Primordial Black Holes from Spatially Varying Cosmological Constant Induced by Field Fluctuations in Extra Dimensions
Abstract
:1. Introduction
2. Static Field Distribution in Internal Space
3. Inflationary Field Dynamics in Extra Space
4. Formation of PBHs Induced by Inhomogeneous Cosmological Constants
5. Concluding Remarks
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A. Justification of Formula (14) for Mass Measurement by a Distant Observer
Appendix B. Probability of Domain Formation with Specific Energy Density during Inflation
References
- Zel’dovich, Y.B.; Novikov, I.D. The Hypothesis of Cores Retarded during Expansion and the Hot Cosmological Model. Sov. Astron. J. 1967, 10, 602–603. [Google Scholar]
- Hawking, S. Gravitationally collapsed objects of very low mass. Mon. Not. R. Astron. Soc. 1971, 152, 75. [Google Scholar] [CrossRef]
- Carr, B.J.; Hawking, S.W. Black holes in the early Universe. Mon. Not. Roy. Astron. Soc. 1974, 168, 399–416. [Google Scholar] [CrossRef]
- Khlopov, M.Y.; Polnarev, A.G. Primordial Black Holes As A Cosmological Test Of Grand Unification. Phys. Lett. B 1980, 97, 383–387. [Google Scholar] [CrossRef]
- Polnarev, A.G.; Khlopov, M.I. Cosmology, primary black holes and supermassive particles. Uspekhi Fizicheskikh Nauk 1985, 145, 369–401. [Google Scholar] [CrossRef]
- Khlopov, M.Y. Primordial black holes. Res. Astron. Astrophys. 2010, 10, 495–528. [Google Scholar] [CrossRef]
- Belotsky, K.M.; Dokuchaev, V.I.; Eroshenko, Y.N.; Esipova, E.A.; Khlopov, M.Y.; Khromykh, L.A.; Kirillov, A.A.; Nikulin, V.V.; Rubin, S.G.; Svadkovsky, I.V. Clusters of Primordial Black Holes. Eur. Phys. J. C 2019, 79, 246. [Google Scholar] [CrossRef]
- Sasaki, M.; Suyama, T.; Tanaka, T.; Yokoyama, S. Primordial black holes—perspectives in gravitational wave astronomy. Class. Quantum Gravity 2018, 35, 063001. [Google Scholar] [CrossRef]
- Gundhi, A.; Ketov, S.V.; Steinwachs, C.F. Primordial black hole dark matter in dilaton-extended two-field Starobinsky inflation. Phys. Rev. D 2021, 103, 083518. [Google Scholar] [CrossRef]
- Carr, B.; Kohri, K.; Sendouda, Y.; Yokoyama, J. Constraints on primordial black holes. Rept. Prog. Phys. 2021, 84, 116902. [Google Scholar] [CrossRef]
- Raidal, M.; Vaskonen, V.; Veermäe, H. Gravitational Waves from Primordial Black Hole Mergers. J. Cosmol. Astropart. Phys. 2017, 09, 037. [Google Scholar] [CrossRef]
- Raidal, M.; Spethmann, C.; Vaskonen, V.; Veermäe, H. Formation and Evolution of Primordial Black Hole Binaries in the Early Universe. J. Cosmol. Astropart. Phys. 2019, 02, 018. [Google Scholar] [CrossRef]
- Abbott, B.P. et al. [LIGO Scientific Collaboration and Virgo Collaboration] Binary Black Hole Mergers in the first Advanced LIGO Observing Run. Phys. Rev. X 2016, 6, 041015, Erratum in Phys. Rev. X 2018, 8, 039903.. [Google Scholar] [CrossRef]
- Abbott, R. et al. [LIGO Scientific Collaboration and Virgo Collaboration] GWTC-2: Compact Binary Coalescences Observed by LIGO and Virgo During the First Half of the Third Observing Run. Phys. Rev. X 2021, 11, 021053. [Google Scholar] [CrossRef]
- Sasaki, M.; Suyama, T.; Tanaka, T.; Yokoyama, S. Primordial Black Hole Scenario for the Gravitational-Wave Event GW150914. Phys. Rev. Lett. 2016, 117, 061101, Erratum in Phys. Rev. Lett. 2018, 121, 059901.. [Google Scholar] [CrossRef] [PubMed]
- Hall, A.; Gow, A.D.; Byrnes, C.T. Bayesian analysis of LIGO-Virgo mergers: Primordial vs. astrophysical black hole populations. Phys. Rev. D 2020, 102, 123524. [Google Scholar] [CrossRef]
- Jedamzik, K. Primordial Black Hole Dark Matter and the LIGO/Virgo observations. J. Cosmol. Astropart. Phys. 2020, 9, 022. [Google Scholar] [CrossRef]
