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Abstract: After a century of cosmological observations, we have a solid standard model of cosmology.
However, from a theoretical viewpoint, it is a compelling question if the cosmological data inevitably
require an expanding universe independently of the theoretical framework. The possibility of
obtaining a viable cosmological model with a constant scale-factor is discussed in the context of the
Brans–Dicke class of scalar–tensor theories. It is shown that a flat spatial section requires the presence
of a stiff matter fluid. However, some kinematical properties of the standard cosmological model can
be reproduced. A realistic scenario may require a more complex class of scalar–tensor theories.
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1. Introduction

The publication of the article of Alexander Friedmann in 1922 proposing the possibility
of a dynamical universe [1] was one of the most important revolutions in our view of the
cosmos. For the first time, to our knowledge, in the history of science, the universe was
considered as an evolving system. Until Friedmann, the known universe was described
essentially as a static system. Even, the first cosmological model constructed from the
recently proposed new theory of gravity, General Relativity, was static and inevitably
unstable due to the attractive character of the gravitational interaction [2,3]. In spite of the
unstable nature of any static cosmological system, the Friedmann proposal of a dynamical
universe initially received some opposition. It must be remembered that the concept
of galaxies distributed in the universe emerged after a long debate and, only after the
Friedmann article, that the measuring of the spectra of galaxies was obtained showing the
systematic redshift of the spectral lines, an indication of cosmic expansion. Unfortunately,
Friedmann did not live enough to watch the triumph of his speculations about a dynamical
universe with the formulation of the law for the recessions of the galaxies made, mainly,
by Hubble and Lemaître.

Is there any reason to consider the possibility of a static universe? The answer most
probably is no, for two main reasons. First, to explain the redshift of the spectral lines
of distant objects is not simple without a dynamical cosmos. The hypothesis of the tired
light [4,5], for example, has difficulties in incorporating a hot phase and the consequent
primordial nucleosynthesis and the spectrum of the Cosmic Microwave Background Radia-
tion (CMB), besides structure formation. Second, due to the attractive character of gravity,
any static universe would be unstable. This is a feature difficult to circumvent and it is hard
to conceive a model within General Relativity that can change this picture.

Notwithstanding, the previous remarks refer to a completely static universe. It is
possible to conceive of a universe with a constant scale factor, but with some other possible
dynamical quantity [6–10]. This is the case for scalar–tensor theories where gravity is
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coupled to a scalar field: there are specific configurations for which the scale factor is
constant but the scalar field is dynamical. Since in many scalar–tensor theories the scalar
field is connected with the gravitational coupling, a time-dependent scalar field may
imply a cosmical dynamics in spite of a constant scale factor. There are simple examples
where a stable configuration can be obtained with a constant scale factor and a dynamical
gravitational coupling, but they are very particular. This will be discussed in next section.
It is far from obvious how this particular configuration can be generalized in order to have
a realistic cosmological scenario, incorporating the different phases of the evolution of
the universe.

A cosmological scenario without expansion containing at least one static phase has
been discussed by Wetterich, leading to a viable model [11,12]. The Wetterich model also
contains contracting phases. The effects typically identified as being due to the expansion
of the universe (redshift for example) are transferred to a time-dependent mass of the
elementary particles [13–15]. In this model, the cosmic initial singularity can be avoided.
The model is formulated by using a scalar field non-minimally coupled with the geometry
and with the matter sector. A realistic scenario for all the phases of the universe can
be achieved.

The possibility of a cosmological model with a constant scale factor in all cosmological
phases has been qualitatively evoked in Ref. [16]. The static model should be constructed
in the minimal coupled frame, connected with the non-minimal coupled frame through a
conformal transformation. Note that the present approach is substantially different from
that used in refs. [11,12], which considered a non-minimal coupled frame between a scalar
field and geometry, besides a non-trivial coupling with the scalar field in the matter sector.
Evidently, the present approach, formulated in the minimal coupled frame, may be seen as
with less freedom than refs. [11,12]. Nevertheless, it allows a connection to some traditional
theoretical frameworks, like the Jordan–Wagoner–Brans–Dicke theory, as the resulting
theory presented in this paper contains a scalar field minimally coupled to gravity, but non-
trivially coupled to the matter sector. Furthermore, the coupling parameter ω of the kinetic
term of the scalar field is not constant. Our approach also differs from Wetterich’s previous
work [13,14] inasmuch as he works with the original Brans–Dicke (BD) theory [17], where
ω is a constant, and also includes a potential.

