkb+λkc)

〉
:= lim

L→∞

1
(2L)2

∫
(−L,L)2
e

i
2 (µjb+λjc)e

i
2 (µkb+λkc)dbdc = δ

µk
µj δ

λk
λj

,

is called the Bohr Hilbert space, which is denoted by HBohr and is the space of kinematical
states for the quantum theory. The momenta are quantized as

p̂b = −iγℓ2
P

∂

∂b
, p̂c = −2iγℓ2

P
∂

∂c
, (10)

so that each associated normalized simultaneous eigenstate |pb, pc⟩ has the wavefunction

ψpb ,pc(b, c) = e
i

γℓ2
P
(pbb+ pcc

2 )
. Equation (9) can then also be written as

f (b, c) =
N

∑
j=1

f j|p
j
b, pj

c⟩. (11)

Complex exponentials of b and c then act as shift operators:

eiηb|pj
b, pj

c⟩ = |pj
b + γℓ2

Pη, pj
c⟩ and eiηc|pj

b, pj
c⟩ = |pj

b, pj
c + 2γℓ2

Pη⟩.

3. Residual Diffeomorphisms

The kinematical symmetry group of the Ashtekar–Barbero formulation of gravity is
the group Aut of automorphisms of the SU(2) principle bundle, which is isomorphic to the
semi-direct product of diffeomorphisms of the spatial slice and SU(2) gauge rotations. The
subgroup Aut of Aut preserving the form (2) of the phase-space variables (Ai

a, Ea
i ) yields a

well-defined action on the parameters (b, c, pb, pc) via

φ ▷
(
(Ai

a, Ea
i )(b, c, pb, pc)

)
=: (Ai

a, Ea
i )(φ ▷ (b, c, pb, pc)) (12)

for all φ ∈ Aut. We call the quotient AutR of Aut from the kernel of this action the
group of residual automorphisms in the KS framework. The identity component of AutR
consists of spatial diffeomorphisms; we refer to it as the group of residual diffeomorphisms
for KS and denote it by DiffR. If we let Diff denote the subgroup of Aut consisting of
spatial diffeomorphisms, then DiffR can also be calculated as the quotient of Diff from
the kernel of its action in Equation (12). In the present section, we solve for the group
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DiffR. The remaining discrete elements of AutR, which consist of the parity maps and their
compositions, will be discussed in Section 5.

To solve for DiffR, we first solve for Diff by finding the most general one-parameter
family of diffeomorphisms s 7→ Φs

v⃗, which are generated by some smooth vector field v⃗
and preserve the form of (2), so that

Φs
v⃗ ▷
(
(Ai

a, Ea
i )(b, c, pb, pc)

)
=: (Ai

a, Ea
i )(b(s), c(s), pb(s), pc(s)) (13)

for some set of functions (b(s), c(s), pb(s), pc(s)). Taking the derivative of both sides with
respect to s yields

Lv⃗ Ai
a(s) = Ȧi

a =
∂Ai

a
∂b

ḃ(s) +
∂Ai

a
∂c

ċ(s),

Lv⃗Ea
i (s) = Ėa

i =
∂Ea

i
∂pb

ṗb(s) +
∂Ea

i
∂pc

ṗc(s).
(14)

Note that ḃ, ċ, ṗb, ṗc, like b, c, pb, pc, are constant in space. The set of all v⃗ satisfying these
relations for some ḃ, ċ, ṗb, and ṗc will then generate Diff. We proceed to derive the
consequences of each of these conditions in the most convenient order:

• A2
a:

Lv⃗ A2
a = vb∂b(b∂aθ) + b∂bθ∂avb = b

(
∂vθ

∂x
∂ax +

∂vθ

∂θ
∂aθ +

∂vθ

∂ϕ
∂aϕ

)
,

which must be equal to Ȧ2
a = ḃ∂aθ, yielding

∂vθ

∂x
=

∂vθ

∂ϕ
= 0 and ḃ(s) = b

∂vθ

∂θ
.

Since b and ḃ are constant in space, so is ∂vθ

∂θ , which, together with the first two
equations above, implies vθ = κθθ + ξθ for some κθ , ξθ ∈ R. However, the smoothness
of v⃗ requires that vθ = 0 at θ = 0 and θ = π, forcing κθ = ξθ = 0, whence

vθ ≡ 0 (15)

and

Lv⃗ A2
a = 0. (16)

• A1
a:

Lv⃗ A1
a = vb∂b(−b sin θ∂aϕ)− b sin θ(∂bϕ)∂avb

= −bvb cos θ∂bθ∂aϕ − b sin θ∂avϕ

= −b
(

cos θvθ + sin θ
∂vϕ

∂ϕ

)
∂aϕ − b sin θ

∂vϕ

∂θ
∂aθ − b sin θ

∂vϕ

∂x
∂ax,

which, by Equation (14), must be equal to Ȧ1
a = −ḃ(s) sin θ∂aϕ. This, with Equa-

tion (15), implies

∂vϕ

∂θ
=

∂vϕ

∂x
= 0 and ḃ(s) = b

∂vϕ

∂ϕ
.
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Thus, by the same argument used for vθ , we conclude that vϕ = κϕϕ + ξϕ for some
constants κϕ, ξϕ ∈ R. The smoothness of v⃗ now requires vϕ(ϕ = 0) = vϕ(ϕ = 2π),
forcing κϕ = 0, so that

vϕ = constant =: ξϕ (17)

and

Lv⃗ A1
a = 0. (18)

• A3
a:

Lv⃗ A3
a = vb∂b

(
c

L0
∂ax + cos θ∂aϕ

)
+

(
c

L0
∂bx + cos θ∂bϕ

)
∂avb

= − sin θvθ∂aϕ +
c

L0
∂avx + cos θϕ∂avϕ

=
c

L0

∂vx

∂ϕ
∂aϕ +

c
L0

∂vx

∂θ
∂aθ +

c
L0

∂vx

∂x
∂ax

where, in going from the second to the third line, we used Equations (15) and (17).
Requiring this to be equal to Ȧ3

a = ċ
L0

∂ax then implies

∂vx

∂ϕ
=

∂vx

∂θ
= 0 and ċ = c

∂vx

∂x
.

