Detecting Wandering Intermediate-Mass Black Holes with AXIS in the Milky Way and Local Massive Galaxies
Abstract
:1. Introduction
2. Detecting Wandering IMBHs Using X-rays with AXIS
2.1. Accretion Rates and Spectral Energy Distributions
2.2. X-ray Observability and Selection Criteria: The Role of AXIS
2.3. Extending the Search to Local Galaxies
3. Concluding Remarks
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shakura, N.I.; Sunyaev, R.A. Reprint of 1973A&A....24..337S. Black holes in binary systems. Observational appearance. Astron. Astrophys. 1973, 500, 33–51. [Google Scholar]
- Novikov, I.D.; Thorne, K.S. Astrophysics of black holes. In Proceedings of the Black Holes (Les Astres Occlus); 1973; pp. 343–450. Available online: https://inspirehep.net/literature/1361968 (accessed on 10 May 2024).
- Narayan, R.; Quataert, E. Black Hole Accretion. Science 2005, 307, 77–80. [Google Scholar] [CrossRef] [PubMed]
- Fan, X.; Bañados, E.; Simcoe, R.A. Quasars and the Intergalactic Medium at Cosmic Dawn. Annu. Rev. Astron. Astrophys. 2023, 61, 373–426. [Google Scholar] [CrossRef]
- Power, C.; Baugh, C.M.; Lacey, C.G. The redshift evolution of the mass function of cold gas in hierarchical galaxy formation models. Mon. Not. R. Astron. Soc. 2010, 406, 43–59. [Google Scholar] [CrossRef]
- Begelman, M.C. Black holes in radiation-dominated gas—An analogue of the Bondi accretion problem. Mon. Not. R. Astron. Soc. 1978, 184, 53–67. [Google Scholar] [CrossRef]
- Paczynski, B.; Abramowicz, M.A. A model of a thick disk with equatorial accretion. Astrophys. J. 1982, 253, 897–907. [Google Scholar] [CrossRef]
- Abramowicz, M.A.; Czerny, B.; Lasota, J.P.; Szuszkiewicz, E. Slim accretion disks. Astrophys. J. 1988, 332, 646–658. [Google Scholar] [CrossRef]
- Volonteri, M.; Rees, M.J. Rapid Growth of High-Redshift Black Holes. Astrophys. J. 2005, 633, 624–629. [Google Scholar] [CrossRef]
- Sadowski, A. Slim Disks Around Kerr Black Holes Revisited. Astrophys. J. Suppl. Ser. 2009, 183, 171–178. [Google Scholar] [CrossRef]
- Thorne, K.S. Disk-Accretion onto a Black Hole. II. Evolution of the Hole. Astrophys. J. 1974, 191, 507–520. [Google Scholar] [CrossRef]
- Narayan, R.; Yi, I. Advection-dominated Accretion: A Self-similar Solution. Astrophys. J. 1994, 428, L13. [Google Scholar] [CrossRef]
- Narayan, R.; Yi, I. Advection-dominated Accretion: Underfed Black Holes and Neutron Stars. Astrophys. J. 1995, 452, 710. [Google Scholar] [CrossRef]
- Abramowicz, M.A.; Chen, X.; Kato, S.; Lasota, J.P.; Regev, O. Thermal Equilibria of Accretion Disks. Astrophys. J. 1995, 438, L37. [Google Scholar] [CrossRef]
- Narayan, R.; McClintock, J.E. Advection-dominated accretion and the black hole event horizon. New Astron. Rev. 2008, 51, 733–751. [Google Scholar] [CrossRef]
- Yuan, F.; Narayan, R. Hot Accretion Flows Around Black Holes. Annu. Rev. Astron. Astrophys. 2014, 52, 529–588. [Google Scholar] [CrossRef]
- Yuan, F.; Quataert, E.; Narayan, R. Nonthermal Electrons in Radiatively Inefficient Accretion Flow Models of Sagittarius A*. Astrophys. J. 2003, 598, 301–312. [Google Scholar] [CrossRef]
- Tchekhovskoy, A.; Narayan, R.; McKinney, J.C. Efficient generation of jets from magnetically arrested accretion on a rapidly spinning black hole. Mon. Not. R. Astron. Soc. 2011, 418, L79–L83. [Google Scholar] [CrossRef]
- Kormendy, J.; Ho, L.C. Coevolution (Or Not) of Supermassive Black Holes and Host Galaxies. Annu. Rev. Astron. Astrophys. 2013, 51, 511–653. [Google Scholar] [CrossRef]