In the present text this possibility is investigated in more detail. It is shown that,
at least in the context of BD theory with a dynamical BD parameter ω, as suggested in
ref. [16], it is possible to obtain at most a kinematical consistent background description of
the cosmic evolution. However, it appears important differences concerning how to obtain
equivalent kinematical descriptions between the static model developed here and the
dynamical Friedmann models. In the Friedmann models, the behavior of the scale factor is
essentially dictated by the equation of state of the matter component. In the corresponding
static universe with a dynamical gravitational coupling, a given description of the cosmic
evolution is determined essentially by an appropriate choice of the non-trivial coupling
function of the scalar field kinetic term, denoted by ω(ϕ). In both cases, expanding or static
universes, a similar cosmic red-shift relation can be obtained by choosing appropriately
ω(ϕ). In spite of this kinematical equivalence, important phenomena present in the cosmic
history demanding a perturbative analysis, such as the CMB and structure formation, very
probably can not be incorporated in a static scenario, even if a more detailed analysis is
required. In this sense, the analysis to be made here can be seen as a kind of no-go theorem
for a universe with a constant scale factor (but possibly with a dynamical gravitational
coupling) in all its phases. Of course, it is not excluded that different classes of extensions
of the GR theory may change the conclusions presented here.

In the next section we review the Einstein static universe and its instability and the
particular cases of the BD theory with some possible static, stable configurations. From now
on we use the term “static universe” to denote a universe with constant scale factor even
if the gravitational coupling is varying. In Section 3, the Wagoner–Brans–Dicke–Jordan
scalar-tensor theory is discussed both in the Jordan and Einstein frames. In Section 4, it



Universe 2024, 10, 92 3 of 11

is shown how the variation of the mass of elementary particles can lead to a shift in the
spectral lines of the hydrogen atom. In Section 5, it is shown how a static universe in the
Einstein frame can lead to a scenario where the standard cosmological model is reproduced
in the Jordan frame from the kinetic point of view. In Section 6, we conclude with some
final remarks.

2. Stability of Static Models in GR and BD Theories

The static model in the GR and BD theories are briefly revised in what follows. The GR
equations in presence of a cosmological constant Λ are

Rµν −
1
2

gµνR = 8πGTµν + gµνΛ, (1)

Tµν
;µ = 0. (2)

For a static metric, with a spatial curvature k (which can be positive, negative or zero),
a pressureless fluid, a cosmological constant and fixing the constant scale factor equal to
unity, the equations reduce to,

3k = 8πGρ + Λ, (3)

k = Λ, (4)

ρ̇ = 0. (5)

For k = 0, the universe turns out to be completely empty, while for k negative (a
pseudo-sphere), the energy density becomes negative. Only for positive k do we have a
consistent scenario with

4πGρ = Λ > 0. (6)

However, this solution is unstable. The perturbative equations in the synchronous
coordinate condition hµ0 = 0 for a given fluid with density ρ and pressure p are given
by [18],

ḧ + 2Hḣ = 8πGρδ, (7)

δ̇ + (1 + α)

(
θ − ḣ

2

)
= 0, (8)

(1 + α)

[
δθ + (2 − 3α)Hθ̇

]
=

v2
s

a2 δ, (9)

These equations are valid even in presence of a cosmological constant. In these
expressions, we have introduced the following definitions:

H =
ȧ
a

, h =
hkk
a2 , δ =

δρ

ρ
, (10)

θ = ∂kδvk , α =
p
ρ

, v2
s =

∂p
∂ρ

. (11)

H is the Hubble function, hkk is the trace of metric fluctuations, δ is the density contrast,
θ is related with the velocity perturbation, α is the equation of state parameter and v2

s is
the sound speed. For a static universe with pressureless fluid (α = v2

s = 0), the perturbed
equations reduce to

δ̈ − 4πGδ = 0 , θ̇ = 0 . (12)
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Consequently, the matter perturbation, expressed by the density contrast δ, grows
exponentially, characterizing the instability due to the attractive nature of the gravita-
tional interaction.

