The Changes in Multiscale Solar Wind Fluctuations on the Path from the Sun to Earth
Abstract
:1. Introduction
2. Data and Methods
2.1. Data Source
2.2. Selection of Events near the Sun–Earth Line
2.3. Data Tracing and Correlation Analysis
2.4. Intercalibration
2.5. Statistical Analysis
2.6. Fluctuation Level Analysis
2.7. Intermittency Analysis
3. Results
3.1. Correlation Analysis
3.2. Histogram Analysis
3.3. Fluctuation Analysis
3.4. Analysis of the 4th-Order Moment of the PDF
4. Discussion
5. Conclusions
- On average, high correlation between the time series of the SW plasma and IMF parameters was observed at distances of both 0.1 and 0.5 AU (the average value of the correlation coefficient exceeded 0.5);
- The bulk speed underwent the smallest changes (average correlation coefficient was about 0.8), and the IMF magnitude and proton density were the most variable parameters;
- The correlation coefficient may significantly vary for different large-scale types of SW;
- Mainly, the relative fluctuations stayed unchanged at distances over 0.1 and 0.5 AU for all parameters, regardless of the changes in their absolute amplitudes;
- Local fluctuation levels varied slightly with distance and may change in different types of SW streams or in some plasma structures;
- The characteristics of fluctuations of the same plasma volume observed at different distances from the Sun differed much less than those observed on one spacecraft but for different time intervals;
- The tendency of growth of PDFs’ non-Gaussianity to smaller scales was preserved over different distances, which may indicate that the level of intermittency also stays unchanged when the SW streams propagate to the Earth’s orbit.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Marsch, E. Solar Wind Models from the Sun to 1 AU: Constraints by in Situ and Remote Sensing Measurements. Space Sci. Rev. 1999, 87, 1–24. [Google Scholar] [CrossRef]
- Verscharen, D.; Klein, K.G.; Maruca, B.A. The multi-scale nature of the solar wind. Living Rev. Sol. Phys. 2019, 16, 5. [Google Scholar] [CrossRef] [PubMed]
- Petrukovich, A.A.; Malova, H.V.; Popov, V.Y.; Maiewski, E.V.; Izmodenov, V.V.; Katushkina, O.A.; Vinogradov, A.A.; Riazantseva, M.; Rakhmanova, L.S.; Podladchikova, T.V.; et al. Modern view of the solar wind from micro to macro scales. Phys. Uspekhi 2020, 63, 801–811. [Google Scholar] [CrossRef]
- Feldman, W.C.; Asbrige, J.R.; Bame, S.J.; Gosling, J.T. Longterm variations of selected solar wind properties: IMP 6, 7 and 8 results. J. Geophys. Res. Space Phys. 1978, 83, 2177–2189. [Google Scholar] [CrossRef]
- Schwenn, R. Solar Wind Sources and Their Variations over the Solar Cycle. In Solar Dynamics and Its Effects on the Heliosphere and Earth; Baker, D.N., Klecker, B., Schwartz, S.J., Schwenn, R., Von Steiger, R., Eds.; Space Sciences Series of ISSI; Springer: New York, NY, USA, 2007; Volume 22, pp. 51–76. [Google Scholar] [CrossRef]
- Yermolaev, Y.I.; Nikolaeva, N.S.; Lodkina, I.G.; Yermolaev, M.Y. Catalog of Large-Scale Solar Wind Phenomena during 1976–2000. Cosm. Res. 2009, 47, 81–94. [Google Scholar] [CrossRef]
- Kilpua, E.K.J.; Balogh, A.; Von Steiger, R.; Liu, Y.D. Geoeffective Properties of Solar Transients and Stream Interaction Regions. Space Sci. Rev. 2017, 212, 1271–1314. [Google Scholar] [CrossRef]