Since c and ċ are constant in space, the same argument as that used for vθ and vϕ again
applies here, so

vx = κxx + ξx (19)

for some constants κx, ξx ∈ R—this time unconstrained by the smoothness of v⃗—and

Lv⃗ A3
a =

κxc
L0

∂ax. (20)

The restrictions (15) to (19) thereby fix

v⃗ = ξϕϕ⃗ + (ξx + κxx)x⃗, (21)

where ξϕ, ξx, κx are free constant parameters. One can check that the remaining conditions
in Equation (14) are automatically satisfied with no further restrictions on v⃗—explicitly,
from LvEa

i = vc∂cEa
i − Ec

i ∂cva + Ea
i ∂cvc,

LvEa
1 = −κx pb

L0
ϕa, (22)

LvEa
2 =

κx pb
L0

sin θθa, (23)

LvEa
3 = 0. (24)

Therefore,
{

ϕ⃗, x⃗, xx⃗
}

is a basis of the vector fields generating Diff. Note that the resulting
flows—Equations (16), (18), (20), and (22)–(24)—depend only on κx and not on ξx or ξϕ.
The reason is easily found to be from the significance of the corresponding vector fields:

• ϕ⃗ generates part of the spherical symmetry manifest in Schwarzschild. The other
two spatial rotations are not manifest here as symmetries because we are looking at
symmetries of (Ai

a, Ea
i )—full spherical symmetry can be imposed on (Ai

a, Ea
i ) at most

up to SU(2) gauge rotations and is manifest only in SU(2)-gauge-invariant structures
constructed from them, such as the 3-metric (3).
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• x⃗ generates translations in x, which corresponds to t in the usual form of the
Schwarzschild solution, so this symmetry corresponds to the t-translation symmetry
in Schwarzschild.

• xx⃗ generates something more interesting: An exponential flow in the x direction, and
the only flow with non-trivial action on (Ai

a, Ea
i ).

Thus, the kernel K of the action of Diff on (Ai
a, Ea

i ) is generated by ϕ⃗ and x⃗, so the
group of residual diffeomorphisms DiffR := Diff/K is one-dimensional and parameterized
by κx. Rescaling v⃗ in Equation (21) is equivalent to rescaling the parameter time s for the
flow generated so that we can, without loss of generality, take κx = 1. With this choice, the
resulting flow of the phase-space variables (b, pb, c, pc) is given by

ḃ = 0, ṗb = pb, ċ = c, ṗc = 0. (25)

The volume of the fiducial cell then flows as V̇ = 4π ˙|pb|
√
|pc| = 4π|pb|

√
|pc| = V, and,

hence, the flow of the Hamiltonian constraint is of the form

Ḣcℓ = (n + 1)Hcℓ. (26)

4. Covariance Equation
4.1. Strategy

Classically, the flow of a phase-space function F under a family of canonical transfor-
mations generated by phase-space function Λ is given by

Ḟ = {Λ, F}. (27)

The standard quantization procedure then turns functions into operators and Poisson
brackets into commutators, yielding the following evolution with respect to the flow
parameter s:

Ḟ =
1
ih̄
[
Λ̂, F̂

]
⇒ F̂(s) = e

s
ih̄ Λ̂ F̂(0)e−

s
ih̄ Λ̂.

The residual diffeomorphism flow in Kantowski–Sachs, however, does not preserve Poisson
brackets and, thus, is non-canonical. As we shall now prove, however, the flow can be cast
in a form related to Equation (27),

Ḟ = ω1(b, pb){Λ1(b, pb), F}+ ω2(c, pc){Λ2(c, pc), F}. (28)

Substituting this form into Equation (25) for the residual diffeomorphisms’ flow yields

0 = −γGω1
∂Λ1

∂pb
, pb = γGω1

∂Λ1

∂b
, c = −2γGω2

∂Λ2

∂pc
, 0 = 2γGω2

∂Λ2

∂c
.

The first and last equations tell us that Λ1 = Λ1(b) and Λ2 = Λ2(pc) are each a function
of only one variable. The remaining equations then determine ω1 and ω2 in terms of Λ1
and Λ2,

ω1(b, pb) =
pb

γG ∂Λ1(b)
∂b

, ω2(c, pc) = − c

2γG ∂Λ2(pc)
∂pc

.

Therefore, the only free parameters are Λ1(b) and Λ2(pc), with a restriction that their first
derivatives do not vanish, except possibly on a set of measure zero. Arguably, the simplest
choice is to make Λ1(b) and Λ2(pc) proportional to b and pc, respectively. The choice of
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proportionality constant does not affect the final quantum covariance condition, so, without
loss of generality, we set

Λ1 = b ⇒ ω1 =
pb

γG
.

Λ2 = pc ⇒ ω2 = − c
2γG

. (29)

With this choice, Equation (26) takes the form

Ḣcℓ =
pb

γG
{b, Hcℓ} −

c
2γG

{pc, Hcℓ} = (n + 1)Hcℓ. (30)

It is Equation (30) that we will quantize to obtain a quantum covariance condition
on the constraint operator Ĥ. Since b and c appear directly in this equation without
exponentiation and since b̂ and ĉ are not well defined on the Bohr Hilbert space arising
from loop quantization (as reviewed in Section 2.2), we first find the general solution to
this equation in the standard Schrödinger representation, with a subsequent imposition of
preservation of the Bohr Hilbert space.

4.2. Quantization in the Schrödinger Representation and General Solution for the Matrix Elements

We follow the standard quantization procedure, choosing the Weyl ordering for quan-
tizing products, Â ⋆ B̂ := 1

2
(

ÂB̂ + B̂Â
)
, yielding

(n + 1)Ĥ =
1
ih̄
(
ω̂1 ⋆

[
Λ̂1, Ĥ

]
+ ω̂2 ⋆

[
Λ̂2, Ĥ

])
=

1
2iγℓ2

P

(
p̂b

[
b̂, Ĥ

]
+
[
b̂, Ĥ

]
p̂b

)
− 1

4iγℓ2
P

(
ĉ
[
p̂c, Ĥ

]
+
[
p̂c, Ĥ

]
ĉ
)
. (31)

From Section 2.2, for kets, bras, and inner products in the Bohr representation, we use
no subscript. For kets, bras, and inner products in the Schrödinger representation, we use
the subscript S:

⟨ψ, ϕ⟩S :=
∫

ψ(b, c)ϕ(b, c)db dc.