The perturbative analysis of the Brans-Dicke cosmological models has been carried
out in ref. [19]. The inflationary case will be considered just as a simple example. The back-
ground solutions for an equation of state p = −ρ are

a(t) ∝ tω+1/2, (13)

ϕ(t) ∝ t2. (14)

The universe is static if ω = −1/2. For this case, the perturbations behave as

δϕ

ϕ
≡ λ =

1
t

∫ {
c1 J3/2(nt) + c2 J−3/2(nt)

}
, (15)

n denoting the wavenumber of the perturbations. The solution displays a growing
mode and a decreasing mode. Asymptotically, the growing mode behaves as,

λ ∝ t2. (16)

The growing mode is not exponential as in GR case. It presents a mild instability that
is necessary, after all, to induce the formation of structures observed in the universe.

The same properties are verified for a matter dominated universe in a Brans–Dicke
cosmology but with ω = −1.

3. Field Equations in the Jordan and Einstein Frames

The example discussed in the previous section shows that it is possible to have a
static universe in scalar-tensor theories without exponential instabilities. However, it is not
clear how to describe the different expansion phases of the standard model in the static
frame. Our proposal is to consider a dynamical parameter ω(ϕ). Following the qualitative
discussion presented in ref. [16], our starting point is the Bergmann–Wagoner–Brans–Dicke
theory whose Lagrangian in the original Jordan frame is [17,20]

L =
√
−g

{
ϕR − ω(ϕ)

ϕ;ρϕ;ρ

ϕ

}
+Lm(gµν, Ψ), (17)

with the matter Lagrangian given by Lm(gµν, Ψ), Ψ representing the matter fields. The grav-
itational coupling is dynamical and related to the inverse of the scalar field ϕ.

The field equations are the following:

Rµν −
1
2

gµνR =
8π

ϕ
Tµν +

ω(ϕ)

ϕ2

(
ϕ;µϕ;ν −

1
2

gµνϕ;ρϕ;ρ
)
+

1
ϕ

(
ϕ;µ;ν − gµν□ϕ

)
, (18)

□ϕ =
8πT

3 + 2ω(ϕ)
−

ωϕ

3 + 2ω(ϕ)
ϕ;ρϕ;ρ, (19)

Tµν
;µ = 0. (20)

Now, we perform a conformal transformation, with gµν = ϕ−1 g̃µν, as indicated in the
Appendix A. The new equations are:

R̃µν −
1
2

g̃µνR̃ = 8πGT̃µν +
(ω(ϕ) + 3/2)

ϕ2

(
ϕ;µϕ;ν −

1
2

g̃µνϕ;ρϕ;ρ
)

, (21)

□̃ϕ =
8πGϕT̃

3 + 2ω(ϕ)
−
(

ϕωϕ

3 + 2ω(ϕ)
− 1

)
ϕ;ρϕ;ρ

ϕ
, (22)

T̃µν
;µ = −

g̃νµϕ;µT̃
2ϕ

. (23)
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In writing these equations, we have made the redefinition,

Gρ̃ =
ρ

ϕ2 , Gp̃ =
p

ϕ2 , (24)

G being the present value of the cosmological coupling.

4. The Redshift Relation

In the static universe, the mass of the particles must vary with time in order to obtain a
change in the spectral lines, as observed. The mechanism to generate the observed redshift
will now be described.

In the Einstein frame, the energy conservation law for any perfect fluid satisfying
p̃ = αρ̃ in a homogeneous and isotropic spacetime reads,

ρ̃′ + 3H̃(1 + α)ρ̃ = − (1 − 3α)

2
ϕ′

ϕ
ρ̃, (25)

where the primes mean derivative with respect to τ, and H̃ = b′/b is the Einstein Hubble
function, which is considered to be zero. Integrating this equation for the case of a fluid
composed of massive non-relativistic particles (α = 0), we obtain

ρ̃ = ρ̃0

(
ϕ0

ϕ

)1/2

= nm̃, (26)

where n is the particle number density, which is a constant in a static universe, and ρ̃0 is a
constant. Hence, the relation between the constant mass m in the expanding universe and
the varying mass m̃ in the static universe is given by,

m̃ ∝ mϕ−1/2. (27)

Assuming that ϕ is positive and it decreases in time, namely ∞ > ϕ > 0, the masses
increase with time, meaning that the wavelength of the emitted radiation will decrease with
time. In other words, the electronic transition occurred in the past will have a wavelength
greater than observed today in the laboratory. We remark that a decreasing ϕ implies a
growing gravitational coupling and a decreasing Planck’s mass. Also, the Planck length
grows with time. Our approach is purely classical but it suggests that the quantum gravity
regime may be achieved at much smaller energy scales as time goes on and the gravitational
interaction becomes stronger.