- Marsch, E. MHD Turbulence in the Solar Wind. In Physics of the Inner Heliosphere II. Particles, Waves and Turbulence; Schwenn, R., Marsch, E., Eds.; Physics and Chemistry in Space; Springer: Berlin/Heidelberg, Germany, 1991; Volume 21, pp. 159–241. [Google Scholar] [CrossRef]
- Bavassano, B. The solar wind: A turbulent magnetohydrodynamic medium. Space Sci. Rev. 1996, 78, 29–32. [Google Scholar] [CrossRef]
- Tsurutani, B.T.; Ho, C.M. A review of discontinuities and Alfvén waves in interplanetary space: Ulysses results. Rev. Geophys. 1999, 37, 517–541. [Google Scholar] [CrossRef]
- Borovsky, J.E. On the flux-tube texture of the solar wind: Strands of the magnetic carpet at 1 AU? J. Geophys. Res. Space Phys. 2008, 113, A08110. [Google Scholar] [CrossRef]
- Hudson, P.D. Discontinuities in an anisotropic plasma and their identification in the solar wind. Planet. Space Sci. 1970, 18, 1611–1622. [Google Scholar] [CrossRef]
- Taylor, G.I. The Spectrum of Turbulence. Proc. R. Soc. Lond. Ser. Math. Phys. Sci. 1997, 164, 476–490. [Google Scholar] [CrossRef]
- Burlaga, L.; Sittler, E.; Mariani, F.; Schwenn, R. Magnetic loop behind an interplanetary shock: Voyager, Helios, and IMP 8 observations. J. Geophys. Res. 1981, 86, 6673–6684. [Google Scholar] [CrossRef]
- Prise, A.J.; Harra, L.K.; Matthews, S.A.; Arridge, C.S.; Achilleos, N. Analysis of a coronal mass ejection and corotating interaction region as they travel from the Sun passing Venus, Earth, Mars, and Saturn. J. Geophys. Res. Space Phys. 2015, 120, 1566–1588. [Google Scholar] [CrossRef]
- Lugaz, N.; Winslow, R.M.; Farrugia, C.J. Evolution of a long-duration coronal mass ejection and its sheath region between Mercury and Earth on 9–14 July 2013. J. Geophys. Res. Space Phys. 2020, 125, e2019JA027213. [Google Scholar] [CrossRef]
- Good, S.W.; Kilpua, E.K.J.; LaMoury, A.T.; Forsyth, R.J.; Eastwood, J.P.; Möstl, C. Self-similarity of ICME flux ropes: Observations by radially aligned spacecraft in the inner heliosphere. J. Geophys. Res. Space Phys. 2019, 124, 4960–4982. [Google Scholar] [CrossRef]
- Möstl, C.; Farrugia, C.J.; Kilpua, E.K.J.; Jian, L.K.; Liu, Y.; Eastwood, J.P.; Harrison, R.A.; Webb, D.F.; Temmer, M.; Odstrcil, D.; et al. Multipoint shock and flux rope analysis of multiple interplanetary coronal mass ejections around 2010 August 1 in the inner heliosphere. Astrophys. J. 2012, 758, 18. [Google Scholar] [CrossRef]
- Möstl, C.; Weiss, A.J.; Reiss, M.A.; Amerstorfer, T.; Bailey, R.L.; Hinterreiter, J.; Bauer, M.; Barnes, D.; Davies, J.A.; Harrison, R.A.; et al. Multipoint Interplanetary Coronal Mass Ejections Observed with Solar Orbiter, BepiColombo, Parker Solar Probe, Wind, and STEREO-A. Astrophys. J. Lett. 2022, 924, L6. [Google Scholar] [CrossRef]
- Bruno, R.; Carbone, V. The Solar Wind as a Turbulence Laboratory. Living Rev. Sol. Phys. 2013, 10, 2. [Google Scholar] [CrossRef]
- Bruno, R.; Carbone, V.; Sorriso-Valvo, L.; Bavassano, B. Radial evolution of solar wind intermittency in the inner heliosphere. J. Geophys. Res. 2003, 108, 1130. [Google Scholar] [CrossRef]
- D’Amicis, R.; Bruno, R.; Pallocchia, G.; Bavassano, B.; Telloni, D.; Carbone, V.; Balogh, A. Radial Evolution of Solar Wind Turbulence during Earth and Ulysses Alignment of 2007 August. Astrophys. J. 2010, 717, 474–480. [Google Scholar] [CrossRef]
