Estimating the Mass of Galactic Components Using Machine Learning Algorithms
Abstract
:1. Introduction
2. The Data
Features Importance
3. Implementation of the ML Algorithms
- KN-Neighbours (KNN). This algorithm relies on the idea that the set of k nearest data points , where have similar values among them; here, D is defined in Equation (3). To consider two points as neighbours, they should fulfillThis distance is defined in the hyperspace of features using the Euclidian metric, and the final value is the average of their outputs. In this case, the number of neighbours is a free parameter, and we found that the highest accuracy is achieved when the number of neighbours is close to 18; the error starts to increase beyond that value.
- Linear regression (LR). The traditional linear regression minimises the sum of the squared differences between the predicted and actual values. We are considering this method to compare it with more sophisticated techniques.
- Random forest (RF). This algorithm is subject to the number of trees and their depth. Each tree contains decision nodes that split the data (in the parent node) into smaller (left and right) subsets in new child nodes and until the branch finds a homogeneous group according to the set of hyperparameters. Splitting each node in regression is conducted following the minimisation of the residual as
- Neural network (NN). NN is an interconnected group of nodes stored in a layer and is connected to other nodes in the network by unidirectional connections of different weights. Patterns learned in a layer are transferred to the next activated nodes. We implement the early stopping-based method as a regularisation technique to avoid overfitting, stopping the training once the performance no longer improves. This is measured by the loss function, which quantifies the discrepancy between the predicted error and true values. For a regression, it can be taken as the squared loss function
4. Testing the Algorithms Performance
Relative Percentage Difference
5. Predictions for Observational Data
5.1. Mass–Magnitude Relation
5.2. Bulge–Disk Components
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
1 | In fact, when using a mock catalogue to train the algorithms, we set dark matter in a CDM prescription and make inferences about mass components holding such a hypothesis. |
2 | Notice that the gas component has been neglected, as the primary light contributions in massive galaxies come from stars. |
3 | Further information such as the metallicity, age, or other complex processes of baryons have not been included, as obtaining such features from observed galaxies is not straightforward. |
4 | The NASA/IPAC Extragalactic Database (NED) is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. |
References
- Hubble, E. A Relation between Distance and Radial Velocity among Extra-Galactic Nebulae. Proc. Natl. Acad. Sci. USA 1929, 15, 168–173. [Google Scholar] [CrossRef] [PubMed]
- Holmberg, E. A photographic photometry of extragalactic nebulae. Medd. Fran Lunds Astron. Obs. Ser. II 1958, 136, 1. [Google Scholar]
- Kent, S.M. CCD surface photometry of field galaxies. II. Bulge/disk decompositions. Astrophys. J. 1985, 59, 115–159. [Google Scholar] [CrossRef]
- King, I.R. The structure of star clusters. III. Some simple dynamical models. Astron. J. 1966, 71, 64. [Google Scholar] [CrossRef]
- de Vaucouleurs, G. Recherches sur les Nebuleuses Extragalactiques. Ann. D’Astrophys. 1948, 11, 247. [Google Scholar]
- Andredakis, Y.C.; Peletier, R.F.; Balcells, M. The shape of the luminosity profiles of bulges of spiral galaxies. Mon. Not. R. Astron. Soc. 1995, 275, 874–888. [Google Scholar] [CrossRef]