The relation (27) is equivalent to the invariance of the test particle’s Lagrangian under
the conformal transformation

l = −
∫

mds = −
∫

mϕ−1/2ds̃ = −
∫

m̃ds̃. (28)

The spectral lines of the hydrogen atom in the static universe are given by

1
λ
=

∆E
hc

=
m̃Z2e4

4πch̄3

(
1

n2
f
− 1

n2
i

)
, (29)

with ni and n f designating the initial and final electronic principal quantum numbers.
Hence, the wavelength of the emitted photon varies as

λ ∝
1
m̃

∝ ϕ1/2. (30)

As a consequence, the photons emitted in the past have a higher wavelength compared
with the emissions in the laboratory today.
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The discussion above is an example of how the Jordan and Einstein frames may
describe the same phenomena in a complete different way. For the discussion on the
equivalence of both frames, see ref. [21] and references therein.

5. A Static Universe: General Relations

We will try now to construct a static universe in the Einstein frame. The difficulty
lies in that the conservation law in the Jordan frame implies that each matter component
depends only on the scale factor, making hard to obtain a transition from a cosmic phase to
another. This can be achieved in the Einstein frame due to the second term in (23) and the
presence of the arbitrary function ω(ϕ).

The metric in the minimal coupled frame is given by,

ds̃2 = dτ2 − b2

1 + k r2

4

(dx2 + dy2 + dz2), (31)

with r2 = x2 + y2 + z2 We shall assume a barotropic equation of state p̃ = αρ̃ with α
constant. The Equations (21)–(23) become:

3H̃2 + 3
k
b

= 8πGρ̃+

(
3 + 2ω

4

)(
ϕ′

ϕ

)2

, (32)

2H̃′ + 3H̃2 +
k
b

= −8πGp̃−
(

3 + 2ω

4

)(
ϕ′

ϕ

)2

, (33)

ϕ′′

ϕ
+ 3H̃

ϕ′

ϕ
=

8πG
3 + 2ω

(1 − 3α)ρ̃−
(

ϕωϕ

3 + 2ω(ϕ)
− 1

)(
ϕ′

ϕ

)2

, (34)

ρ̃′ + 3H̃(1 + α)ρ̃ = − (1 − 3α)

2
ϕ′

ϕ
ρ̃. (35)

The primes mean derivative with respect to τ, and H̃ = b′/b. A universe without
expansion in this frame means H̃ = 0, and without loss of generality we fix b = 1.
The previous equations reduce to

3k = 8πGρ̃+

(
3 + 2ω

4

)(
ϕ′

ϕ

)2

, (36)

k = −8πGαρ̃−
(

3 + 2ω

4

)(
ϕ′

ϕ

)2

, (37)

ϕ′′

ϕ
=

8πG
3 + 2ω

(1 − 3α)ρ̃−
(

ϕωϕ

3 + 2ω(ϕ)
− 1

)(
ϕ′

ϕ

)2

, (38)

ρ̃′ = − (1 − 3α)

2
ϕ′

ϕ
ρ̃. (39)

The last equation can be easily integrated as

ρ̃ = ρ̃0ϕ− (1−3α)
2 . (40)

Adding (36) and (37), we obtain

4k = 8πG(1 − α)ρ̃. (41)

Subtracting (36) and 3× (37),

0 = 8πG(1 + 3α)ρ̃ + (3 + 2ω)

(
ϕ′

ϕ

)2

(42)
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Three conclusions can be obtained from these relations:

α = 1 → k = 0; (43)

α ̸= 1,
1
3

→ ρ̃ = constant → ϕ = constant, k > 0 : (44)

α =
1
3

→ ρ̃ = constant → ϕ = constant or dynamical, k > 0. (45)

The Einstein static model can be obtained from the previous relation by fixing ϕ
constant, and a two fluid model, one a matter component (α = 0) and a cosmological
constant (α = −1), leading to

k = 4πGρ̃m, (46)

ρ̃Λ =
ρ̃m

2
. (47)

6. An Example of a Static Universe

Let us consider specifically the case α = 1, leading to k = 0, and evaluate the distance-
redshift relation in this situation.

