Two-Pion Bose–Einstein Correlations in Au+Au Collisions at = 3 GeV in the STAR Experiment
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Correlation Function
2.2. Experimental Setup and Analysis Details
2.3. Systematic Uncertainty
3. Results
4. Discussion
5. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Arsene, I. et al. [BRAHMS Collaboration] Quark Gluon Plasma an Color Glass Condensate at RHIC? The perspective from the BRAHMS experiment. Nucl. Phys. A 2005, 757, 1. [Google Scholar] [CrossRef]
- Adcox, K. et al. [PHENIX Collaboration] Formation of dense partonic matter in relativistic nucleus-nucleus collisions at RHIC: Experimental evaluation by the PHENIX collaboration. Nucl. Phys. A 2005, 757, 184. [Google Scholar] [CrossRef]
- Back, B.B.et al. [PHOBOS Collaboration] The PHOBOS perspective on discoveries at RHIC. Nucl. Phys. A 2005, 757, 28. [Google Scholar] [CrossRef]
- Adams, J. et al. [STAR Collaboration] Experimental and Theoretical Challenges in the Search for the Quark Gluon Plasma: The STAR Collaboration’s Critical Assessment of the Evidence from RHIC Collisions. Nucl. Phys. A 2005, 757, 102. [Google Scholar] [CrossRef]
- Cleymans, J.; Redlich, K. Chemical and thermal freeze-out parameters from 1A to 200A GeV. Phys. Rev. C 1999, 60, 054908. [Google Scholar] [CrossRef]
- Becattini, F.; Manninen, J.; Gazdzicki, M. Energy and system size dependence of chemical freeze-out in relativistic nuclear collisions. Phys. Rev. C 2006, 73, 044905. [Google Scholar] [CrossRef]
- Andronic, A.; Braun-Munzinger, P.; Stachel, J. Hadron production in central nucleus-nucleus collisions at chemical freeze-out. Nucl. Phys. A 2006, 772, 167. [Google Scholar] [CrossRef]
- Rajagopal, K.; Wilczek, F. The Condensed Matter Physics of QCD. arXiv 2000, arXiv:hep-ph/0011333. [Google Scholar]
- Laermann, E.; Philipsen, O. The Status of Lattice QCD at Finite Temperature. Ann. Rev. Nucl. Part. Sci. 2003, 53, 163. [Google Scholar] [CrossRef]
- Stephanov, M. QCD phase diagram: An overview. In Proceedings of the 24th International Symposium on Lattice Field Theory (Lattice 2006), Tucson, AZ, USA, 23–28 July 2006. [Google Scholar]
- Aggarwal, M.M. et al. [STAR Collaboration] An Experimental Exploration of the QCD Phase Diagram: The Search for the Critical Point and the Onset of Deconfinement. arXiv 2010, arXiv:1007.2613. [Google Scholar]
- Ackermann, K. et al. [STAR Collaboration] STAR detector overview. Nucl. Instrum. Meth. A 2003, 499, 624. [Google Scholar] [CrossRef]
- Boal, D.; Gelbke, C.; Jennings, B. Intensity interferometry in subatomic physics. Rev. Mod. Phys. 1990, 62, 553. [Google Scholar] [CrossRef]
- Bauer, W.; Gelbke, C.; Pratt, S. Hadronic interferometry in heavy ion collisions. Annu. Rev. Nucl. Part. Sci. 1992, 42, 77. [Google Scholar] [CrossRef]
- Heinz, U.; Jacak, B. Two-Particle Correlations in Relativistic Heavy-Ion Collisions. Annu. Rev. Nucl. Part. Sci. 1999, 49, 529. [Google Scholar] [CrossRef]
- Wiedemann, U.; Heinz, U. Particle Interferometry for Relativistic Heavy-Ion Collisions. Phys. Rep. 1999, 319, 145. [Google Scholar] [CrossRef]
- Csorgo, T. Particle Interferometry from 40 MeV to 40 TeV. Heavy Ion Phys. 2002, 15, 1. [Google Scholar]
- Alexander, G. Bose-Einstein and Fermi-Dirac Interferometry in Particle Physics. Rep. Prog. Phys. 2003, 66, 481. [Google Scholar] [CrossRef]
- Goldhaber, G.; Goldhaber, S.; Lee, W.; Pais, A. Influence of Bose-Einstein Statistics on the Antiproton-Proton Annihilation Process. Phys. Rev. 1960, 120, 300. [Google Scholar] [CrossRef]
