Boyer–Lindquist Space-Times and Beyond: Metamaterial Analogues for Arbitrary Space-Times
Abstract
:1. Introduction
The reader should note the analogy (purely formal, of course) of [the Maxwell equations in a gravitational field] to the Maxwell equations for the electromagnetic field in material media. In particular, in a static gravitational field [the constitutive relations] reduce to , . We may say that with respect to its effect on the electromagnetic field a static gravitational field plays the role of a medium with electric and magnetic permeabilities .
2. General Strategy
3. Boyer–Lindquist Space-Times
3.1. Permittivity Tensor
3.2. Permeability Tensor
3.3. Magnetoelectric Tensor
3.4. Summary for Metrics in Boyer–Lindquist Coordinates
3.5. Implications for Metrics in Boyer–Lindquist Coordinates
- First, note that . (This is related to what we saw happened for spherical symmetry in reference [2]. The general point is that electromagnetic properties in the direction of the 3-vector are degenerate). Indeed, all the components of the permittivity tensor are well defined down to the outermost noncosmological horizon (, ).
- Second, note that while is well defined all the way to the outermost noncosmological horizon, and are only well defined down to the outermost noncosmological ergo-surface (where ).
- Third, note that the magnetoelectric tensor is well defined down to the outermost noncosmological horizon (, ).
- Fourth, note that the difference is relatively simple:
- Observe that the magnetoelectric tensor always has a zero-eigenvalue eigenvector, currently in the direction, and so for all Boyer–Lindquist mimics.
- Observe that:This is actually proportional to a projection operator onto the directions perpendicular to the 3-vector . (We saw similar things happen in the quasi-Cartesian analysis of reference [2]).
- Observe that:This is a nice scalar invariant describing the strength of the magnetoelectric effect, well defined down to the outermost noncosmological horizon (where ).
- Finally, note that, for small , that is, , we can explicitly write the following:
4. Specific Concrete Examples
4.1. Kerr
4.2. Lense–Thirring
5. Going beyond Boyer–Lindquist: Arbitrary Space-Times
5.1. Permittivity Tensor
5.2. Permeability Tensor
5.3. Magnetoelectric Tensor
5.4. Summary for Arbitrary Space-Times
5.5. Implications for Arbitrary Space-Times
- First, note that the difference is quite simple:
- Second, note that if we define and , thenThen in the direction of the 3-vector , we have(This is related to what we saw happen for Boyer–Lindquist above (where we found ), and also for spherical symmetry in [2]. The general point is that electromagnetic properties in the direction of the 3-vector are degenerate).
- For the magnetoelectric tensor, observe that , so the direction is again special. This implies that the magnetoelectric tensor always has a left eigenvector with eigenvalue zero, and . (This is a general property of electromagnetic media with a single light cone. See [19], p. 282). The corresponding right eigenvector with eigenvalue zero is . In fact, the magnetoelectric tensor can always be written in the form with antisymmetric and symmetric matrices, which makes the existence of these eigenvectors obvious.
- Observe thatHence,This is a simple scalar invariant (under spatial coordinate transformations) describing the strength of the magnetoelectric effect.
- If we choose to rotate our coordinate system so that , then things simplify somewhat. The eigenvalues of are then proportional to , and consequently, the eigenvalues of are then proportional to . Indeed,
6. Revisiting Spherically Symmetric Space-Times in Spherical Polar Coordinates
6.1. Permittivity Tensor
6.2. Permeability Tensor
6.3. Magnetoelectric Tensor
6.4. Summary for Spherically Symmetric Space-Times
6.5. Implications for Spherically Symmetric Space-Times
- First, note that . This is similar to something that we have seen several times before (the general point being that electromagnetic properties in the direction of the 3-vector are degenerate).
- Second, note the following:
- Observe that the magnetoelectric tensor always has a zero-eigenvalue eigenvector, now the radial direction, and so , as required for materials with a single light cone.