Given a function ϕ(b, c), its interpretation as a quantum state is independent of whether one
uses the Schrödinger or Bohr representations, so |ϕ⟩ = |ϕ⟩S , whereas its interpretation as a
linear functional on states depends on the inner product, so ⟨ϕ| ̸= S⟨ϕ|. The strategy is to
recast Equation (31) in terms of the matrix elements of Ĥ in the Schrödinger representation
on the |p′b, p′c⟩S = |p′b, p′c⟩ basis, where the action of the position operators is given by

S⟨p′b, p′c|b̂ = iγℓ2
P

∂

∂p′b
S⟨p′b, p′c|

S⟨p′b, p′c|ĉ = 2iγℓ2
P

∂

∂p′c S⟨p′b, p′c|,

and their conjugates. We have
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(n + 1) S⟨p′′b , p′′c |Ĥ|p′b, p′c⟩S =
1

2iγℓ2
P S

〈
p′′b , p′′c

∣∣∣ p̂b b̂Ĥ − p̂bĤb̂ + b̂Ĥ p̂b − Ĥb̂p̂b

∣∣∣p′b, p′c
〉

S

− 1
4iγℓ2

P S

〈
p′′b , p′′c

∣∣ĉ p̂cĤ − ĉĤ p̂c + p̂cĤĉ − Ĥ p̂c ĉ
∣∣p′b, p′c

〉
S

=
1
2

(
p′′b

∂

∂p′′b
− p′′b

(
− ∂

∂p′b

)
+

∂

∂p′′b
p′b − p′b

(
− ∂

∂p′b

))
S⟨p′′b , p′′c |Ĥ|p′b, p′c⟩S

− 1
2

(
∂

∂p′′c
p′′c − ∂

∂p′′c
p′c + p′′c

(
− ∂

∂p′c

)
−
(
− ∂

∂p′c

)
p′c

)
S⟨p′′b , p′′c |Ĥ|p′b, p′c⟩S

=

(
1
2
(

p′b + p′′b
)( ∂

∂p′b
+

∂

∂p′′b

)
− 1

2
(

p′′c − p′c
)( ∂

∂p′′c
− ∂

∂p′c

)
− 1
)

S⟨p′′b , p′′c |Ĥ|p′b, p′c⟩S . (32)

Making the change of variables

ub = p′b + p′′b , vb = p′′b − p′b
uc = p′c + p′′c , vc = p′′c − p′c

and defining

f (ub, vb, uc, vc) := S⟨p′′b , p′′c |Ĥ|p′b, p′c⟩S ,

this becomes (
ub

∂

∂ub
− vc

∂

∂vc

)
f (ub, vb, uc, vc) = (n + 2) f (ub, vb, uc, vc). (33)

Now, for a general path (ub(s), vb(s), uc(s), vc(s)) in the parameter space, we have

d f
ds

=
∂ f
∂ub

dub
ds

+
∂ f
∂vb

dvb
ds

+
∂ f
∂uc

duc

ds
+

∂ f
∂vc

dvc

ds
.

As long as the chosen path satisfies dub
ds = ub, duc

ds , dvb
ds = 0, and dvc

ds = −vc, which is
equivalent to

ub(s) = Cbes, for some Cb ∈ R,

vc(s) = Cce−s, for some Cc ∈ R, and

uc, vb ∈ R, constant,

then Equation (33) then simplifies to

d f
ds

= (n + 2) f

with the general solution

f = Ce(n+2)s.

That is, for all Cb, vb, uc, Cc ∈ R, there exists some real C(Cb, vb, uc, Cc) ∈ R such that

f (Cbes, vb, uc, Cce−s) = C(Cb, vb, uc, Cc)e(n+2)s (34)

for all s ∈ R. In particular, for s = − ln |Cb|, this becomes

f (sgn(Cb), vb, uc, Cc|Cb|) = C(Cb, vb, uc, Cc)|Cb|−(n+2).
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Using this to eliminate C(Cb, vb, uc, Cc) from Equation (34) and letting ub := Cbes and
vc := Cce−s, we obtain

f (ub, vb, uc, vc) = Csgn(ub)
(vb, uc, vc|ub|)|ub|n+2, (35)

where we have defined

Cσ(vb, uc, w) := f (σ, vb, uc, w).

Using the fact that we have assumed n > −3, one can check that Equation (35) satisfies
Equation (33) with no further restriction. That is, from Equation (35), the general solution
to Equation (32) is

S⟨p′′b , p′′c |Ĥ|p′b, p′c⟩S = Csgn(p′′b +p′b)
(

p′′b − p′b, p′′c + p′c, |p′′b + p′b|(p′′c − p′c)
)
|p′′b + p′b|

n+2 (36)

with Cσ(vb, uc, w) beingarbitrary and real.

4.3. Operator Form of the Solution

From Equation (36), the action of Ĥ on an arbitrary state |p′b, p′c⟩ = |p′b, p′c⟩S is

Ĥ|p′b, p′c⟩ =
∫

|p′′b , p′′c ⟩S S⟨p′′b , p′′c |Ĥ|p′b, p′c⟩dp′′b dp′′c

=
∫

Csgn(p′′b +p′b)
(

p′′b − p′b, p′′c + p′c, |p′′b + p′b|(p′′c − p′c)
)
|p′′b + p′b|

n+2|p′′b p′′c ⟩dp′′b dp′′c . (37)

We define the new variables A and B by

p′′b = p′b + (p′′b − p′b) =: p′b + γℓ2
P A

p′′c = p′c +
1
2 |p′b + p′′b |(p′′c − p′c)

|p′b +
1
2 (p′′b − p′b)|

=: p′c +
4γℓ4

PB
|p′b +

1
2 γℓ2

P A|
. (38)

A and B are then given explicitly by

A =
p′′b − p′b

γℓ2
P

(39)

B =
|p′′b + p′b|(p′′c − p′c)

8γℓ4
P

. (40)

The reason for this definition will be clear in further steps. Performing the change of
variables from (p′′b , p′′c ) to (A, B) in the integral Equation (37) gives

Ĥ|p′b, p′c⟩ =
∫

C′
sgn(2p′b+γℓ2

P A)

(
A, 2p′c +

4γℓ4
PB

|p′b +
1
2 γℓ2

P A|
, B

)
|2p′b + γℓ2

P A|n+1·

·
∣∣∣∣∣p′b + γℓ2

P A, p′c +
4γℓ4

PB
|p′b +

1
2 γℓ2

P A|

〉
dAdB (41)

where C′
σ(A, uc, B) := 8γ2ℓ2

PCσ(γℓ2
P A, uc, 8γℓ4

PB). This result can then be written by using
the action of shift operators as

Ĥ|p′b, p′c⟩ =(∫
e

iA
2 b̂e

iB
2

ĉ
| p̂b | | p̂b|n+1α(A, B, p̂c, sgn pb)e

iB
2

ĉ
| p̂b | e

iA
2 b̂dAdB

)
|p′b, p′c⟩ (42)
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for α : R3 × {±1} → C, which is an unconstrained parameter function related to C′. If we
define the following quantization prescription for any function f (pb, pc),

f (pb, pc)e
i
(

Ab+B c
|pb |

)∧
:= e

iA
2 b̂e

iB
2

ĉ
| p̂b | f ( p̂b, p̂c)e

iB
2

ĉ
| p̂b | e

iA
2 b̂, (43)

then the Hamiltonian constraint operator takes the form

Ĥ =
∫

|pb|n+1α(A, B, pc, sgn pb)e
i
(

Ab+B c
|pb |

)∧
dAdB. (44)