- Kopylov, G.; Podgoretsky, M. Correlations of identical particles emitted by highly excited nuclei. Sov. J. Nucl. Phys. 1972, 15, 219. [Google Scholar]
- Kopylov, G.; Lyuboshits, V.; Podgoretsky, M. Correlations between the Particles Which Have Small Relative Momenta; Communications of the Joint Institute for Nuclear Research: Dubna, Russia, 1974; JINR-P2-8069. [Google Scholar]
- Kopylov, G.; Podgoretsky, M. Multiple production and interference of particles emitted by moving sources. Sov. J. Nucl. Phys. 1974, 18, 336. [Google Scholar]
- Kopylov, G. Like particle correlations as a tool to study the multiple production mechanism. Phys. Lett. B 1974, 50, 472. [Google Scholar] [CrossRef]
- Koonin, S.E. Proton pictures of high-energy nuclear collisions. Phys. Lett. B 1977, 70, 43. [Google Scholar] [CrossRef]
- Gyulassy, M.; Kauffmann, S.K.; Wilson, L.W. Pion interferometry of nuclear collisions. I. Theory. Phys. Rev. C 1979, 20, 2267. [Google Scholar] [CrossRef]
- Lednicky, R.; Lyuboshitz, V. Final state interaction effect on pairing correlations between particles with small relative momenta. Sov. J. Nucl. Phys. 1982, 35, 770. [Google Scholar]
- Bowler, M.G. Coulomb corrections to Bose-Einstein corrections have greatly exaggerated. Phys. Lett. B 1991, 270, 69–74. [Google Scholar] [CrossRef]
- Sinyukov, Y.M.; Lednicky, R.; Akkelin, S.V.; Pluta, J.; Erazmus, B. Coulomb corrections for interferometry analysis of expanding hadron systems. Phys. Lett. B 1998, 432, 248. [Google Scholar] [CrossRef]
- Adamczyk, L. et al. [The STAR Collaboration] Measurement of interaction between antiprotons. Nature 2016, 527, 345. [Google Scholar]
- Fabbietti, L.; Sarti, V.M.; Vazquez Doce, O. Study of the Strong Interaction Among Hadrons with Correlations at the LHC. Annu. Rev. Nucl. Part. Sci. 2021, 71, 377. [Google Scholar] [CrossRef]
- Lednicky, R.; Lyuboshitz, V.L.; Erazmus, B.; Nouais, D. How to measure which sort of particles was emitted earlier and which later. Phys. Lett. B 1996, 373, 30. [Google Scholar] [CrossRef]
- Voloshin, S.; Lednicky, R.; Panitkin, S.; Xu, N. Relative space-time asymmetries in pion and nucleon production in noncentral nucleus-nucleus collisions at high energies. Phys. Rev. Lett. 1997, 79, 4766. [Google Scholar] [CrossRef]
- Ardouin, D.; Soff, S.; Spieles, C.; Bass, S.A.; Stöcker, H.; Gourio, D.; Schramm, S.; Greiner, C.; Lednicky, R.; Lyuboshit, V.L.; et al. Unlike particle correlations and the strange quark matter distillation process. Phys. Lett. B 1999, 446, 191. [Google Scholar] [CrossRef]
- Adams, J. et al. [STAR Collaboration] Identified Particle Distributions in pp and Au+Au Collisions at = 200 GeV. Phys. Rev. Lett. 2004, 92, 112301. [Google Scholar] [CrossRef] [PubMed]
- Adamczyk, L. et al. [STAR Collaboration] Freeze-out dynamics via charged kaon femtoscopy in = 200 GeV central Au+Au collisions. Phys. Rev. C 2013, 88, 034906. [Google Scholar] [CrossRef]
- Afanasiev, S. et al. [PHENIX Collaboration] Kaon Interferometric Probes of Space-Time Evolution in Au + Au Collisions at = 200 GeV. Phys. Rev. Lett. 2009, 103, 142301. [Google Scholar] [CrossRef] [PubMed]
- Lisa, M.A.; Pratt, S.; Soltz, R.; Wiedemann, U. Femtoscopy in relativistic heavy ion collisions. Annu. Rev. Nucl. Part. Sci. 2005, 55, 357. [Google Scholar] [CrossRef]
- Aamodt, K. et al. [ALICE Collaboration] Two-pion Bose–Einstein correlations in central Pb-Pb collisions at = 2.76 TeV. Phys. Lett. B 2011, 696, 328. [Google Scholar] [CrossRef]