- Observe that is again proportional to a projection operator:Then,This is again a simple scalar invariant describing the strength of the magnetoelectric effect.
7. Discussion
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Schuster, S.; Visser, M. Effective metrics and a fully covariant description of constitutive tensors in electrodynamics. Phys. Rev. D 2017, 96, 124019. [Google Scholar] [CrossRef]
- Schuster, S.; Visser, V. Bespoke analogue space-times: Meta-material mimics. Gen. Relativ. Gravit. 2018, 50, 55. [Google Scholar] [CrossRef]
- Schuster, S.; Visser, M. Electromagnetic analogue space-times, analytically and algebraically. Class. Quantum Gravity 2018, 36, 134004. [Google Scholar] [CrossRef]
- Gordon, W. Zur Lichtfortpflanzung nach der Relativitätstheorie, (The propagation of light according to the theory of relativity). Ann. Phys. 1923, 377, 421–456. [Google Scholar] [CrossRef]
- Landau, L.D.; Lifshitz, E.M. The Classical Theory of Fields, 3rd ed.; Pergamon Press: Oxford, UK, 1971. [Google Scholar]
- Wiltshire, D.L.; Visser, M.; Scott, S.M. (Eds.) The Kerr Space-Time: Rotating Black Holes in General Relativity; Cambridge University Press: Cambridge, UK, 2009. [Google Scholar]
- Kerr, R.P. Gravitational field of a spinning mass as an example of algebraically special metrics. Phys. Rev. Lett. 1963, 11, 237–238, Reprinted in ibid. [Google Scholar] [CrossRef]
- Kerr, R.P. Gravitational collapse and rotation. 1965; Reprinted in ibid. [Google Scholar]
- Visser, M. The Kerr space-time: A brief introduction. [arXiv:0706.0622 [gr-qc]]. Published in ibid.
- Doran, C. A New form of the Kerr solution. Phys. Rev. D 2000, 61, 067503. [Google Scholar] [CrossRef]
- Hamilton, A.J.S.; Lisle, J.P. The river model of black holes. Am. J. Phys. 2008, 76, 519. [Google Scholar] [CrossRef]
- Thompson, R.T.; Fathi, M. Shrinking cloaks in expanding space-times: The role of coordinates and the meaning of transformations in transformation optics. Phys. Rev. A 2015, 92, 013834. [Google Scholar] [CrossRef]
- Fathi, M.; Thompson, R.T. Cartographic distortions make dielectric space-time analog models imperfect mimickers. Phys. Rev. D 2016, 93, 124026. [Google Scholar] [CrossRef]
- Plebański, J. Electromagnetic waves in gravitational fields. Phys. Rev. 1960, 118, 1396–1408. [Google Scholar] [CrossRef]
- Plebanśki, J. Lectures on Nonlinear Electrodynamics; Nordita: Copenhagen, Denmark, 1970. [Google Scholar]
- De Felice, F. On the gravitational field acting as an optical medium. Gen. Relativ. Gravit. 1971, 2, 347–357. [Google Scholar] [CrossRef]
- Balazs, N.L. Effect of a gravitational field, due to a rotating body, on the plane of polarization of an electromagnetic wave. Phys. Rev. 1958, 110, 236–239. [Google Scholar] [CrossRef]
- Anderson, J.L.; Spiegel, E.A. Radiative transfer through a flowing refractive medium. Astrophys. J. 1975, 202, 454–464. [Google Scholar] [CrossRef]
- Hehl, F.W.; Obukhov, Y.N. Foundations of Classical Electrodynamics: Charge, Flux and Metric; Birkhäuser: Boston, MA, USA, 2003. [Google Scholar]
- Pham, Q.M. Sur les équations de l’electromagné dans la materie. Comptes Rendus Hebd. Seances Acad. Sci. 1956, 242, 465–467. [Google Scholar]