- De Luca, V.; Franciolini, G.; Pani, P.; Riotto, A. Primordial Black Holes Confront LIGO/Virgo data: Current situation. J. Cosmol. Astropart. Phys. 2020, 6, 044. [Google Scholar] [CrossRef]
- Franciolini, G.; Baibhav, V.; De Luca, V.; Ng, K.K.Y.; Wong, K.W.K.; Berti, E.; Pani, P.; Riotto, A.; Vitale, S. Searching for a subpopulation of primordial black holes in LIGO-Virgo gravitational-wave data. Phys. Rev. D 2022, 105, 083526. [Google Scholar] [CrossRef]
- Romero-Rodriguez, A.; Martinez, M.; Pujolàs, O.; Sakellariadou, M.; Vaskonen, V. Search for a Scalar Induced Stochastic Gravitational Wave Background in the Third LIGO-Virgo Observing Run. Phys. Rev. Lett. 2022, 128, 051301. [Google Scholar] [CrossRef] [PubMed]
- Ferrarese, L.; Ford, H. Supermassive black holes in galactic nuclei: Past, present and future research. Space Sci. Rev. 2005, 116, 523–624. [Google Scholar] [CrossRef]
- Gultekin, K.; Richstone, D.O.; Gebhardt, K.; Lauer, T.R.; Tremaine, S.; Aller, M.C.; Bender, R.; Dressler, A.; Faber, S.M.; Filippenko, A.V.; et al. The M-sigma and M-L Relations in Galactic Bulges and Determinations of their Intrinsic Scatter. Astrophys. J. 2009, 698, 198–221. [Google Scholar] [CrossRef]
- Kormendy, J.; Ho, L.C. Coevolution (Or Not) of Supermassive Black Holes and Host Galaxies. Ann. Rev. Astron. Astrophys. 2013, 51, 511–653. [Google Scholar] [CrossRef]
- Ali-Haïmoud, Y.; Kamionkowski, M. Cosmic microwave background limits on accreting primordial black holes. Phys. Rev. D 2017, 95, 043534. [Google Scholar] [CrossRef]
- Bean, R.; Magueijo, J. Could supermassive black holes be quintessential primordial black holes? Phys. Rev. D 2002, 66, 063505. [Google Scholar] [CrossRef]
- Kawasaki, M.; Kusenko, A.; Yanagida, T.T. Primordial seeds of supermassive black holes. Phys. Lett. B 2012, 711, 1–5. [Google Scholar] [CrossRef]
- Clesse, S.; García-Bellido, J. The clustering of massive Primordial Black Holes as Dark Matter: Measuring their mass distribution with Advanced LIGO. Phys. Dark Univ. 2017, 15, 142–147. [Google Scholar] [CrossRef]
- Clesse, S.; García-Bellido, J. Seven Hints for Primordial Black Hole Dark Matter. Phys. Dark Univ. 2018, 22, 137–146. [Google Scholar] [CrossRef]
- Serpico, P.D.; Poulin, V.; Inman, D.; Kohri, K. Cosmic microwave background bounds on primordial black holes including dark matter halo accretion. Phys. Rev. Res. 2020, 2, 023204. [Google Scholar] [CrossRef]
- Nakama, T.; Suyama, T.; Yokoyama, J. Supermassive black holes formed by direct collapse of inflationary perturbations. Phys. Rev. D 2016, 94, 103522. [Google Scholar] [CrossRef]
- Nakama, T.; Carr, B.; Silk, J. Limits on primordial black holes from μ distortions in cosmic microwave background. Phys. Rev. D 2018, 97, 043525. [Google Scholar] [CrossRef]
- Carr, B.; Silk, J. Primordial Black Holes as Generators of Cosmic Structures. Mon. Not. Roy. Astron. Soc. 2018, 478, 3756–3775. [Google Scholar] [CrossRef]
- Inman, D.; Ali-Haïmoud, Y. Early structure formation in primordial black hole cosmologies. Phys. Rev. D 2019, 100, 083528. [Google Scholar] [CrossRef]
- Greene, J.E.; Strader, J.; Ho, L.C. Intermediate-Mass Black Holes. Ann. Rev. Astron. Astrophys. 2020, 58, 257–312. [Google Scholar] [CrossRef]
- Carr, B.; Kuhnel, F.; Visinelli, L. Constraints on Stupendously Large Black Holes. Mon. Not. Roy. Astron. Soc. 2021, 501, 2029–2043. [Google Scholar] [CrossRef]
- Liu, B.; Bromm, V. Accelerating Early Massive Galaxy Formation with Primordial Black Holes. Astrophys. J. Lett. 2022, 937, L30. [Google Scholar] [CrossRef]