4.4. Preservation of the Bohr Hilbert Space

In Section 4.2, we worked in the Schrödinger representation of the quantum algebra of
kinematical observables. However, the representation descending from full loop quantum
gravity—and in the simpler isotropic case selected by residual diffeomorphism covari-
ance [12,13]—is the representation on the Bohr Hilbert space. In order to ensure that the
operator Ĥ is well defined on this Hilbert space, it must keep at least a subset of it dense
with respect to its inner product. More precisely, we require that Ĥ maps at least one finite
linear combination of momentum eigenstates back into the Bohr Hilbert space so that, in
particular, for any p′′b , p′′c , there is at most countable p′b, p′c such that the matrix elements
Equation (36) are non-zero. This will be true if and only if the function α appearing in
Equation (44) is an at most countable sum of Dirac delta functions over the integration
variables A, B,

α(A, B, pc, sgn pb) = ∑
k

αk(pc, sgn pb)δ(A − Ak(pc))δ(B − Bk(pc)) (45)

where the peaks of the Dirac delta functions are allowed to depend on the third continuous
parameter, pc. The Hamiltonian operator then takes the form

Ĥ = ∑
k
|pb|n+1αk(pc, sgn pb)e

i
(

Ak(pc)b+Bk(pc)
c

|pb |

)∧
. (46)

5. Discrete Symmetries

The form (46) for the quantum Hamiltonian is the most general that is covariant
under the one-parameter family of residual diffeomorphisms. The remaining discrete
residual automorphisms of the SU(2) principal bundle are parity maps that preserve the
Poisson brackets of the classical theory and so correspond to unitary transformations in the
quantum theory. Explicitly,

‘b-parity’ Πb : (b, pb) 7→ (−b,−pb) is equivalent to an internal gauge rotation of π

around the 3-axis, with the corresponding quantum map being given by Π̂b|p′b, p′c⟩ :=
| − p′b, p′c⟩.
‘c-parity’ Πc : (c, pc) 7→ (−c,−pc) is equivalent to the action of the antipodal map
(θ, ϕ) 7→ (π − θ, ϕ + π) as a diffeomorphism combined with internal parity along the
3-axis, with the corresponding quantum map being given by Π̂b|p′b, p′c⟩ := | − p′b, p′c⟩.
The classical Hamiltonian Hcℓ is odd under both of these parities, so we likewise

impose that the quantum Hamiltonian Ĥ be odd under conjugation by the corresponding
unitary operators. This, together with the condition that Ĥ be invariant under Hermitian
conjugation, makes up the discrete symmetries to impose on Ĥ.

We define the classical analog of the operator Ĥ in Equation (46) to be its preimage
under our quantization map, namely,

H = ∑
k
|pb|n+1αk(pc, sgn pb)e

i
(

Ak(pc)b+Bk(pc)
c

|pb |

)
. (47)
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It is somewhat remarkable and convenient that our quantization map Equation (43), which
was naturally suggested by the solution to the quantum residual diffeomorphism covari-
ance condition, additionally (1.) intertwines complex conjugation and Hermitian conju-
gation (Ĥ† = ˆ̄H) and (2.) is covariant with respect to the parity maps (Π̂bĤΠ̂b = Π∗

b H
∧

,
Π̂c ĤΠ̂c = Π∗

c H
∧

). As a consequence, imposing that Ĥ be Hermitian and covariant under
the quantum parity maps is equivalent to imposing that the classical analog H Equation (47)
be real and covariant under the classical parity maps. The most general such H can always
be cast in the form

H =|pb|n+1 sgn(pb pc)a0(pc) + |pb|n+1
M

∑
k=1

(
αk(pc, sgn pb)e

i
(

Ak(pc)b+Bk(pc)
c

|pb |

)

− ((b, pb)7→(−b,−pb)) − ((c, pc)7→(−c,−pc)) + c.c.
)

(48)

where the sum is over integers from 1 to M with M being possibly infinite, a0(pc) is even
and real, (b, pb) 7→ (−b,−pb) denotes the foregoing terms in the large parentheses with the
indicated replacement, (c, pc) 7→ (−c,−pc) does so as well, and c.c. denotes the complex
conjugate of the foregoing terms, so the number of terms in the large parentheses is eight.
Note that, compared to the form (47), the terms above have been relabeled so that each
label k > 0 corresponds to eight terms for convenience.

Metric Loop Assumption

As discussed in Section 2.2, the functions of the connection with direct quantum
analogs are parallel transports along paths. The Hamiltonian constraint is linear in the
curvature of the connection, which must, therefore, be quantized by first regularizing the
curvature in terms of holonomies around loops. In minisuperspace quantizations such
as the present one, the limit in which these loops approach a point is taken by choosing
the loops so that they enclose an area equal to the minimal non-zero eigenvalue ∆ of the
area operator in full loop quantum gravity. As a consequence, the choice of loops depends
on the triad; however, more specifically, it depends on the metric determined by the triad.
Thus, in the resulting expression for the holonomies and, hence, the regularized constraint,
the coefficients Ak(pc) and Bk(pc) of the connection components must be even. We call
this assumption the metric loop assumption. The consequent symmetry of the coefficients
Ak(pc) and Bk(pc) is the final discrete symmetry that we consider.

With this assumption, it becomes convenient to decompose each coefficient αk(pc, sgn pb)
into its even and odd parts in each argument, as well as into its real and imaginary parts,

αk(pc, sgn pb) =:
1
8

((
ak(pc) + iãk(pc)

)
sgn(pb pc)−

(
b̃k(pc) + ibk(pc)

)
sgn pb

−
(

c̃k(pc) + ick(pc)
)

sgn pc − dk(pc)− id̃k(pc)

)
, (49)

with ak, ãk, bk, b̃k, ck, c̃k, dk, d̃k being real and even functions of pc. The terms in the summand
in Equation (48) then reduce to only four terms involving sines and cosines, yielding the
following more explicit form:

H =|pb|n+1a0 sgn(pb pc) + |pb|n+1
M

∑
k=1

(
ak sgn(pb pc) cos(Akb) cos

(
Bk

c
|pb|

)
+ bk sgn(pb) cos(Akb) sin

(
Bk

c
|pb|

)
+ ck sgn(pc) sin(Akb) cos

(
Bk

c
|pb|

)
+ dk sin(Akb) sin

(
Bk

c
|pb|

))
(50)

with ak, bk, ck, dk, Ak, Bk (thus far arbitrary) being even functions of pc alone.
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6. Classical Asymptotic Behavior
6.1. Naïve Classical Limit and the Limit of Low Curvature