- Freeman, K.C. On the disks of spiral and S0 galaxies. Astrophys. J. 1970, 160, 811. [Google Scholar] [CrossRef]
- Johnston, E.J.; Aragón-Salamanca, A.; Merrifield, M.R.; Bedregal, A.G. Spectroscopic bulge–disc decomposition: A new method to study the evolution of lenticular galaxies. Mon. Not. R. Astron. Soc. 2012, 422, 2590–2599. [Google Scholar] [CrossRef]
- Croton, D.J.; Springel, V.; White, S.D.M.; De Lucia, G.; Frenk, C.S.; Gao, L.; Jenkins, A.; Kauffmann, G.; Navarro, J.F.; Yoshida, N. Erratum: The many lives of active galactic nuclei: Cooling flows, black holes and the luminosities and colours of galaxies. Mon. Not. R. Astron. Soc. 2006, 367, 864. [Google Scholar] [CrossRef]
- Guo, Q.; White, S.; Li, C.; Boylan-Kolchin, M. How do galaxies populate dark matter haloes? Mon. Not. R. Astron. Soc. 2010, 404, 1111–1120. [Google Scholar] [CrossRef]
- De Lucia, G.; Kauffmann, G.; Springel, V.; White, S.D.M.; Lanzoni, B.; Stoehr, F.; Tormen, G.; Yoshida, N. Substructures in cold dark matter haloes. Mon. Not. R. Astron. Soc. 2004, 348, 333–344. [Google Scholar] [CrossRef]
- Lucia, G. Lighting Up Dark Matter Haloes. Galaxies 2019, 7, 56. [Google Scholar] [CrossRef]
- Hopkins, P.F.; Bundy, K.; Croton, D.; Hernquist, L.; Keres, D.; Khochfar, S.; Stewart, K.; Wetzel, A.; Younger, J.D. Mergers and Bulge Formation in ΛCDM: Which Mergers Matter? Astrophys. J. 2010, 715, 202–229. [Google Scholar] [CrossRef]
- Guo, Q.; White, S.; Boylan-Kolchin, M.; De Lucia, G.; Kauffmann, G.; Lemson, G.; Li, C.; Springel, V.; Weinmann, S. From dwarf spheroidals to cD galaxies: Simulating the galaxy population in a ΛCDM cosmology. Mon. Not. R. Astron. Soc. 2011, 413, 101–131. [Google Scholar] [CrossRef]
- Bower, R.G.; Benson, A.J.; Malbon, R.; Helly, J.C.; Frenk, C.S.; Baugh, C.M.; Cole, S.; Lacey, C.G. Breaking the hierarchy of galaxy formation. Mon. Not. R. Astron. Soc. 2006, 370, 645–655. [Google Scholar] [CrossRef]
- De Lucia, G.; Blaizot, J. The hierarchical formation of the brightest cluster galaxies. Mon. Not. R. Astron. Soc. 2007, 375, 2–14. [Google Scholar] [CrossRef]
- Chu, J.; Tang, H.; Xu, D.; Lu, S.; Long, R. Galaxy stellar and total mass estimation using machine learning. Mon. Not. R. Astron. Soc. 2024, 528, 6354–6369. [Google Scholar] [CrossRef]
- Wu, S.; Napolitano, N.R.; Tortora, C.; von Marttens, R.; Casarini, L.; Li, R.; Lin, W. Total and dark mass from observations of galaxy centers with Machine Learning. arXiv 2023, arXiv:2310.02816. [Google Scholar] [CrossRef]
- Sarmiento, R.; Huertas-Company, M.; Knapen, J.H.; Sánchez, S.F.; Sánchez, H.D.; Drory, N.; Falcón-Barroso, J. Capturing the Physics of MaNGA Galaxies with Self-supervised Machine Learning. Astrophys. J. 2021, 921, 177. [Google Scholar] [CrossRef]
- Abdurro’uf; Accetta, K.; Aerts, C.; Silva Aguirre, V.; Ahumada, R.; Ajgaonkar, N.; Ak, F.N.; Alam, S.; Allende Prieto, C.; Almeida, A.; et al. The Seventeenth Data Release of the Sloan Digital Sky Surveys: Complete Release of MaNGA, MaStar, and APOGEE-2 Data. Astrophys. J. 2022, 259, 35. [Google Scholar] [CrossRef]
- Springel, V.; Frenk, C.S.; White, S.D.M. The large-scale structure of the Universe. Nature 2006, 440, 1137–1144. [Google Scholar] [CrossRef] [PubMed]
- Springel, V.; White, S.D.M.; Jenkins, A.; Frenk, C.S.; Yoshida, N.; Gao, L.; Navarro, J.; Thacker, R.; Croton, D.; Helly, J.; et al. Simulations of the formation, evolution and clustering of galaxies and quasars. Nature 2005, 435, 629–636. [Google Scholar] [CrossRef] [PubMed]
- Gnedin, N.Y. Effect of reionization on structure formation in the universe. Astrophys. J. 2000, 542, 535. [Google Scholar] [CrossRef]