- Goncharov, B.; Shannon, R.M.; Reardon, D.J.; Hobbs, G.; Zic, A.; Bailes, M.; Curyło, M.; Dai, S.; Kerr, M.; Lower, M.E.; et al. On the Evidence for a Common—Spectrum Process in the Search for the Nanohertz Gravitational—Wave Background with the Parkes Pulsar Timing Array. Astrophys. J. Lett. 2021, 917, L19. [Google Scholar] [CrossRef]
- Chen, S.; Caballero, R.N.; Guo, Y.J.; Chalumeau, A.; Liu, K.; Shaifullah, G.; Lee, K.J.; Babak, S.; Desvignes, G.; Parthasarathy, A.; et al. Common-red-signal analysis with 24-yr high-precision timing of the European Pulsar Timing Array: Inferences in the stochastic gravitational-wave background search. Mon. Not. Roy. Astron. Soc. 2021, 508, 4970–4993. [Google Scholar] [CrossRef]
- Antoniadis, J.; Arumugam, P.; Arumugam, S.; Babak, S.; Bagchi, M.; Nielsen, A.S.B.; Bassa, C.G.; Bathula, A.; Berthereau, A.; Bonetti, M.; et al. The second data release from the European Pulsar Timing Array—III. Search for gravitational wave signals. Astron. Astrophys. 2023, 678, A50. [Google Scholar] [CrossRef]
- Reardon, D.J.; Zic, A.; Shannon, R.M.; Hobbs, G.B.; Bailes, M.; Di Marco, V.; AKapur, g.; Rogers, A.F.; Thrane, E.; Askew, J.; et al. Search for an Isotropic Gravitational-wave Background with the Parkes Pulsar Timing Array. Astrophys. J. Lett. 2023, 951, L6. [Google Scholar] [CrossRef]
- Xu, H.; Chen, S.; Guo, Y.; Jiang, J.; Wang, B.; Xu, J.; Xue, Z.; Caballero, R.N.; Yuan, J.; Xu, Y.; et al. Searching for the Nano-Hertz Stochastic Gravitational Wave Background with the Chinese Pulsar Timing Array Data Release I. Res. Astron. Astrophys. 2023, 23, 075024. [Google Scholar] [CrossRef]
- Agazie, G.; Anumarlapudi, A.; Archibald, A.M.; Baker, P.T.; Bécsy, B.; Blecha, L.; Bonilla, A.; Brazier, A.; Brook, P.R.; Burke-Spolaor, S.; et al. The NANOGrav 15 yr Data Set: Constraints on Supermassive Black Hole Binaries from the Gravitational-wave Background. Astrophys. J. Lett. 2023, 952, L37. [Google Scholar] [CrossRef]
- Agazie, G.; Anumarlapudi, A.; Archibald, A.M.; Arzoumanian, Z.; Baker, P.T.; Bécsy, B.; Blecha, L.; Brazier, A.; Brook, P.R.; Burke-Spolaor, S.; et al. The NANOGrav 15 yr Data Set: Evidence for a Gravitational-wave Background. Astrophys. J. Lett. 2023, 951, L8. [Google Scholar] [CrossRef]
- Valli, R.; Tiede, C.; Vigna-Gómez, A.; Cuadra, J.; Siwek, M.; Ma, J.Z.; D’Orazio, D.J.; Zrake, J.; de Mink, S.E. Long-term Evolution of Binary Orbits Induced by Circumbinary Disks. arXiv 2024. http://arxiv.org/abs/2401.17355.
- Alonso-Álvarez, G.; Cline, J.M.; Dewar, C. Self-interacting dark matter solves the final parsec problem of supermassive black hole mergers. arXiv 2024. http://arxiv.org/abs/2401.14450.
- Buchmuller, W. Metastable strings and grand unification. arXiv 2024. http://arxiv.org/abs/2401.13333.
- Winkler, M.W.; Freese, K. Origin of the Stochastic Gravitational Wave Background: First-Order Phase Transition vs. Black Hole Mergers. arXiv 2024. http://arxiv.org/abs/2401.13729.
- Conaci, A.; Delle Rose, L.; Dev, P.S.B.; Ghoshal, A. Slaying Axion-Like Particles via Gravitational Waves and Primordial Black Holes from Supercooled Phase Transition. arXiv 2024. http://arxiv.org/abs/2401.09411.
- Choudhury, S.; Karde, A.; Panda, S.; Sami, M. Realisation of the ultra-slow roll phase in Galileon inflation and PBH overproduction. arXiv 2024. http://arxiv.org/abs/2401.10925.
- Padmanabhan, H.; Loeb, A. Constraints on Supermassive Black Hole Binaries from JWST and NANOGrav. arXiv 2024. http://arxiv.org/abs/2401.04161.
- Hu, L.; Cai, R.G.; Wang, S.J. Distinctive GWBs from eccentric inspiraling SMBH binaries with a DM spike. arXiv 2023. http://arxiv.org/abs/2312.14041.