With the result for the matter density (40), and remembering that with α = 1 and k = 0,
Equation (36) becomes identical to Equation (37), while Equation (38) is just the derivative
of those equations. Hence, there is just one equation to be integrated,

8πGρ̃+

(
3 + 2ω

4

)(
ϕ′

ϕ

)2

= 0. (48)

Let us write w(ϕ) =: −3/2 − f (ϕ). Then, as for α = 1 one obrains ρ̃/ρ̃0 = ϕ/ϕ0,
Equation (48) can be written as

f 1/2(ϕ)

ϕ3/2 dϕ =
√

C1 c dτ, (49)

where C1 = 16πGρ̃0/(ϕ0c2), remembering that the 0 subscript denotes quantities evaluated
today, and c is the speed of light. With the integration from proper time τ1 when a source
emitted light towards an observer that receives it at τ0, we obtain

I(ϕ0)− I(ϕ1) =
√

C1d, (50)

where d is the distance between the source and the observer, which in a flat static universe
is just d = c(τ0 − τ1), and I(ϕ) is the function resulting from the integral in ϕ.

Using Equation (50) and writing ϕ1 = (1 + z)2ϕ0 we obtain the exact distance–redshift
relation,

d =
I(ϕ0)− I(ϕ0(1 + z)2)√

C1
, (51)

For small z we obtain

d =
c f 1/2(ϕ0)

2
√

Gρ̃0
z + ... , (52)

where the constant in front of z (without c) plays the role of the inverse of the Hubble
constant in this scenario.

As an example, let us take a power law functional form for f , yielding,

ω(ϕ) = −3
2
− κϕn. (53)
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The parameter κ can be fixed equal to unity by absorbing it in the expression for ϕ.
Equation (48) can be easily integrated, leading to

ϕ = ϕ0(±τ)
2

n−1 . (54)

In order to have ∞ > ϕ > 0 during time evolution, when the exponent is negative the plus
sign must be chosen, implying 0 ≤ τ < ∞, and vice-versa.

In the case of a spatially flat expanding universe dominated by stiff matter and
described by standard GR, we have that 1 + z ∝ a−1(t) ∝ t−1/3, where t is the proper time.
In case of static universes in the Einstein frame of a generalized Brans–Dicke theory as
described above, one has 1 + z ∝ ϕ1/2(τ) ∝ τ1/(n−1) with respect to the proper time in the
Einstein frame. Hence, in order to have the same proper time dependence, one must have
n = −2.

Some observational tests of the unperturbed universe depend essentially on the behav-
ior of the scale factor. It is possible to choose the functional form of ω(ϕ) in order to mimic
the scale factor of the standard cosmological model in its different phases by translating the
results in the static Einstein frame to the Jordan frame where the scale factor is a function
of time. First we remember that, with b = 1,

a = ϕ−1/2, (55)

dt = ±ϕ−1/2dτ. (56)

Hence, using Equation (54), the scale factor in the Jordan frame is given, in terms of
the cosmic time in the same frame, as

a = a0(t)
1

2−n , (57)

with 0 ≤ t < ∞ for n < 2. The convenient choice of n may lead to the same kinematical
behavior of the standard cosmological model: n = 0 for the radiative phase, n = 1/2 for
the matter dominated phase and 1 < n ≤ ∞ for the dark energy phase (n = 2 corresponds
to a de Sitter phase and n > 2 to a phantom dark energy phase). In this way, the main
phases of the expanding universe can be mapped in the corresponding static models by
choosing conveniently the function ω(ϕ).

In principle, a more general choice for ω(ϕ) may lead to smooth transitions between
these phases. For example,

ω(ϕ) = −3
2
− κ1ϕ2√

κ2 + κ3ϕ3 + κ4ϕ4
, (58)

interpolates smoothly the radiative phase (ϕ → ∞) and a de Sitter phase (ϕ → 0) passing
in between by a matter dominated phase. The parameters κi are constants. Since ∞ >
ϕ > 0, all three main phases of the standard cosmological model would be generated by
this functional form, with a smooth transition between them. The necessary duration of
each phase may be achieved by choosing conveniently the values of the parameters κi.
However, the explicit dependence of ϕ on τ can not be obtained in terms of elementary
functions, requiring a numerical integration. Below we present a numerical calculation
for the evolution of ϕ(τ) in two scenarios: one with a continuous transition following (58),
with κ2 = 0 and κ1 = κ3 = κ4 = 1, and the other with a piecewise transition at ϕ = 1 from
κ2 = κ3 = 0 and κ4 = 1 (radiation) to κ2 = κ4 = 0 and κ3 = 1 (matter), see Figure 1. In both
cases, κ1 = 1. We note that time runs from left to right (from larger to smaller values of τ).
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Continuous