The standard way to define the classical limit (and, indeed, the only one used in
the LQC and loop quantum KS literature so far) is to take the limit as the arguments
of the exponentials (or sines) go to zero, which is related to an ℓP → 0 limit of such
arguments [18–20,22,23,28,29]. This limit is in fact equivalent to the limit in which the eigen-
values of extrinsic curvature go to zero. To see this, from Equation (2), one can calculate

K b
a =

b
γ sgn(pb)

√
|pc|

∂aϕϕb +
b

γ sgn(pb)
√
|pc|

∂aθθb +

√
|pc|c

γ sgn(pc)|pb|
∂axxb,

from which one can read off the eigenvalues of the extrinsic curvature, the limit of whose
vanishing is then equivalent to the simultaneous limit

b :=
b√
|pc|

→ 0 and c :=

√
|pc|c
|pb|

→ 0, (51)

which, for fixed pc, is equivalent to the vanishing of the arguments of the sines and cosines
in Equation (50). As this is equivalent to the definition of the classical limit in all of the prior
LQC and loop quantum KS literature, and as the focus of this study is on the consequences
of residual diffeomorphism covariance and not the development of a new condition for
imposing the classical limit, this is the definition that we use here as well.

However, we would like to point out that this condition is not sufficient because
the true regime in which the correct classical limit should be imposed is that of small
four-dimensional curvature scalars, a condition that can be satisfied without the extrinsic
curvature being small. Indeed, this is what happens at the horizon in Kantowski–Sachs:
The eigenvalues of the extrinsic curvature diverge, while the four-dimensional curvature
scalars remain small compared to the Planck scale. In fact, we believe that this is the reason
why, up to now, µ-schemes have failed to have the correct classical limit at the horizon,
something that the models [21,23,26,27] improve upon and that we remark upon further in
Section 8.3.

Adapting to the limit in Equation (51), one can rewrite the effective Hamiltonian
Equation (50) in terms of bc by replacing

Akb 7→
√
|pc|Akb and Bk

c
|pb|

7→ 1√
|pc|

Bkc.

The classical limit is then obtained by considering the leading terms in the asymptotic
expansion in the limit (b, c) → (0, 0).

6.2. Equations for Correct Asymptotic Behavior in the Naïve Classical Limit

When comparing the expanded Hamiltonian with Equation (5), one should ask which
terms are relevant to contribute to Hcℓ and which are subdominant. The classical Hamilto-
nian has the form Hcℓ = A · 1 + Bb2 + Cbc, and the relevance or subdominance relative to
each component must be checked separately. Specifically, for given n, m, if

lim
(b,c)→(0,0)

bncm

1
= lim

(b,c)→(0,0)

bncm

b2 = lim
(b,c)→(0,0)

bncm

bc
= 0,

independently of how the limit is taken, then bncm is subdominant to each term in Hcl in
the classical limit; otherwise, we call the term relevant and require the coefficients to match
the corresponding ones in Hcℓ. In particular,
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O(1) : lim
(b,c)→(0,0)

1
1
= 1 ⇒ Relevant

O(b) : lim
(b,c)→(0,0)

b

b2 = ±∞ ⇒ Relevant

O(c) : lim
(b,c)→(0,0)

c

bc
= ±∞ ⇒ Relevant

O(bc) : lim
(b,c)→(0,0)

bc

bc
= 1 ⇒ Relevant

O(b2) : lim
(b,c)→(0,0)

b2

bc
= lim

(b,c)→(0,0)

b

c
= indefinite ⇒ Relevant

O(c2) : lim
(b,c)→(0,0)

c2

bc
= lim

(b,c)→(0,0)

c

b
= indefinite ⇒ Relevant

O(b2c) : lim
(b,c)→(0,0)

b2c

1
= lim

(b,c)→(0,0)

b2c

b2 = lim
(b,c)→(0,0)

b2c

bc
= 0 ⇒ Subdominant

Every other term of higher order will again be subdominant relative to the terms in Hcℓ.
Therefore, the terms relevant for the classical asymptotic behavior are those proportional to
the constant: b, c, bc, b2, and c2.

Calling Λ = (4π)n

2Gγ2 for simplicity, we obtain the following system of equations enforcing
the correct (naïve) classical limit:

O(1) : − Λγ2|pc|
n−1

2 = a0 +
M

∑
k=1

ak

O(b) : 0 =
M

∑
k=1

ck Ak

O(c) : 0 =
M

∑
k=1

bkBk

O(bc) : − 2Λ|pc|
n+1

2 =
M

∑
k=1

dk AkBk

O(b2) : 2Λ|pc|
n−1

2 =
M

∑
k=1

ak A2
k

O(c2) : 0 =
M

∑
k=1

akB2
k

(52)

6.3. Choice of Lapse

With the notion of the classical limit that was made precise above, it is natural at this
point to remark on why we have not included a certain common and usually convenient
choice of lapse in our derivations. Classically, this choice of lapse, which decouples the
dynamics in the (b, pb), (c, pc) parts, is

N =
γ

b
sgn (pc)

√
|pc|, (53)

resulting in

Hcℓ[N] = − 1
2Gγ

(
pb

(
b +

γ2

b

)
+ 2cpc

)
= Hb[Ncℓ] + Hc[Ncℓ]. (54)
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As convenient as this choice of lapse is, the presence of the 1/b factor complicates the
definition of a corresponding operator on the Bohr Hilbert space.

Polymerized versions of Equation (54) have indeed been introduced in recent works,
yielding effective Hamiltonians that keep the decoupling property [21,23,26]. In [21], for
example, this is achieved by replacing 1/b with the function

f (b) =
δb

sin(δbb)
(55)

where δb is a constant, µ. (In [23,26], the same substitution is made, but with δb depending
on both b and pb—see Section 8.3.) As required, this is asymptotically equal to 1/b in the
classical limit b → 0. Though [21] introduces an operator on the Bohr Hilbert space, it
is only for the bare Hamiltonian constraint without a lapse (that is, for a lapse equal to
1)—polymerization of the lapse is only presented in the effective Hamiltonian. In [23], in
the note at the end of Appendix A, a strategy is suggested for the construction of a fully
quantum Hamiltonian operator but is not carried out.