- Lacy, M.; Engholm, A.; Farrah, D.; Ejercito, K. Constraints on Cosmological Coupling from the Accretion History of Supermassive Black Holes. Astrophys. J. Lett. 2024, 961, L33. [Google Scholar] [CrossRef]
- Eichhorn, A.; Fernandes, P.G.S.; Held, A.; Silva, H.O. Breaking black-hole uniqueness at supermassive scales. arXiv 2023. http://arxiv.org/abs/2312.11430.
- Zhang, F. Final parsec evolution in the presence of intermediate mass black holes. arXiv 2023. http://arxiv.org/abs/2312.11847.
- Sato-Polito, G.; Zaldarriaga, M.; Quataert, E. Where are NANOGrav’s big black holes? arXiv 2023. http://arxiv.org/abs/2312.06756.
- Liu, B.; Bromm, V. Impact of primordial black holes on the formation of the first stars and galaxies. arXiv 2023. http://arxiv.org/abs/2312.04085.
- Ellis, J.; Fairbairn, M.; Urrutia, J.; Vaskonen, V. Probing supermassive black hole seed scenarios with gravitational wave measurements. arXiv 2023. http://arxiv.org/abs/2312.02983.
- Huang, H.L.; Jiang, J.Q.; Piao, Y.S. Merger rate of supermassive primordial black hole binaries. arXiv 2023. http://arxiv.org/abs/2312.00338.
- Bromley, B.C.; Sandick, P.; Shams Es Haghi, B. Supermassive Black Hole Binaries in Ultralight Dark Matter. arXiv 2023. http://arxiv.org/abs/2311.18013.
- Davis, M.C.; Grace, K.E.; Trump, J.R.; Runnoe, J.C.; Henkel, A.; Blecha, L.; Brandt, W.N.; Casey-Clyde, J.A.; Charisi, M.; Witt, C. Reliable Identification of Binary Supermassive Black Holes from Rubin Observatory Time-Domain Monitoring. arXiv 2023. http://arxiv.org/abs/2311.10851.
- Harris, C.; Gultekin, K. Connecting Core Galaxy Properties to the Massive Black Hole Binary Population. arXiv 2023. http://arxiv.org/abs/2311.04877.
- Koo, H.; Bak, D.; Park, I.; Hong, S.E.; Lee, J.W. Final parsec problem of black hole mergers and ultralight dark matter. arXiv 2023. http://arxiv.org/abs/2311.03412.
- Ramazanov, S. Spectrum of gravitational waves from long-lasting primordial sources. arXiv 2023. http://arxiv.org/abs/2310.19148.
- D’Orazio, D.J.; Charisi, M. Observational Signatures of Supermassive Black Hole Binaries. arXiv 2023. http://arxiv.org/abs/2310.16896.
- Kasai, K.; Kawasaki, M.; Kitajima, N.; Murai, K.; Neda, S.; Takahashi, F. Primordial Origin of Supermassive Black Holes from Axion Bubbles. arXiv 2023. http://arxiv.org/abs/2310.13333.
- Stamou, I.; Clesse, S. Primordial Black Holes without fine-tuning from a light stochastic spectator field. arXiv 2023. http://arxiv.org/abs/2310.04174.
- Dolgov, A.D. Tension between HST/JWST and ΛCDM Cosmology, PBH, and Antimatter in the Galaxy. In Proceedings of the 14th Frascati workshop on Multifrequency Behaviour of High Energy Cosmic Sources, Palermo, Italy, 12–17 June 2023. [Google Scholar]
- Huang, F.; Bi, Y.C.; Cao, Z.; Huang, Q.G. Impacts of Gravitational-Wave Background from Supermassive Black Hole Binaries on the Detection of Compact Binaries by LISA. arXiv 2023. http://arxiv.org/abs/2309.14045.
- Evans, A.E.; Blecha, L.; Bhowmick, A.K. Building Semi-Analytic Black Hole Seeding Models Using IllustrisTNG Host Galaxies. arXiv 2023. http://arxiv.org/abs/2309.11324.
- Gardiner, E.C.; Kelley, L.Z.; Lemke, A.M.; Mitridate, A. Beyond the Background: Gravitational Wave Anisotropy and Continuous Waves from Supermassive Black Hole Binaries. arXiv 2023. http://arxiv.org/abs/2309.07227.
- Serra, F. Black Holes through the Lenses of Effective Field Theory. Ph.D. Thesis, Scuola Normale Superiore, Pisa, Italy, 2023. [Google Scholar] [CrossRef]
- Cyr, B.; Kite, T.; Chluba, J.; Hill, J.C.; Jeong, D.; Acharya, S.K.; Bolliet, B.; Patil, S.P. Disentangling the primordial nature of stochastic gravitational wave backgrounds with CMB spectral distortions. arXiv 2023. http://arxiv.org/abs/2309.02366.