- Bruno, R.; Trenchi, L. Radial Dependence of the Frequency Break between Fluid and Kinetic Scales in the Solar Wind Fluctuations. Astrophys. J. Lett. 2014, 787, L24. [Google Scholar] [CrossRef]
- Telloni, D. Spacecraft radial alignments for investigations of the evolution of solar wind turbulence: A review. J. Atmosph. Sol.Ter. Phys. 2023, 242, 105999. [Google Scholar] [CrossRef]
- Alberti, T.; Milillo, A.; Heyner Hadid, L.Z.; Auster, H.-H.; Richter, I.; Narita, Y. The “Singular” Behavior of the Solar Wind Scaling Features during Parker Solar Probe–BepiColombo Radial Alignment. Astrophys. J. 2022, 926, 174. [Google Scholar] [CrossRef]
- Telloni, D.; Sorriso-Valvo, L.; Woodham, L.D.; Panasenco, O.; Velli, M.; Carbone, F.; Zank, G.P.; Bruno, R.; Perrone, D.; Nakanotani, M.; et al. Evolution of Solar Wind Turbulence from 0.1 to 1 au during the First Parker Solar Probe–Solar Orbiter Radial Alignment. Astrophys. J. Lett. 2021, 912, 8. [Google Scholar] [CrossRef]
- Sioulas, N.; Velli, M.; Huang, Z.; Shi, C.; Bowen, T.A.; Chandran, B.D.G.; Liodis, I.; Davis, N.; Bale, S.D.; Horbury, T.S.; et al. On the Evolution of the Anisotropic Scaling of Magnetohydrodynamic Turbulence in the Inner Heliosphere. Astrophys. J. 2023, 951, 12. [Google Scholar] [CrossRef]
- Lepping, R.P.; Acũna, M.H.; Burlaga, L.F.; Farrell, W.M.; Slavin, J.A.; Schatten, K.H.; Mariani, F.; Ness, N.F.; Neubauer, F.M.; Whang, Y.C.; et al. The Wind Magnetic Field Investigation. Space Sci. Rev. 1995, 71, 207–229. [Google Scholar] [CrossRef]
- Lin, R.P.; Anderson, K.A.; Ashford, S.; Carlson, C.; Curtis, D.; Ergun, R.; Larson, D.; McFadden, J.; McCarthy, M.; Parks, G.K.; et al. A Three-Dimensional Plasma and Energetic Particle Investigation for the Wind Spacecraft. Space Sci. Rev. 1995, 71, 125–153. [Google Scholar] [CrossRef]
- Ogilvie, K.W.; Chornay, D.J.; Fritzenreiter, R.J.; Hunsaker, F.; Keller, J.; Lobell, J.; Miller, G.; Scudder, J.D.; Sittler, E.C.; Torbert, R.B.; et al. SWE, a Comprehensive Plasma Instrument for the WIND Spacecraft. Space Sci. Rev. 1995, 71, 55–77. [Google Scholar] [CrossRef]
- Horbury, T.S.; O’Brien, H.; Carrasco Blazquez, I.; Bendyk, M.; Brown, P.; Hudson, R.; Evans, V.; Oddy, T.M.; Carr, C.M.; Beek, T.J.; et al. The Solar Orbiter Magnetometer. Astron. Astrophys. 2020, 642, A9. [Google Scholar] [CrossRef]
- Owen, C.J.; Bruno, R.; Livi, S.; Louarn, P.; Janabi, K.A.; Allegrini, F.; Amoros, C.; Baruah, R.; Barthe, A.; Berthomier, M.; et al. The Solar Orbiter Solar Wind Analyser (SWA) Suite. Astron. Astrophys. 2020, 642, A16. [Google Scholar] [CrossRef]
- Yermolaev, Y.I.; Lodkina, I.G.; Yermolaev, M.Y. Dynamics of large-scale solar-wind streams obtained by the double superposed epoch analysis: 3. Deflection of the velocity vector. Sol. Phys. 2018, 293, 91. [Google Scholar] [CrossRef]
- Thompson, W.T. Coordinate systems for solar image data. Astron. Astrophys. 2006, 449, 791–803. [Google Scholar] [CrossRef]
- Weimer, D.; King, J. Improved Calculations of Interplanetary Magnetic Field Phase Front Angles and Propagation Time Delays. J. Geophys. Res. 2008, 113, A01105. [Google Scholar] [CrossRef]
- Rakhmanova, L.; Riazantseva, M.; Zastenker, G. Correlation level between solar wind and magnetosheath plasma and magnetic field parameters. Adv. Space Res. 2016, 58, 157–165. [Google Scholar] [CrossRef]