- Greene, J.E.; Strader, J.; Ho, L.C. Intermediate-Mass Black Holes. Annu. Rev. Astron. Astrophys. 2020, 58, 257–312. [Google Scholar] [CrossRef]
- Pacucci, F.; Mezcua, M.; Regan, J.A. The Active Fraction of Massive Black Holes in Dwarf Galaxies. Astrophys. J. 2021, 920, 134. [Google Scholar] [CrossRef]
- Mezcua, M.; Siudek, M.; Suh, H.; Valiante, R.; Spinoso, D.; Bonoli, S. Overmassive Black Holes in Dwarf Galaxies Out to z 0.9 in the VIPERS Survey. Astrophys. J. Lett. 2023, 943, L5. [Google Scholar] [CrossRef]
- Mezcua, M.; Pacucci, F.; Suh, H.; Siudek, M.; Natarajan, P. Overmassive black holes at cosmic noon: Linking the local and the high-redshift Universe. Astrophys. J. Lett. 2024, 966, L30. [Google Scholar] [CrossRef]
- Pacucci, F.; Nguyen, B.; Carniani, S.; Maiolino, R.; Fan, X. JWST CEERS and JADES Active Galaxies at z = 4–7 Violate the Local M •-M ★ Relation at >3σ: Implications for Low-mass Black Holes and Seeding Models. Astrophys. J. Lett. 2023, 957, L3. [Google Scholar] [CrossRef]
- Pacucci, F.; Loeb, A. The Redshift Evolution of the M •–M ★ Relation for JWST’s Supermassive Black Holes at z > 4. Astrophys. J. 2024, 964, 154. [Google Scholar] [CrossRef]
- Di Matteo, T.; Ni, Y.; Chen, N.; Croft, R.; Bird, S.; Pacucci, F.; Ricarte, A.; Tremmel, M. A vast population of wandering and merging IMBHs at cosmic noon. Mon. Not. R. Astron. Soc. 2023, 525, 1479–1497. [Google Scholar] [CrossRef]
- Ricarte, A.; Tremmel, M.; Natarajan, P.; Quinn, T. Unveiling the Population of Wandering Black Holes via Electromagnetic Signatures. Astrophys. J. Lett. 2021, 916, L18. [Google Scholar] [CrossRef]
- Weller, E.J.; Pacucci, F.; Hernquist, L.; Bose, S. Dynamics of intermediate-mass black holes wandering in the milky way galaxy using the illustris TNG50 simulation. Mon. Not. R. Astron. Soc. 2022, 511, 2229–2238. [Google Scholar] [CrossRef]
- Weller, E.J.; Pacucci, F.; Ni, Y.; Chen, N.; Di Matteo, T.; Siwek, M.; Hernquist, L. Orbital and radiative properties of wandering intermediate-mass black holes in the ASTRID simulation. Mon. Not. R. Astron. Soc. 2023, 520, 3955–3963. [Google Scholar] [CrossRef]
- Volonteri, M.; Begelman, M.C. Quasi-stars and the cosmic evolution of massive black holes. Mon. Not. R. Astron. Soc. 2010, 409, 1022–1032. [Google Scholar] [CrossRef]
- Schleicher, D.R.G.; Palla, F.; Ferrara, A.; Galli, D.; Latif, M. Massive black hole factories: Supermassive and quasi-star formation in primordial halos. Astron. Astrophys. 2013, 558, A59. [Google Scholar] [CrossRef]
- Ryu, T.; Tanaka, T.L.; Perna, R.; Haiman, Z. Intermediate-mass black holes from Population III remnants in the first galactic nuclei. Mon. Not. R. Astron. Soc. 2016, 460, 4122–4134. [Google Scholar] [CrossRef]
- Portegies Zwart, S.F.; McMillan, S.L.W. The Runaway Growth of Intermediate-Mass Black Holes in Dense Star Clusters. Astrophys. J. 2002, 576, 899–907. [Google Scholar] [CrossRef]
- Gürkan, M.A.; Freitag, M.; Rasio, F.A. Formation of Massive Black Holes in Dense Star Clusters. I. Mass Segregation and Core Collapse. Astrophys. J. 2004, 604, 632–652. [Google Scholar] [CrossRef]
- Shi, Y.; Grudić, M.Y.; Hopkins, P.F. The mass budget for intermediate-mass black holes in dense star clusters. Mon. Not. R. Astron. Soc. 2021, 505, 2753–2763. [Google Scholar] [CrossRef]
- González, E.; Kremer, K.; Chatterjee, S.; Fragione, G.; Rodriguez, C.L.; Weatherford, N.C.; Ye, C.S.; Rasio, F.A. Intermediate-mass Black Holes from High Massive-star Binary Fractions in Young Star Clusters. Astrophys. J. Lett. 2021, 908, L29. [Google Scholar] [CrossRef]