- Agazie, G. et al. [The International Pulsar Timing Array Collaboration] Comparing recent PTA results on the nanohertz stochastic gravitational wave background. arXiv 2023. http://arxiv.org/abs/2309.00693.
- Flores, M.M.; Kusenko, A.; Pearce, L.; Perez-Gonzalez, Y.F.; White, G. Testing high scale supersymmetry via second order gravitational waves. Phys. Rev. D 2023, 108, 123002. [Google Scholar] [CrossRef]
- Kawasaki, M.; Murai, K. Enhancement of gravitational waves at Q-ball decay including non-linear density perturbations. J. Cosmol. Astropart. Phys. 2024, 1, 050. [Google Scholar] [CrossRef]
- Ellis, J.; Fairbairn, M.; Franciolini, G.; Hütsi, G.; Iovino, A.; Lewicki, M.; Raidal, M.; Urrutia, J.; Vaskonen, V.; Veermäe, H. What is the source of the PTA GW signal? Phys. Rev. D 2024, 109, 023522. [Google Scholar] [CrossRef]
- Bhaumik, N.; Jain, R.K.; Lewicki, M. Ultralow mass primordial black holes in the early Universe can explain the pulsar timing array signal. Phys. Rev. D 2023, 108, 123532. [Google Scholar] [CrossRef]
- Babichev, E.; Gorbunov, D.; Ramazanov, S.; Samanta, R.; Vikman, A. NANOGrav spectral index γ=3 from melting domain walls. Phys. Rev. D 2023, 108, 123529. [Google Scholar] [CrossRef]
- Buchmuller, W.; Domcke, V.; Schmitz, K. Metastable cosmic strings. J. Cosmol. Astropart. Phys. 2023, 11, 020. [Google Scholar] [CrossRef]
- Gouttenoire, Y. First-Order Phase Transition Interpretation of Pulsar Timing Array Signal Is Consistent with Solar-Mass Black Holes. Phys. Rev. Lett. 2023, 131, 171404. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.M.; Chen, Z.C.; Huang, Q.G. Cosmological Interpretation for the Stochastic Signal in Pulsar Timing Arrays. arXiv 2023. http://arxiv.org/abs/2307.03141.
- Zhang, C.; Dai, N.; Gao, Q.; Gong, Y.; Jiang, T.; Lu, X. Detecting new fundamental fields with pulsar timing arrays. Phys. Rev. D 2023, 108, 104069. [Google Scholar] [CrossRef]
- Gouttenoire, Y.; Trifinopoulos, S.; Valogiannis, G.; Vanvlasselaer, M. Scrutinizing the Primordial Black Holes Interpretation of PTA Gravitational Waves and JWST Early Galaxies. arXiv 2023. http://arxiv.org/abs/2307.01457.
- Bi, Y.C.; Wu, Y.M.; Chen, Z.C.; Huang, Q.G. Implications for the supermassive black hole binaries from the NANOGrav 15-year data set. Sci. China Phys. Mech. Astron. 2023, 66, 120402. [Google Scholar] [CrossRef]
- Broadhurst, T.; Chen, C.; Liu, T.; Zheng, K.F. Binary Supermassive Black Holes Orbiting Dark Matter Solitons: From the Dual AGN in UGC4211 to NanoHertz Gravitational Waves. arXiv 2023. http://arxiv.org/abs/2306.17821.
- Huang, H.L.; Cai, Y.; Jiang, J.Q.; Zhang, J.; Piao, Y.S. Supermassive primordial black holes in multiverse: For nano-Hertz gravitational wave and high-redshift JWST galaxies. arXiv 2023. http://arxiv.org/abs/2306.17577.
- Ellis, J.; Lewicki, M.; Lin, C.; Vaskonen, V. Cosmic superstrings revisited in light of NANOGrav 15-year data. Phys. Rev. D 2023, 108, 103511. [Google Scholar] [CrossRef]
- Ellis, J.; Fairbairn, M.; Hütsi, G.; Raidal, J.; Urrutia, J.; Vaskonen, V.; Veermäe, H. Gravitational waves from supermassive black hole binaries in light of the NANOGrav 15-year data. Phys. Rev. D 2024, 109, L021302. [Google Scholar] [CrossRef]
- Addazi, A.; Cai, Y.F.; Marciano, A.; Visinelli, L. Have pulsar timing array methods detected a cosmological phase transition? Phys. Rev. D 2024, 109, 015028. [Google Scholar] [CrossRef]
- Furusawa, K.; Tashiro, H.; Yokoyama, S.; Ichiki, K. Probing the Mass Relation between Supermassive Black Holes and Dark Matter Halos at High Redshifts by Gravitational Wave Experiments. Astrophys. J. 2023, 959, 117. [Google Scholar] [CrossRef]
- Chen, Z.C.; Li, J.; Liu, L.; Yi, Z. Probing the speed of scalar-induced gravitational waves with pulsar timing arrays. arXiv 2024. http://arxiv.org/abs/2401.09818.