- Akkelin, S.; Sinyukov, Y. The HBT interferometry of expanding sources. Phys. Lett. B 1995, 356, 525. [Google Scholar] [CrossRef]
- Acharya, S. et al. [ALICE Collaboration] Kaon femtoscopy in Pb-Pb collisions at = 2.76 TeV. Phys. Rev. C. 2017, 96, 064613. [Google Scholar] [CrossRef]
- Adam, J. et al. [ALICE Collaboration] Centrality dependence of the pseudorapidity density distribution for charged particles in Pb-Pb collisions at = 5.02 TeV. Phys. Lett. B 2017, 772, 567–577. [Google Scholar] [CrossRef]
- Bjorken, J. Highly relativistic nucleus-nucleus collisions: The central rapidity region. Phys. Rev. D 1983, 27, 140. [Google Scholar] [CrossRef]
- Bearden, I. et al. [NA44 Collaboration] Two Kaon Correlations in Central Pb+Pb Collisions at 158 AGeV/c. Phys. Rev. Lett. 2001, 87, 112301. [Google Scholar] [CrossRef] [PubMed]
- Afanasiev, S. et al. [NA49 Collaboration] Bose-Einstein correlations of charged kaons in central Pb+Pb collisions at E(beam) = 158 GeV per nucleon. Phys. Lett. B 2003, 557, 157. [Google Scholar] [CrossRef]
- Adamova, D. et al. [CERES Collaboration] Beam energy and centrality dependence of two pion Bose-Einstein correlations at SPS energies. Nucl. Phys. A. 2003, 714, 124. [Google Scholar] [CrossRef]
- Aamodt, K. et al. [ALICE Collaboration] Charged-Particle Multiplicity Density at Midrapidity in Central Pb-Pb Collisions at = 2.76 TeV. Phys. Rev. Lett. 2010, 105, 252301. [Google Scholar] [CrossRef] [PubMed]
- Kestin, G.; Heinz, U. Hydrodynamic radial and elliptic flow in heavy-ion collisions from AGS to LHC energies. Eur. Phys. J. C 2009, 61, 545. [Google Scholar] [CrossRef]
- Niemi, H.; Eskola, K.; Ruuskanen, P. Elliptic flow in nuclear collisions at ultrarelativistic energies available at the CERN Large Hadron Collider. Phys. Rev. C. 2009, 79, 024903. [Google Scholar] [CrossRef]
- Bertsch, G.; Brown, G.; Koch, V.; Li, B. Pion collectivity in relativistic heavy-ion collisions. Nucl. Phys. A 1988, 490, 3. [Google Scholar] [CrossRef]
- Pratt, S. Pion Interferometry for Exploding Sources. Phys. Rev. Lett. 1984, 53, 1219. [Google Scholar] [CrossRef]
- Bowler, M. Extended sources, final state interactions and Bose-Einstein correlations. Z. Phys. C 1988, 39, 81. [Google Scholar] [CrossRef]
- Adams, J. et al. [STAR Collaboration] Pion interfrometry in Au+Au collisions at = 200 GeV. Phys. Rev. C 2005, 71, 044906. [Google Scholar] [CrossRef]
- Abdallah, M. et al. [STAR Collaboration] Flow and interferometry results from Au+Au collisions at = 4.5 GeV. Phys. Rev. C 2021, 103, 034908. [Google Scholar] [CrossRef]
- Barlow, R. Systematic Errors: Facts and fictions. arXiv 2002, arXiv:hep-ex/0207026. [Google Scholar]
Systematic Source | Default | Variations |
---|---|---|
Splitting Level (SL) | ; | |
Fraction of merged tracks (FMH) | ; | |
Fit range | ; | |
Coulomb radius | 5 fm | 3 fm; 7 fm |
Systematic Source | |||
---|---|---|---|
Splitting Level (SL) | |||
Fraction of merged tracks (FMH) | |||
Fitting range | |||
Coulomb radius | |||
Total |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kraeva, A., on behalf of the STAR Collaboration.
Two-Pion Bose–Einstein Correlations in Au+Au Collisions at
Kraeva A on behalf of the STAR Collaboration.
Two-Pion Bose–Einstein Correlations in Au+Au Collisions at
Kraeva, Anna on behalf of the STAR Collaboration.
2024. "Two-Pion Bose–Einstein Correlations in Au+Au Collisions at
Kraeva, A., on behalf of the STAR Collaboration.
(2024). Two-Pion Bose–Einstein Correlations in Au+Au Collisions at