- Skrotskii, G.V. The influence of gravitation on the propagation of light. Sov. Phys. Dokl. 1957, 2, 226–229. [Google Scholar]
- Thompson, R.T.; Frauendiener, J. Dielectric analog space-times. Phys. Rev. 2010, D82, 124021. [Google Scholar] [CrossRef]
- Thompson, R.T.; Cummer, S.A.; Frauendiener, J. Generalized transformation optics of linear materials. J. Opt. 2011, 13, 055105. [Google Scholar] [CrossRef]
- Thompson, R.T.; Cummer, S.A.; Frauendiener, J. A completely covariant approach to transformation optics. J. Opt. 2011, 13, 024008. [Google Scholar] [CrossRef]
- Thompson, R.T. Covariant electrodynamics in linear media: Optical metric. Phys. Rev. D 2018, 97, 065001. [Google Scholar] [CrossRef]
- Xiao, W.; Chen, H. Analogy of the interior Schwarzschild metric from transformation optics. Opt. Express 2023, 31, 11490–11498. [Google Scholar] [CrossRef] [PubMed]
- Leonhardt, U.; Piwnicki, P. Optics of nonuniformly moving media. Phys. Rev. A 1999, 60, 4301. [Google Scholar] [CrossRef]
- Unruh, W.G. Experimental black hole evaporation. Phys. Rev. Lett. 1981, 46, 1351. [Google Scholar] [CrossRef]
- Visser, M. Acoustic propagation in fluids: An unexpected example of Lorentzian geometry. arXiv 1993, arXiv:gr-qc/9311028. [Google Scholar]
- Visser, M. Acoustic black holes: Horizons, ergospheres, and Hawking radiation. Class. Quantum Gravity 1998, 15, 1767. [Google Scholar] [CrossRef]
- Barceló, C.; Liberati, S.; Visser, M. Analog gravity from Bose-Einstein condensates. Class. Quantum Gravity 2001, 18, 1137. [Google Scholar] [CrossRef]
- Barceló, C.; Liberati, S.; Visser, M. Towards the observation of Hawking radiation in Bose-Einstein condensates. Int. J. Mod. Phys. A 2003, 18, 3735. [Google Scholar] [CrossRef]
- Barceló, C.; Liberati, S.; Visser, M. Probing semiclassical analog gravity in Bose-Einstein condensates with widely tunable interactions. Phys. Rev. A 2003, 68, 053613. [Google Scholar] [CrossRef]
- Visser, M.; Molina-París, C. Acoustic geometry for general relativistic barotropic irrotational fluid flow. New J. Phys. 2010, 12, 095014. [Google Scholar] [CrossRef]
- Fischer, U.R.; Visser, M. Riemannian geometry of irrotational vortex acoustics. Phys. Rev. Lett. 2002, 88, 110201. [Google Scholar] [CrossRef] [PubMed]
- Visser, M.; Weinfurtner, S. Massive Klein-Gordon equation from a BEC-based analogue spacetime. Phys. Rev. D 2005, 72, 044020. [Google Scholar] [CrossRef]
- Barceló, C.; Liberati, S.; Sonego, S.; Visser, M. Quasi-particle creation by analogue black holes. Class. Quantum Gravity 2006, 23, 5341–5366. [Google Scholar] [CrossRef]
- Barceló, C.; Liberati, S.; Visser, M. Analogue gravity. Living Rev. Relativ. 2011, 14, 3. [Google Scholar] [CrossRef] [PubMed]
- Visser, M.; Barceló, C.; Liberati, S. Analog models of and for gravity. Gen. Relativ. Gravit. 2002, 34, 1719. [Google Scholar] [CrossRef]
- Visser, M. Survey of analogue space-times. Lect. Notes Phys. 2013, 870, 31. [Google Scholar] [CrossRef]
- Cropp, B.; Liberati, S.; Turcati, R. Vorticity in analog gravity. Class. Quantum Gravity 2016, 33, 125009. [Google Scholar] [CrossRef]