- Li, H.J.; Zhou, Y.F. Gravitational waves from axion domain walls in double level crossings. arXiv 2024. http://arxiv.org/abs/2401.09138.
- Liu, J. Distinguishing the nanohertz gravitational-wave sources by the observations of compact dark matter subhalos. Phys. Rev. D 2023, 108, 123544. [Google Scholar] [CrossRef]
- Chen, Z.C.; Li, S.L.; Wu, P.; Yu, H. NANOGrav hints for first-order confinement-deconfinement phase transition in different QCD-matter scenarios. arXiv 2023. http://arxiv.org/abs/2312.01824.
- Kitajima, N.; Lee, J.; Takahashi, F.; Yin, W. Stability of domain walls with inflationary fluctuations under potential bias, and gravitational wave signatures. arXiv 2023. http://arxiv.org/abs/2311.14590.
- Bagui, E. et al. [LISA CosmologyWorking Group] Primordial black holes and their gravitational-wave signatures. arXiv 2023. http://arxiv.org/abs/2310.19857.
- Liu, L.; Wu, Y.; Chen, Z.C. Simultaneously probing the sound speed and equation of state of the early Universe with pulsar timing arrays. arXiv 2023. http://arxiv.org/abs/2310.16500.
- Chung, D.J.H.; Tadepalli, S.C. Power spectrum in the chaotic regime of axionic blue isocurvature perturbations. Phys. Rev. D 2024, 109, 023539. [Google Scholar] [CrossRef]
- King, S.F.; Roshan, R.; Wang, X.; White, G.; Yamazaki, M. Quantum gravity effects on dark matter and gravitational waves. Phys. Rev. D 2024, 109, 024057. [Google Scholar] [CrossRef]
- Zhu, M.; Ye, G.; Cai, Y. Pulsar timing array observations as possible hints for nonsingular cosmology. Eur. Phys. J. C 2023, 83, 816. [Google Scholar] [CrossRef]
- Liu, L.; Chen, Z.C.; Huang, Q.G. Probing the equation of state of the early Universe with pulsar timing arrays. J. Cosmol. Astropart. Phys. 2023, 11, 071. [Google Scholar] [CrossRef]
- Ahmadvand, M.; Bian, L.; Shakeri, S. Heavy QCD axion model in light of pulsar timing arrays. Phys. Rev. D 2023, 108, 115020. [Google Scholar] [CrossRef]
- Zhang, Z.; Cai, C.; Su, Y.H.; Wang, S.; Yu, Z.H.; Zhang, H.H. Nano-Hertz gravitational waves from collapsing domain walls associated with freeze-in dark matter in light of pulsar timing array observations. Phys. Rev. D 2023, 108, 095037. [Google Scholar] [CrossRef]
- Cannizzaro, E.; Franciolini, G.; Pani, P. Novel tests of gravity using nano-Hertz stochastic gravitational-wave background signals. arXiv 2023. http://arxiv.org/abs/2307.11665.
- Jin, J.H.; Chen, Z.C.; Yi, Z.; You, Z.Q.; Liu, L.; Wu, Y. Confronting sound speed resonance with pulsar timing arrays. J. Cosmol. Astropart. Phys. 2023, 09, 016. [Google Scholar] [CrossRef]
- Servant, G.; Simakachorn, P. Constraining postinflationary axions with pulsar timing arrays. Phys. Rev. D 2023, 108, 123516. [Google Scholar] [CrossRef]
- Li, S.P.; Xie, K.P. Collider test of nano-Hertz gravitational waves from pulsar timing arrays. Phys. Rev. D 2023, 108, 055018. [Google Scholar] [CrossRef]
- Gouttenoire, Y.; Vitagliano, E. Domain wall interpretation of the PTA signal confronting black hole overproduction. arXiv 2023. http://arxiv.org/abs/2306.17841.
- Blasi, S.; Mariotti, A.; Rase, A.; Sevrin, A. Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction. J. High Energy Phys. 2023, 11, 169. [Google Scholar] [CrossRef]
- Vagnozzi, S. Inflationary interpretation of the stochastic gravitational wave background signal detected by pulsar timing array experiments. J. High Energy Astrophys. 2023, 39, 81–98. [Google Scholar] [CrossRef]
- Franciolini, G.; Iovino, A., Jr.; Vaskonen, V.; Veermae, H. Recent Gravitational Wave Observation by Pulsar Timing Arrays and Primordial Black Holes: The Importance of Non–Gaussianities. Phys. Rev. Lett. 2023, 131, 201401. [Google Scholar] [CrossRef]
- Athron, P.; Fowlie, A.; Lu, C.T.; Morris, L.; Wu, L.; Wu, Y.; Xu, Z. Can supercooled phase transitions explain the gravitational wave background observed by pulsar timing arrays? arXiv 2023. http://arxiv.org/abs/2306.17239.