Piecewise

0.0 0.5 1.0 1.5 2.0

-2.4

-2.2

-2.0

-1.8

-1.6

ϕ

ω
(ϕ

)

Continuous and Piecewise ω(ϕ)

Continuous
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0.0 0.5 1.0 1.5 2.0
0.10

0.11

0.12

0.13

0.14

0.15

0.16

τ

ϕ
(τ
)

ϕ(τ) for different ω(ϕ)

Figure 1. (Left) Comparison between ω(ϕ) for the continuous case, (58), where κ1 = κ3 = κ4 = 1 and
κ2 = 0, and the case where there is a sharp transition from κ2 = κ3 = 0 and κ1 = κ4 = 1 (radiation) to
κ2 = κ4 = 0 and κ1 = κ3 = 1 (matter). (Right) Numerical evolution of the scalar field for the two
aforementioned cases.

Among the possible limitations of the scenario sketched above, there is one that is
particularly relevant; namely, the relation with the standard cosmological model established
in the Jordan frame is purely kinematical. Even if we can satisfy some observational
tests connected with Hubble–Lemaître law, a detailed perturbative study must be carried
out in order to verify if, for example, the structure formation and CMB anisotropies are
reproduced, at least in their general lines. This will be object of a separate study.

7. Final Remarks

The possibility to have a static universe compatible with the observational data has
been discussed in this text. By static universe, it is understood here as a universe with a
constant scale factor but with possible other dynamical fields, like a scalar field related
to the gravitational coupling. The Brans–Dicke theory, with a variable ω, was used as an
example. In this case, it has been shown that a spatially flat static universe is possible only
if the content of the universe is given by a stiff matter fluid. A two-fluid model is also
possible, including radiation, but only if there is positive spatial curvature. This can be
verified by generalizing Equation (41) including radiation and stiff matter.

In spite of this deceiving limitation, it is possible that some more complex scalar–
tensor theories may allow us to surmount the limitations of the static model discussed here.
Appealing to other classes of Horndeski theories [22,23] may circumvent the restrictions
given specially by relations (41) and (42). In this case, it is maybe possible to mimic
different phases of the universe in the behavior of the dynamical scale factor by choosing a
convenient function ω(ϕ). This property may lead to a kinematical equivalence between
the static universe and the standard mode at the background level. Otherwise, the static
universe can be connected only to a given phase in the cosmic history, as in the models
discussed in refs. [11,12], which contain, beside a static phase, contracting universes in
other phases. However, it seems hard to maintain this equivalence at the perturbative level.
This issue must be addressed in a separate analysis.

It is important to remember that the Brans–Dicke theory with a stiff matter fluid has
many peculiarities as discussed in ref. [24]. It must be stressed that we have exploited here
a conformal transformation in order to rewrite the theory formulated in the Jordan frame
in the Einstein frame. The use of disformal transformations my bring other possibilities as
discussed in ref. [25], where a particular attention has been given to the case of a stiff matter
fluid. The use of the unimodular constraint can also lead to a well-posed scenario [26].
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editing, J.C.F., F.T.F., N.P.-N. and L.F.G. All authors have read and agreed to the published version of
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Appendix A. Conformal Transformation

Under the conformal transformation

gµν = ϕ−1 g̃µν, gµν = ϕg̃µν, (A1)

the connection transforms as

Γρ
µν = Γ̃ρ

µν −
1
2

(
δ

ρ
µ

∂νϕ

ϕ
+ δ

ρ
ν

∂µϕ

ϕ
− g̃µν g̃ρσ ∂σϕ

ϕ

)
. (A2)

The Ricci tensor and the Ricci scalar takes the form

Rµν = R̃µν +
ϕ;µ;ν

ϕ
− 1

2
ϕ;µϕ;ν

ϕ2 +
1
2

g̃µν

(
□̃ϕ

ϕ
− 2

ϕ;ρϕ;ρ

ϕ2

)
, (A3)

R = ϕ

{
R̃ + 3

□̃ϕ

ϕ
− 9

2
ϕ;ρϕ;ρ

ϕ

}
, (A4)

The energy momentum–tensor becomes

Tµν = (ρ + p)uµuν − pgµν = ϕ

{
(ρ + p)ũµũν − pg̃µν

}
(A5)

= ϕ3
{
(ρ̃ + p̃)uµuν − p̃g̃µν

}
, (A6)

with

ρ̃ = ρϕ−2, p̃ = pϕ−2. (A7)
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