- De Lucia, G.; Springel, V.; White, S.D.M.; Croton, D.; Kauffmann, G. The formation history of elliptical galaxies. Mon. Not. R. Astron. Soc. 2006, 366, 499–509. [Google Scholar] [CrossRef]
- Hogg, D.W.; Blanton, M.R.; Brinchmann, J.; Eisenstein, D.J.; Schlegel, D.J.; Gunn, J.E.; McKay, T.A.; Rix, H.W.; Bahcall, N.A.; Brinkmann, J.; et al. The Dependence on Environment of the Color-Magnitude Relation of Galaxies. Astrophys. J. 2004, 601, L29–L32. [Google Scholar] [CrossRef]
- Barsanti, S.; Owers, M.S.; McDermid, R.M.; Bekki, K.; Bryant, J.J.; Croom, S.M.; Oh, S.; Robotham, A.S.G.; Scott, N.; van de Sande, J. The Colors of Bulges and Disks in the Core and Outskirts of Galaxy Clusters. Astrophys. J. 2021, 911, 21. [Google Scholar] [CrossRef]
- Dimauro, P.; Huertas-Company, M.; Daddi, E.; Pérez-González, P.G.; Bernardi, M.; Barro, G.; Buitrago, F.; Caro, F.; Cattaneo, A.; Dominguez-Sánchez, H.; et al. A catalog of polychromatic bulge-disc decompositions of ∼17.600 galaxies in CANDELS. Mon. Not. R. Astron. Soc. 2018, 478, 5410–5426. [Google Scholar] [CrossRef]
- Tully, R.B.; Pierce, M.J.; Huang, J.S.; Saunders, W.; Verheijen, M.A.W.; Witchalls, P.L. Global Extinction in Spiral Galaxies. Astron. J. 1998, 115, 2264–2272. [Google Scholar] [CrossRef]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Buitinck, L.; Louppe, G.; Blondel, M.; Pedregosa, F.; Mueller, A.; Grisel, O.; Niculae, V.; Prettenhofer, P.; Gramfort, A.; Grobler, J.; et al. API design for machine learning software: Experiences from the scikit-learn project. In Proceedings of the European Conference on Machine Learning and Principles and Practices of Knowledge Discovery in Databases, Prague, Czech Republic, 23–27 September 2013; pp. 108–122. [Google Scholar]
- Chollet, F. Keras. 2015. Available online: https://keras.io (accessed on 27 March 2015).
- Calderon, V.F.; Berlind, A.A. Prediction of galaxy halo masses in SDSS DR7 via a machine learning approach. Mon. Not. R. Astron. Soc. 2019, 490, 2367–2379. [Google Scholar] [CrossRef]
- Müller, A.C.; Guido, S. Introduction to Machine Learning with Python; O’Reilly Media, Inc.: Sebastopol, CA, USA, 2016. [Google Scholar] [CrossRef]
- Reiprich, T.H.; Boehringer, H. The mass function of an X-ray flux-limited sample of galaxy clusters. Astrophys. J. 2002, 567, 716. [Google Scholar] [CrossRef]
- Kuiper, G.P. The Empirical Mass-Luminosity Relation. Astrophys. J. 1938, 88, 472. [Google Scholar] [CrossRef]
- Liebert, J.; Probst, R.G. Very low mass stars. Annu. Rev. Astron. Astrophys. 1987, 25, 473–519. [Google Scholar] [CrossRef]
- Willman, B.; Dalcanton, J.; Ivezić, Ž.; Jackson, T.; Lupton, R.; Brinkmann, J.; Henessy, G.; Hindsley, R. An SDSS survey for resolved Milky Way satellite galaxies. I. Detection limits. Astron. J. 2002, 123, 848. [Google Scholar] [CrossRef]
- Williams, R.P.; Baldry, I.K.; Kelvin, L.S.; James, P.A.; Driver, S.P.; Prescott, M.; Brough, S.; Brown, M.J.I.; Davies, L.J.M.; Holwerda, B.W.; et al. Galaxy And Mass Assembly (GAMA): Detection of low-surface-brightness galaxies from SDSS data. Mon. Not. R. Astron. Soc. 2016, 463, 2746–2755. [Google Scholar] [CrossRef]
- Saxe, A.M.; Bansal, Y.; Dapello, J.; Advani, M.; Kolchinsky, A.; Tracey, B.D.; Cox, D.D. On the information bottleneck theory of deep learning. J. Stat. Mech. Theory Exp. 2019, 2019, 124020. [Google Scholar] [CrossRef]
- Spigler, S.; Geiger, M.; d’Ascoli, S.; Sagun, L.; Biroli, G.; Wyart, M. A jamming transition from under-to over-parametrization affects loss landscape and generalization. arXiv 2018, arXiv:1810.09665. [Google Scholar]