- Zeng, Z.M.; Liu, J.; Guo, Z.K. Enhanced curvature perturbations from spherical domain walls nucleated during inflation. Phys. Rev. D 2023, 108, 063005. [Google Scholar] [CrossRef]
- Gonzalez, D.; Kitajima, N.; Takahashi, F.; Yin, W. Stability of domain wall network with initial inflationary fluctuations and its implications for cosmic birefringence. Phys. Lett. B 2023, 843, 137990. [Google Scholar] [CrossRef]
- Blasi, S.; Mariotti, A.; Rase, A.; Sevrin, A.; Turbang, K. Friction on ALP domain walls and gravitational waves. J. Cosmol. Astropart. Phys. 2023, 4, 008. [Google Scholar] [CrossRef]
- Chattopadhyay, P.; Chaudhuri, A.; Khlopov, M.Y. Dark Matter from Evaporating PBH dominated in the Early Universe. arXiv 2022. http://arxiv.org/abs/2209.11288.
- Wu, Y.; Xie, K.P.; Zhou, Y.L. Classification of Abelian domain walls. Phys. Rev. D 2022, 106, 075019. [Google Scholar] [CrossRef]
- Ferreira, R.Z.; Notari, A.; Pujolas, O.; Rompineve, F. Gravitational waves from domain walls in Pulsar Timing Array datasets. J. Cosmol. Astropart. Phys. 2023, 2, 001. [Google Scholar] [CrossRef]
- Wu, Y.; Xie, K.P.; Zhou, Y.L. Collapsing domain walls beyond Z2. Phys. Rev. D 2022, 105, 095013. [Google Scholar] [CrossRef]
- Ashoorioon, A.; Rezazadeh, K.; Rostami, A. NANOGrav signal from the end of inflation and the LIGO mass and heavier primordial black holes. Phys. Lett. B 2022, 835, 137542. [Google Scholar] [CrossRef]
- Sun, S.; Yang, X.Y.; Zhang, Y.L. Pulsar timing residual induced by wideband ultralight dark matter with spin 0,1,2. Phys. Rev. D 2022, 106, 066006. [Google Scholar] [CrossRef]
- Babichev, E.; Gorbunov, D.; Ramazanov, S.; Vikman, A. Gravitational shine of dark domain walls. J. Cosmol. Astropart. Phys. 2022, 4, 028. [Google Scholar] [CrossRef]
- Benetti, M.; Graef, L.L.; Vagnozzi, S. Primordial gravitational waves from NANOGrav: A broken power-law approach. Phys. Rev. D 2022, 105, 043520. [Google Scholar] [CrossRef]
- Kirillov, A.A.; Rubin, S.G. On Mass Spectra of Primordial Black Holes. Front. Astron. Space Sci. 2021, 8, 777661. [Google Scholar] [CrossRef]
- Brandenburg, A.; Clarke, E.; He, Y.; Kahniashvili, T. Can we observe the QCD phase transition-generated gravitational waves through pulsar timing arrays? Phys. Rev. D 2021, 104, 043513. [Google Scholar] [CrossRef]
- Sakharov, A.S.; Eroshenko, Y.N.; Rubin, S.G. Looking at the NANOGrav signal through the anthropic window of axionlike particles. Phys. Rev. D 2021, 104, 043005. [Google Scholar] [CrossRef]
- Arzoumanian, Z. et al. [The NANOGrav Collaboration] The NANOGrav 12.5 yr Data Set: Search for an Isotropic Stochastic Gravitational-wave Background. Astrophys. J. Lett. 2020, 905, L34. [Google Scholar] [CrossRef]
- Nojiri, S.; Odintsov, S.D.; Tretyakov, P.V. Dark energy from modified F(R)-scalar-Gauss Bonnet gravity. Phys. Lett. B 2007, 651, 224–231. [Google Scholar] [CrossRef]
- Nojiri, S.; Odintsov, S.D.; Oikonomou, V.K. Modified Gravity Theories on a Nutshell: Inflation, Bounce and Late-time Evolution. Phys. Rept. 2017, 692, 1–104. [Google Scholar] [CrossRef]
- Rubin, S.G. Scalar field localization on deformed extra space. Eur. Phys. J. 2015, C75, 333. [Google Scholar] [CrossRef]
- Bronnikov, K.A.; Budaev, R.I.; Grobov, A.V.; Dmitriev, A.E.; Rubin, S.G. Inhomogeneous compact extra dimensions. J. Cosmol. Astropart. Phys. 2017, 10, 001. [Google Scholar] [CrossRef]
- Rubin, S.G. Inhomogeneous extra space as a tool for the top-down approach. Adv. High Energy Phys. 2018, 2018, 2767410. [Google Scholar] [CrossRef]