Nevertheless, as a multiplicative operator, one can in fact show that Equation (55) is
densely defined on HBohr. For example, if we choose the domain D := sin(µb)HBohr, one
can check that

lim
ϵ→0

∣∣∣∣∣
∣∣∣∣∣eiµb − eiµb sin(µb)

iϵ + sin(µb)

∣∣∣∣∣
∣∣∣∣∣
Bohr

= 0, (56)

so that each element eiµb of the momentum basis of HBohr is the limit of a corresponding

family ϕϵ
µ(b) := eiµb sin(µb)

iϵ+sin(µb) in D, showing that D is dense in HBohr.
That being said, central to analyses of loop quantizations of symmetry-reduced models

is the momentum representation, in which every operator takes the form of a countable
linear combination of shift operators with possibly non-constant coefficients. To cast the
multiplicative operator f (b) in this form requires its Fourier decomposition, which, since
it is periodic, is a series. Since, over a period, f (b) is not square-integrable and, thus, not
absolutely integrable, its Fourier series decomposition exists only in the distributional sense,
with an infinite number of non-zero terms. Explicitly, if we interpret it as the distribution
defined by its Cauchy principal value, since it is odd, its Fourier series decomposition
includes only sine terms, with coefficients given by

bn :=
2µ2

π

∫ π/µ

0

sin(nµb)
sin(µb)

db =

{
2µ for n odd
0 for n even

, (57)

yielding the Fourier series

∞

∑
n=1

bn sin(nµb) = 2µ lim
M→∞

M

∑
m=1

sin((2m + 1)µb)

= 2 f (b) lim
M→∞

sin2((M + 1)µb) (58)

which converges to f (b) in the distributional sense.
Note, however, that one could also quantize 1/b as any periodic function asymptotic

to 1/b as b → 0. Any such function will again not be square integrable over a period and
so will possess an infinite number of terms in its Fourier expansion. Furthermore, for a
large class of such functions, an argument similar to that above can be used to show that
it is densely defined on HBohr—for example, if the function’s absolute value is bounded
by
∣∣∣ A

sin(µb)

∣∣∣ for some A and µ, the argument follows from the above argument for µ
sin(µb) .

Thus, there is actually an infinite-dimensional ambiguity in how to quantize 1/b on the
Bohr Hilbert space: 1̂

b = µ
sin µb is not the only possible one. To avoid infinite-dimensional

ambiguities such as this, we choose to restrict consideration to Hamiltonian operators with
only a finite number of shift operators, thereby excluding lapses with dependence on 1/b.
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In the following section, we will consider the even more restrictive requirement that the
number of terms in the Hamiltonian operator be minimal.

For other recent works exploring Hamiltonian constraint operators with different
lapse functions, see, for example, [30–33].

7. Minimality

Following the motivation of [15], we consider a further requirement: that the Hamil-
tonian has a minimum number of terms, i.e., a minimum number of shift exponentials
consistent with the other requirements imposed. We achieve this by finding the solution
of Equation (52) for which the maximal number of coefficients can be set equal to zero.
From O(b) and O(c), this immediately implies that bk = ck = 0, reducing the system of
equations to

O(1) : − Λγ2|pc|
n−1

2 = a0 +
M

∑
k=1

ak

O(bc) : − 2Λ|pc|
n+1

2 =
M

∑
k=1

dk AkBk

O(b2) : 2Λ|pc|
n−1

2 =
M

∑
k=1

ak A2
k

O(c2) : 0 =
M

∑
k=1

akB2
k

(59)

The case M = 1 is trivially ruled out, since the last equation would require a1 = 0 or B1 = 0,
which would be inconsistent with the other equations. Choosing M = 2, we first look at
O(c2) :

a1B2
1 + a2B2

2 = 0.

Since we cannot have both a1 and a2 equal to zero (because of the O(b2) equation), then,
if we set a1 = 0, we automatically must have B2 = 0. d2 then appears nowhere in
the remaining equations, so minimality forces d2 = 0. The solution for the remaining
parameters is then

a2 =
2Λ|pc|

n−1
2

A2
2

, d1 = −2Λ|pc|
n+1

2

A1B1
, ao = −Λ|pc|

n−1
2

(
γ2 +

2
A2

2

)

for A1, A2, B1 real functions of |pc| non-vanishing for |pc| ̸= 0, but otherwise arbitrary.
The minimal Hamiltonian can then be written as

H = −Λ|pb|n+1|pc|
n−1

2 sgn(pb pc)

(γ2 +
2

A2
2

)
+ 2|pc| sgn(pb pc)

sin(A1b)
A1

sin
(

B1
c

|pb |

)
B1

− 2
cos(A2b)

A2
2


= −Vn+1 sgn(b)

8πGγ2 pc

γ2 + 2pc sgn pb
sin(A1b)

A1

sin
(

B1
c

|pb |

)
B1

+
4 sin2

(
A2
2 b
)

A2
2

, (60)
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and, using Equation (43), the full Hamiltonian operator becomes

8πGγ2Ĥ =
V̂(n+1) sgn(pb)

− p̂c

(
γ2 +

2
A2

2

)

+ e
iA1b

2 e
iB1c
2|pb |

V̂(n+1)

2A1B1
e

iB1c
2|pb | e

iA1b
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A2
2 pc

e
−iA2b

2 . (61)

8. Comparison with Prescriptions in the Literature

Most proposals for a Hamiltonian in loop quantum Kantowski–Sachs are only for
an effective Hamiltonian from which physical predictions can be made [18–20,23–25,34],
while a few others seek to build a full Hamiltonian operator [16,17,21,25]. While comparing
full Hamiltonian operators may be harder, due to possible differences in the operators’
ordering, it is easy to verify whether a proposed effective Hamiltonian matches one of the
selected solutions Equation (50) (and whether it is minimal).

What distinguishes each approach to KS is the prescription for quantizing the curva-
ture and connection factors in the Hamiltonian constraint—specifically, how the curves
used to regularize these factors are determined by the edges, coordinates, or metric of the
fiducial cell in terms of the smallest non-zero area eigenvalue ∆. The coordinate lengths
of the components of these curves are what determine the coefficients of the connection
components in the exponentials appearing in the final effective Hamiltonian constraint.
From the form (46), we see that diffeomorphism covariance forces some of these coefficients
to be non-constant—specifically, the coefficient of c must depend inversely on pb, a fact
that can be seen more directly from the flows in Equation (25). µ0-schemes [16–18,21,34]
for which all such coordinate edge lengths are constant are, thus, excluded by covariance.
Instead, covariance points towards some sort of µ̄-scheme, as in [19,20]. In the first two
subsections below, we specify the relation of such proposals to our results. In the last two
subsections, we then discuss other proposals in the literature with non-constant coordinate
edge lengths.