- Giacomelli, L.; Liberati, S. Rotating black hole solutions in relativistic analogue gravity. Phys. Rev. D 2017, 96, 064014. [Google Scholar] [CrossRef]
- Liberati, S.; Schuster, S.; Tricella, G.; Visser, M. Vorticity in analogue space-times. Phys. Rev. D 2019, 99, 044025. [Google Scholar] [CrossRef]
- Jacobson, T.; Kang, G. Conformal invariance of black hole temperature. Class. Quantum Gravity 1993, 10, L201. [Google Scholar] [CrossRef]
- Rubilar, G.F. Linear pre-metric electrodynamics and deduction of the light cone. Ann. Phys. 2002, 11, 717–782. [Google Scholar] [CrossRef]
- Balakin, A.B.; Zimdahl, W. Optical metrics and birefringence of anisotropic media. Gen. Relativ. Gravit. 2005, 37, 1731–1751. [Google Scholar] [CrossRef]
- Wald, R.M. General Relativity; University of Chicago Press: Chicago, IL, USA, 1984. [Google Scholar] [CrossRef]
- Misner, C.W.; Thorne, K.S.; Wheeler, J.A. Gravitation; Freeman: San Francisco, CA, USA, 1973. [Google Scholar]
- Thirring, H.; Lense, J. Über den Einfluss der Eigenrotation der Zentralkörper auf die Bewegung der Planeten und Monde nach der Einsteinschen Gravitationstheorie. Phys. Z. Leipz. Jg 1918, 19, 156–163. [Google Scholar]
- Mashoon, B.; Hehl, F.W.; Theiss, D.S. (Translators) On the influence of the proper rotations of central bodies on the motions of planets and moons in Einstein’s theory of gravity. (Translation of Lense–Thirring 1918, ibid.). Gen. Relativ. Gravit. 1984, 16, 727–741. [Google Scholar]
- Pfister, H. On the history of the so-called Lense–Thirring effect. Gen. Relativ. Gravit. 2007, 39, 1735–1748. [Google Scholar] [CrossRef]
- Boersma, S.; Dray, T. Slicing, threading & parametric manifolds. Gen. Relativ. Gravit. 1995, 27, 319. [Google Scholar] [CrossRef]
- Bejancu, A.; Calin, C. On the (1+3) threading of space-time with respect to an arbitrary timelike vector field. Eur. Phys. J. C 2015, 75, 159. [Google Scholar] [CrossRef]
- Gharechahi, R.; Nouri-Zonoz, M.; Tavanfar, A. A tale of two velocities: Threading vs slicing. Int. J. Geom. Meth. Mod. Phys. 2018, 15, 1850047. [Google Scholar] [CrossRef]
- Rosquist, K. A Moving medium simulation of Schwarzschild black hole optics. Gen. Relativ. Gravit. 2004, 36, 1977. [Google Scholar] [CrossRef]
- Reznik, B. Origin of the thermal radiation in a solid state analog of a black hole. Phys. Rev. D 2000, 62, 044044. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schuster, S.; Visser, M. Boyer–Lindquist Space-Times and Beyond: Metamaterial Analogues for Arbitrary Space-Times. Universe 2024, 10, 159. https://doi.org/10.3390/universe10040159
Schuster S, Visser M. Boyer–Lindquist Space-Times and Beyond: Metamaterial Analogues for Arbitrary Space-Times. Universe. 2024; 10(4):159. https://doi.org/10.3390/universe10040159
Chicago/Turabian StyleSchuster, Sebastian, and Matt Visser. 2024. "Boyer–Lindquist Space-Times and Beyond: Metamaterial Analogues for Arbitrary Space-Times" Universe 10, no. 4: 159. https://doi.org/10.3390/universe10040159
APA StyleSchuster, S., & Visser, M. (2024). Boyer–Lindquist Space-Times and Beyond: Metamaterial Analogues for Arbitrary Space-Times. Universe, 10(4), 159. https://doi.org/10.3390/universe10040159