- Bronnikov, K.A.; Popov, A.A.; Rubin, S.G. Multi-scale hierarchy from multidimensional gravity. Phys. Dark Univ. 2023, 42, 101378. [Google Scholar] [CrossRef]
- Nojiri, S.; Odintsov, S.D. Introduction to modified gravity and gravitational alternative for dark energy. eConf 2006, C0602061, 06. [Google Scholar] [CrossRef]
- Sotiriou, T.P.; Faraoni, V. f(R) Theories Of Gravity. Rev. Mod. Phys. 2010, 82, 451–497. [Google Scholar] [CrossRef]
- Arbuzova, E.; Dolgov, A.; Singh, R. R2-Cosmology and New Windows for Superheavy Dark Matter. Symmetry 2021, 13, 877. [Google Scholar] [CrossRef]
- De Felice, A.; Tsujikawa, S. f(R) theories. Living Rev. Rel. 2010, 13, 3. [Google Scholar] [CrossRef]
- Bamba, K.; Makarenko, A.N.; Myagky, A.N.; Nojiri, S.; Odintsov, S.D. Bounce cosmology from F(R) gravity and F(R) bigravity. J. Cosmol. Astropart. Phys. 2014, 1, 8. [Google Scholar] [CrossRef]
- Sokolowski, L.M. Metric gravity theories and cosmology:II. Stability of a ground state in f(R) theories. Class. Quant. Grav. 2007, 24, 3713–3734. [Google Scholar] [CrossRef]
- Olasagasti, I.; Vilenkin, A. Gravity of higher-dimensional global defects. Phys. Rev. D 2000, 62, 044014. [Google Scholar] [CrossRef]
- Cho, I.; Vilenkin, A. Gravity of superheavy higher-dimensional global defects. Phys. Rev. D 2003, 68, 025013. [Google Scholar] [CrossRef]
- Shimono, S.; Chiba, T. Numerical solutions of inflating higher dimensional global defects. Phys. Rev. D 2005, 71, 084002. [Google Scholar] [CrossRef]
- Ringeval, C.; Peter, P.; Uzan, J.P. Stability of six-dimensional hyperstring braneworlds. Phys. Rev. D 2005, 71, 104018. [Google Scholar] [CrossRef]
- Gregory, R. Nonsingular Global String Compactifications. Phys. Rev. Lett. 2000, 84, 2564–2567. [Google Scholar] [CrossRef] [PubMed]
- Gherghetta, T.; Shaposhnikov, M. Localizing Gravity on a Stringlike Defect in Six Dimensions. Phys. Rev. Lett. 2000, 85, 240–243. [Google Scholar] [CrossRef] [PubMed]
- Bronnikov, K.; Meierovich, B. Global strings in extra dimensions: A full map of solutions, matter trapping and the hierarchy problem. J. Exp. Theor. Phys. 2008, 106, 247–264. [Google Scholar] [CrossRef]
- Akrami, Y. et al. [Planck Collaboration] Planck 2018 results. X. Constraints on inflation. Astron. Astrophys. 2020, 641, A10. [Google Scholar] [CrossRef]
- Depta, P.F.; Schmidt-Hoberg, K.; Schwaller, P.; Tasillo, C. Do pulsar timing arrays observe merging primordial black holes? arXiv 2023. http://arxiv.org/abs/2306.17836.
- Rubin, S.G.; Fabris, J.C. Distortion of extra dimensions in the inflationary Multiverse. arXiv 2021. http://arxiv.org/abs/2109.08373.
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Popov, A.A.; Rubin, S.G.; Sakharov, A.S. Primordial Black Holes from Spatially Varying Cosmological Constant Induced by Field Fluctuations in Extra Dimensions. Universe 2024, 10, 166. https://doi.org/10.3390/universe10040166
Popov AA, Rubin SG, Sakharov AS. Primordial Black Holes from Spatially Varying Cosmological Constant Induced by Field Fluctuations in Extra Dimensions. Universe. 2024; 10(4):166. https://doi.org/10.3390/universe10040166
Chicago/Turabian StylePopov, Arkady A., Sergey G. Rubin, and Alexander S. Sakharov. 2024. "Primordial Black Holes from Spatially Varying Cosmological Constant Induced by Field Fluctuations in Extra Dimensions" Universe 10, no. 4: 166. https://doi.org/10.3390/universe10040166
APA StylePopov, A. A., Rubin, S. G., & Sakharov, A. S. (2024). Primordial Black Holes from Spatially Varying Cosmological Constant Induced by Field Fluctuations in Extra Dimensions. Universe, 10(4), 166. https://doi.org/10.3390/universe10040166