8.1. n = 0: Proper Time Case

If we take N = 1—which is equivalent to n = 0 in the lapse Equation (6)—A1 =
√

∆
|pc | ,

A2 = 2A1, and B1 =
√
|pc|∆, we obtain

H = −|pb|
√
|pc|

2Gγ2∆

(
γ2∆
|pc|

+ 2 sin

(√
∆
|pc|

b

)
sin
(√

|pc|∆
c

|pb|

)
+ sin2

(√
∆
|pc|

b

))
, (62)

which matches the results obtained by Joe and Singh in [20] and Cortez, Cuervo, Morales-
Técotl and Ruelas in [22] for pb, pc > 0.

8.2. n = 1: Harmonic Time Gauge

For n = 1, with the same assumptions and restrictions as above, we find

H = −
2πp2

b pc

Gγ2∆

(
γ2∆
pc

+ 2 sin

(√
∆
pc

b

)
sin
(√

pc∆
c
pb

)
+ sin2

(√
∆
pc

b

))
, (63)

matching the result obtained by Chiou in [19].
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8.3. AOS Prescription

Differently from the above cases is what was recently introduced by Ashtekar, Olmedo,
and Singh (AOS) [23,26]. As usual, when constructing the Hamiltonian for loop quantum
Kantowski–Sachs, they begin by regularizing the curvature in terms of parallel trans-
ports around finite loops, with edges in the x-direction with coordinate lengths Loδc and
edges within x =constant surfaces along geodesics of the fiducial unit sphere metric
dΩ2 = dθ2 + sin2 θdϕ2 with (dimensionless) ‘lengths’ 2πδb relative to dΩ2. The key require-
ments in this model are the following:

1. (as in [21,27]) δb and δc are Dirac observables—i.e., are constant on dynamical
trajectories;

2. at the transition surface that replaces the classical singularity, the regularizing loops
enclose a physical area equal to the area gap ∆ when the Hamiltonian constraint is
satisfied.

In the resulting effective model, the expansion and shear diverge at the horizon, just as
in classical general relativity, so the model matches general relativity in this regime, exactly
as it should. This is a major advantage of AOS over the µ-schemes introduced so far, an
advantage shared by [21,27], suggesting that it is the first of the above requirements that
ensures this. In contrast to [21,27], the AOS model further ensures, as in the µ-schemes, that
the transition surface always occurs in a regime where quantum gravity effects are expected
to be relevant, namely, when the Kretschmann scalar is on the order of the Planck scale.
In addition to these advantages that no other model simultaneously shares, the authors
of [23,26] extended their analysis to the exterior of the black hole and explored the global
structure of the resulting maximally extended effective space-time. It is, thus, the most
well-developed and physically viable model proposed so far in the literature.

Conditions 1. and 2. still leave considerable freedom in the definitions of δb and δc,
and there is also freedom in the choice of lapse. The authors choose to use these freedoms
in order to decouple the dynamics of the (b, pb) and (c, pc) degrees of freedom, allowing
for exact analytic solutions to the effective equations. Specifically, the lapse Equation (53)
is the choice made by AOS. With this choice, the regularized effective Hamiltonian con-
straint becomes

H = − 1
2Gγ

[(
sin(δbb)

δb
+

γ2δb
sin(δbb)

)
pb + 2

sin(δcc)
c

pc

]
. (64)

In order for this effective Hamiltonian to retain the decoupling of the b and c degrees of
freedom in the classical theory, they further require that

δb depend only on (b, pb) and δc only on (c, pc). (65)

As convenient as it is to have an exactly soluble model, the choice of lapse and the conditions
in Equation (65), respectively, come at the cost of (a.) the corresponding Hamiltonian
constraint operator having an infinite number of shift terms if implemented on the usual
Bohr Hilbert space motivated by loop quantum gravity and (b.) the effective Hamiltonian
constraint not being covariant under residual diffeomorphisms. That the corresponding
operator on the Bohr Hilbert space must have an infinite number of shift operators follows
from our discussion in Section 6.3.

To see (b.), we must be more explicit. Concretely, in AOS, in the large-mass limit, one
can understand δb(b, pb) as being obtained as the solution of the transcendental system
of two equations consisting of the first equation in each of (2.12) and (2.13) in [26], and
δc(c, pc) is obtained as the solution of the system consisting of the second equation in each
of these. By using (2.13) to eliminate mb in (2.12), one sees that not only can δb depends only
on b and pb, but it must depend on both non-trivially. Likewise, δc must depend on both c
and pc non-trivially. As a consequence, under the flow in Equation (25), the argument of
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the first sine in Equation (64) is non-constant, ˙(δbb) = ∂δb
pb

pbb ̸= 0, forcing the effective AOS
Hamiltonian to be not covariant under residual diffeomorphisms.

Note that, even without the specific prescription of AOS for fixing δb(b, pb) and
δc(c, pc), the assumption in Equation (65) alone is enough to force incompatibility with
the form in Equation (47), which we have shown is required by residual diffeomorphism
covariance and preservation of the Bohr Hilbert space, in which δc must depend on pb with
a very specific dependence. This suggests that the desire to maintain decoupling of the b
and c degrees of freedom in the effective theory, as convenient as it is, is incompatible with
simultaneous residual diffeomorphism covariance and the existence of a corresponding
operator preserving the Bohr Hilbert space. That is, if one desires both of the latter two
properties, then the b and c degrees of freedom are forced to interact.

It must be emphasized that, even though the precise effective Hamiltonian constraint
of AOS is not covariant under residual diffeomorphisms, the key physical predictions
calculated so far, such as the universal upper bound on all scalar curvatures, are invariant
under residual diffeomorphisms. Furthermore, the works [23,26] never suggest that their
proposed effective Hamiltonian has a corresponding quantum operator on the Bohr Hilbert
space. Indeed, they explicitly mention the construction of a corresponding operator and
associated Hilbert space as an open problem at the end of Appendix A in [23], and they
provide a strategy for constructing an alternative quantum framework.

However, with diffeomorphism symmetry being the basic symmetry of gravity, there
is good motivation to seek an effective Hamiltonian that is exactly covariant under residual
diffeomorphisms. Because of this, it might be valuable to attempt a modification of AOS
in which the condition in Equation (65) and, hence, the decoupling of the two degrees of
freedom are dropped and in which such exact covariance is imposed in its place. Such a
model would be mathematically more complex but, potentially, more physically compelling,
including all of the physically compelling features of AOS, as well as the exact residual
diffeomorphism covariance of the µ models.