- Berčič, L.; Maksimović, M.; Landi, S.; Matteini, L. Scattering of Strahl Electrons in the Solar Wind between 0.3 and 1 Au: Helios Observations. Mon. Not. R. Astron. Soc. 2019, 486, 3404–3414. [Google Scholar] [CrossRef]
- Riazantseva, M.O.; Budaev, V.P.; Rakhmanova, L.S.; Zastenker, G.N.; Šafránková, J.; Němeček, Z.; Přech, L. Comparison of Properties of Small-Scale Ion Flux Fluctuations in the Flank Magnetosheath and in the Solar Wind. Adv. Space Res. 2016, 58, 166–174. [Google Scholar] [CrossRef]
- Sorriso-Valvo, L.; Carbone, V.; Veltri, P.; Consolini, G.; Bruno, R. Intermittency in the Solar Wind Turbulence through Probability Distribution Functions of Fluctuations. Geophys. Res. Lett. 1999, 26, 1801–1804. [Google Scholar] [CrossRef]
Δt | B, nT | Br, nT | Bt, nT | Bn, nT | V, km/s | n, cm−3 | T, ev | ||
---|---|---|---|---|---|---|---|---|---|
sub1 | 9:12 | 0.46 | 0.52 | 0.55 | 0.23 | 0.94 | 0.94 | 0.84 | |
1st event | sub2 | 9:06 | 0.32 | 0.41 | 0.05 | 0.07 | 0.83 | 0.7 | 0.81 |
sub3 | 9:09 | 0.39 | 0.01 | −0.1 | 0.43 | 0.89 | 0.4 | 0.86 | |
sub1 | 2 days 9:48 | 0.32 | 0.02 | −0.11 | −0.07 | 0.92 | 0.43 | 0.81 | |
2nd event | sub2 | 2 days 6:08 | 0.55 | −0.27 | 0.19 | 0.07 | 0.3 | −0.04 | 0.07 |
sub3 | 1 day 14:12 | 0.83 | −0.11 | −0.52 | 0.35 | 0.75 | 0.38 | 0.6 |
SolO (1st Event) | WIND (1st Event) | SolO (2nd Event) | WIND (2nd Event) | |
---|---|---|---|---|
Mean B (nT) | 4.8 ± 0.01 | 4.3 ± 0.01 | 19.6 ± 0.04 | 6.6 ± 0.01 |
Median B (nT) | 4.9 | 4.3 | 14 | 4.7 |
STD B (nT) | 1.1 | 1 | 18 | 5.1 |
Norm STD B (%) | 23.5 | 22.1 | 91.8 | 77.1 |
Mean V (km/s) | 394.2 ± 0.17 | 404.9 ± 0.18 | 404.8 ± 0.21 | 420.8 ± 0.15 |
Median V (km/s) | 380.9 | 388.8 | 407 | 403.3 |
STD V (km/s) | 75.5 | 77.7 | 93.2 | 65.7 |
Norm STD V (%) | 19.2 | 19.2 | 23 | 15.6 |
Mean n (cm−3) | 7.5 ± 0.01 | 6.2 ± 0.01 | 22.7 ± 0.04 | 6.3 ± 0.02 |
Median n (cm−3) | 7.2 | 5.5 | 17.3 | 3.5 |
STD n (cm−3) | 3.7 | 3.4 | 19.9 | 7.1 |
Norm STD n (%) | 49.6 | 54.4 | 87.8 | 112.3 |
Mean T (eV) | 7 ± 0.01 | 7.4 ± 0.01 | 13.8 ± 0.03 | 12.5 ± 0.02 |
Median T (eV) | 6.2 | 6.6 | 9.1 | 8.5 |
STD T (eV) | 4.1 | 3.6 | 13.2 | 9.3 |
Norm STD T (%) | 59.3 | 49.1 | 95.5 | 74.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Volodin, I.D.; Riazantseva, M.O.; Rakhmanova, L.S.; Khokhlachev, A.A.; Yermolaev, Y.I. The Changes in Multiscale Solar Wind Fluctuations on the Path from the Sun to Earth. Universe 2024, 10, 186. https://doi.org/10.3390/universe10040186
Volodin ID, Riazantseva MO, Rakhmanova LS, Khokhlachev AA, Yermolaev YI. The Changes in Multiscale Solar Wind Fluctuations on the Path from the Sun to Earth. Universe. 2024; 10(4):186. https://doi.org/10.3390/universe10040186
Chicago/Turabian StyleVolodin, Igor D., Maria O. Riazantseva, Liudmila S. Rakhmanova, Alexander A. Khokhlachev, and Yuri I. Yermolaev. 2024. "The Changes in Multiscale Solar Wind Fluctuations on the Path from the Sun to Earth" Universe 10, no. 4: 186. https://doi.org/10.3390/universe10040186
APA StyleVolodin, I. D., Riazantseva, M. O., Rakhmanova, L. S., Khokhlachev, A. A., & Yermolaev, Y. I. (2024). The Changes in Multiscale Solar Wind Fluctuations on the Path from the Sun to Earth. Universe, 10(4), 186. https://doi.org/10.3390/universe10040186