- Mendel, J.T.; Simard, L.; Palmer, M.; Ellison, S.L.; Patton, D.R. VizieR Online Data Catalog: SDSS bulge, disk and total stellar mass estimates (Mendel+, 2014). Vizier Online Data Cat. 2014, J/ApJS/210/3. [Google Scholar] [CrossRef]
- Schneider, P. Extragalactic Astronomy and Cosmology: An Introduction, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar] [CrossRef]
- The Astropy Collaboration; Robitaille, T.P.; Tollerud, E.J.; Greenfield, P.; Droettboom, M.; Bray, E.; Aldcroft, T.; Davis, M.; Ginsburg, A.; Price-Whelan, A.M.; et al. Astropy: A community Python package for astronomy. Astron. Astrophys. 2013, 558, A33. [Google Scholar] [CrossRef]
- Planck Collaboration; Aghanim, N.; Akrami, Y.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Ballardini, M.; Banday, A.J.; Barreiro, R.B.; Bartolo, N.; et al. Planck 2018 results—VI. Cosmological parameters. Astron. Astrophys. 2020, 641, A6. [Google Scholar] [CrossRef]
- Mahajan, S.; Drinkwater, M.J.; Driver, S.; Hopkins, A.M.; Graham, A.W.; Brough, S.; Brown, M.J.I.; Holwerda, B.W.; Owers, M.S.; Pimbblet, K.A. Galaxy And Mass Assembly (GAMA): Blue spheroids within 87 Mpc. Mon. Not. R. Astron. Soc. 2017, 475, 788–799. [Google Scholar] [CrossRef]
- Venhola, A.; Peletier, R.; Laurikainen, E.; Salo, H.; Iodice, E.; Mieske, S.; Hilker, M.; Wittmann, C.; Paolillo, M.; Cantiello, M.; et al. The Fornax Deep Survey (FDS) with VST—VI. Optical properties of the dwarf galaxies in the Fornax cluster. Astron. Astrophys. 2019, 625, A143. [Google Scholar] [CrossRef]
- Côté, B.; Martel, H.; Drissen, L. Cosmological Simulations of the Intergalactic Medium Evolution. II. Galaxy Model and Feedback. Astrophys. J. 2015, 802, 123. [Google Scholar] [CrossRef]
- Conselice, C.J. The fundamental properties of galaxies and a new galaxy classification system. Mon. Not. R. Astron. Soc. 2006, 373, 1389–1408. [Google Scholar] [CrossRef]
- Oemler, A., Jr. The structure of elliptical and cD galaxies. Astrophys. J. 1976, 209, 693–709. [Google Scholar] [CrossRef]
- DESI-Collaboration. The Early Data Release of the Dark Energy Spectroscopic Instrument. arXiv 2023, arXiv:2306.06308. [Google Scholar] [CrossRef]
- Zhu, K.; Lu, S.; Cappellari, M.; Li, R.; Mao, S.; Gao, L. MaNGA DynPop–I. Quality-assessed stellar dynamical modelling from integral-field spectroscopy of 10 K nearby galaxies: A catalogue of masses, mass-to-light ratios, density profiles, and dark matter. Mon. Not. R. Astron. Soc. 2023, 522, 6326–6353. [Google Scholar] [CrossRef]
Input | u | r | g | i | z | |
---|---|---|---|---|---|---|
Set I () | ✓ | ✓ | ✓ | ✓ | ✓ | |
Set II () | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ |
Output (y) | ) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
López-Sánchez, J.N.; Munive-Villa, E.; Avilez-López, A.A.; Martínez-Bravo, O.M. Estimating the Mass of Galactic Components Using Machine Learning Algorithms. Universe 2024, 10, 220. https://doi.org/10.3390/universe10050220
López-Sánchez JN, Munive-Villa E, Avilez-López AA, Martínez-Bravo OM. Estimating the Mass of Galactic Components Using Machine Learning Algorithms. Universe. 2024; 10(5):220. https://doi.org/10.3390/universe10050220
Chicago/Turabian StyleLópez-Sánchez, Jessica N., Erick Munive-Villa, Ana A. Avilez-López, and Oscar M. Martínez-Bravo. 2024. "Estimating the Mass of Galactic Components Using Machine Learning Algorithms" Universe 10, no. 5: 220. https://doi.org/10.3390/universe10050220
APA StyleLópez-Sánchez, J. N., Munive-Villa, E., Avilez-López, A. A., & Martínez-Bravo, O. M. (2024). Estimating the Mass of Galactic Components Using Machine Learning Algorithms. Universe, 10(5), 220. https://doi.org/10.3390/universe10050220