8.4. Newer Proposals

Some newer proposals with different approaches are worth mentioning:

• Assanioussi and Mickel [29] proposed an effective Hamiltonian constructed via regu-
larized Thiemann identities in the µ̄ scheme. Their starting point differs from ours—the
Hamiltonian is from the full theory, with a Euclidian and a Lorentzian component,
while our approach uses the symmetry-reduced Hamiltonian Equation (5), in which
these two terms are not distinguished—so the final result is expected to be different.
However, their result does lie in the family in Equation (50) selected by using residual
diffeomorphism covariance and discrete symmetries, and our minimal result has the
same form as the Euclidian part calculated by them.

• Bodendorfer, Mele, and Munch [28] introduce new pairs of canonical variables,

vk :=
γpb|pc|

2
14
3 b

, vj :=
pb
8b

(cpc − bpb), k :=
2

11
3 bc

γ2 pb sgn pc
, j :=

4b
γpb

,

in order to have a relation K ∝ k2 for the Kretschmann scalar, inspired by the relation
R ∝ b2 that appears using (b, v) variables in the homogeneous isotropic case. They
use the lapse Equation (53), and the effective Hamiltonian density is obtained through
a polymerization of the variables k and j, resulting in

He f f = 3vk
sin(λkk)

λk

sin(λj j)
λj

+ vj
sin2(λj j)

λj
.

However, both vj and vk are proportional to 1/b, which requires an infinite number
of terms to be represented in the Bohr Hilbert space, as discussed in Section 6.3.
Moreover, in order to ensure the covariance of the effective Hamiltonian under the
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rescaling of the fiducial cell by a factor α, the parameter λj—a constant in phase
space—is defined to scale as λj 7→ αλj. While such a definition is possible to ensure
covariance under passive residual diffeomorphisms, there is no such freedom for
active diffeomorphisms—arising from a flow in the phase space—where constants
are simply constant. As a consequence, their effective Hamiltonian is not covariant
under active residual diffeomorphisms, explaining why it does not fall into the class
Equation (50) that we selected above. Also, k is quadratic in components of the
connections, so the first term in their Hamiltonian could not come from parallel
transports of the Ashtekar–Barbero connections. The fact that components of the
Ashtekar–Barbero connection appear quadratically in one of the sines furthermore
means that the Fourier transform of their effective Hamiltonian with respect to b and
c must have uncountable support, impeding a corresponding operator from being
densely defined on the usual Bohr Hilbert space reviewed in Section 2.2.

• Sartini and Geiller [25] consider KS with a cosmological constant incorporated via the
unimodular formulation of gravity [35], the main motivation being to solve the prob-
lem of time without introducing scalar matter. They propose the change of variables

p1 := − c
2γ

, v1 := pc, p2 :=
4b

γpb
, v2 := −

p2
b

8
.

For their effective theory, they again choose the lapse Equation (53) and polymerize p1
and p2, resulting in

H = 2
sin(λ1 p1)

λ1
v1 +

sin(λ2 p2)

λ2
v2 − 2(1 − Λv1)

λ2

sin(λ2 p2)
. (66)

with λi constants on phase space. The case here is similar to the one above, where their
definition of how the constants λi should rescale under changes of the fiducial cell make
the effective Hamiltonian covariant under passive but not active diffeomorphisms.
The use of the classical lapse Equation (53) for the effective theory means that, if the
effective Hamiltonian would arise from a quantum operator, then the discussion of
Section 6.3 would apply again. However, when proposing a quantum Hamiltonian
operator, the authors make use of a different lapse, the one corresponding to the use
of a unimodular clock, matching Equation (6) for n = −1. The Hilbert space on which
the non-cosmological constant part of their operator acts is the usual Bohr Hilbert
space. That being said, the polymerization of the connection variables in their operator
remains the same as in their effective theory and, thus, is again not covariant under
active residual diffeomorphisms, so the non-cosmological constant part of the operator
is not in the family in Equation (50) that we selected.

9. Conclusions

In this work, we were able to derive a family of Hamiltonian operators for the loop
quantum Kantowski–Sachs framework by imposing the quantum analog of covariance
under residual diffeomorphisms, as well as other physical criteria. In doing this, we
avoided choosing a specific quantization prescription a priori.

We further demonstrated that, for each choice of lapse, the requirement of minimality,
that is, a minimal number of shift operators in the Hamiltonian constraint operator—a
form of Occam’s razor—leads to a family of models parameterized by three functions of
pc. For specific values of these parameters, the model matches proposals in the literature
constructed with traditional quantization methods—specifically, the µ-prescriptions ob-
tained by Chiou [19] and Joe and Singh [20]. We emphasize, however, that the minimality
principle is trustworthy only inasmuch as the other conditions imposed are complete—in
particular, we impose no conditions relating the model’s dynamics to a choice of full theory
dynamics, a condition whose incorporation would likely force a non-minimal choice, as
defined here.
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We also remarked on the relation of our work to other models in the literature, with
particular attention to that of of Ashtekar, Olmedo, and Singh (AOS) [23,26]. First, and
most importantly, AOS, as well as [21,27], improved upon all previous works in that the
classical limit is correctly imposed at the horizon—a regime where (for macroscopic black
holes) curvature is low compared to the Planck scale, so no significant deviation from
classical general relativity is expected. That prior models, including those using µ-schemes,
failed to do this highlights that the condition for the correct classical limit imposed in the
literature up until now—and that used in the present paper—is not sufficient. Specifically,
the usual condition that the arguments of complex exponentials or, equivalently, of the
sine functions go to zero, motivated by a naïve ℓP → 0 limit and equivalent to eigenvalues
of extrinsic curvature going to zero, is neither a necessary nor sufficient condition that
space-time curvature scalars go to zero.

The AOS model additionally makes two choices to decouple the evolution of the two
degrees of freedom of the model, rendering the dynamics exactly soluble: The choice of
lapse and the requirement that δb and δc depend, respectively, only on the b and c degrees
of freedom. As attractive as exact solubility is, the latter of these choices forces the effective
Hamiltonian to not be exactly diffeomorphism-covariant. The first of these choices forces
the corresponding Hamiltonian constraint operator, if defined on the Bohr Hilbert space
motivated by loop quantum gravity, to include an infinite number of shift operators.

It must be emphasized that the key physical predictions of AOS are covariant under
residual diffeomorphisms. Nevertheless, we argue that exact diffeomorphism covariance
of the full Hamiltonian is a compelling property and that it should be possible to modify
the AOS model to require such exact covariance if one gives up decoupling the two degrees
of freedom of the model while retaining all of the model’s physically compelling features.
One systematic path to finding such a new model might be to use the program of the
present work but while replacing the usual naïve classical limit used in Section 6.1 with an
appropriate corrected condition based on four-dimensional curvature scalars.
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