- Fragione, G.; Kocsis, B.; Rasio, F.A.; Silk, J. Repeated Mergers, Mass-gap Black Holes, and Formation of Intermediate-mass Black Holes in Dense Massive Star Clusters. Astrophys. J. 2022, 927, 231. [Google Scholar] [CrossRef]
- Alexander, T.; Natarajan, P. Rapid growth of seed black holes in the early universe by supra-exponential accretion. Science 2014, 345, 1330–1333. [Google Scholar] [CrossRef]
- Natarajan, P. A new channel to form IMBHs throughout cosmic time. Mon. Not. R. Astron. Soc. 2021, 501, 1413–1425. [Google Scholar] [CrossRef]
- Governato, F.; Colpi, M.; Maraschi, L. The fate of central black holes in merging galaxies. Mon. Not. R. Astron. Soc. 1994, 271, 317. [Google Scholar] [CrossRef]
- Volonteri, M.; Haardt, F.; Madau, P. The Assembly and Merging History of Supermassive Black Holes in Hierarchical Models of Galaxy Formation. Astrophys. J. 2003, 582, 559–573. [Google Scholar] [CrossRef]
- O’Leary, R.M.; Kocsis, B.; Loeb, A. Gravitational waves from scattering of stellar-mass black holes in galactic nuclei. Mon. Not. R. Astron. Soc. 2009, 395, 2127–2146. [Google Scholar] [CrossRef]
- Greene, J.E.; Lancaster, L.; Ting, Y.S.; Koposov, S.E.; Danieli, S.; Huang, S.; Jiang, F.; Greco, J.P.; Strader, J. A Search for Wandering Black Holes in the Milky Way with Gaia and DECaLS. Astrophys. J. 2021, 917, 17. [Google Scholar] [CrossRef]
- Seepaul, B.S.; Pacucci, F.; Narayan, R. Detectability of wandering intermediate-mass black holes in the Milky Way galaxy from radio to X-rays. Mon. Not. R. Astron. Soc. 2022, 515, 2110–2120. [Google Scholar] [CrossRef]
- Ferrière, K.M. The interstellar environment of our galaxy. Rev. Mod. Phys. 2001, 73, 1031–1066. [Google Scholar] [CrossRef]
- Igumenshchev, I.V.; Narayan, R.; Abramowicz, M.A. Three-dimensional Magnetohydrodynamic Simulations of Radiatively Inefficient Accretion Flows. Astrophys. J. 2003, 592, 1042–1059. [Google Scholar] [CrossRef]
- Proga, D.; Begelman, M.C. Accretion of Low Angular Momentum Material onto Black Holes: Two-dimensional Magnetohydrodynamic Case. Astrophys. J. 2003, 592, 767–781. [Google Scholar] [CrossRef]
- Perna, R.; Narayan, R.; Rybicki, G.; Stella, L.; Treves, A. Bondi Accretion and the Problem of the Missing Isolated Neutron Stars. Astrophys. J. 2003, 594, 936–942. [Google Scholar] [CrossRef]
- Reynolds, C.S.; Kara, E.A.; Mushotzky, R.F.; Ptak, A.; Koss, M.J.; Williams, B.J.; Allen, S.W.; Bauer, F.E.; Bautz, M.; Bodaghee, A.; et al. Overview of the Advanced X-ray Imaging Satellite (AXIS). arXiv 2023, arXiv:2311.00780. [Google Scholar]
- Pesce, D.W.; Palumbo, D.C.M.; Narayan, R.; Blackburn, L.; Doeleman, S.S.; Johnson, M.D.; Ma, C.P.; Nagar, N.M.; Natarajan, P.; Ricarte, A. Toward Determining the Number of Observable Supermassive Black Hole Shadows. Astrophys. J. 2021, 923, 260. [Google Scholar] [CrossRef]
- Marchesi, S.; Gilli, R.; Lanzuisi, G.; Dauser, T.; Ettori, S.; Vito, F.; Cappelluti, N.; Comastri, A.; Mushotzky, R.; Ptak, A.; et al. Mock catalogs for the extragalactic X-ray sky: Simulating AGN surveys with ATHENA and with the AXIS probe. Astron. Astrophys. 2020, 642, A184. [Google Scholar] [CrossRef]
- Mushotzky, R.; Aird, J.; Barger, A.J.; Cappelluti, N.; Chartas, G.; Corrales, L.; Eufrasio, R.; Fabian, A.C.; Falcone, A.D.; Gallo, E.; et al. The Advanced X-ray Imaging Satellite. Proc. Bull. Am. Astron. Soc. 2019, 51, 107. [Google Scholar] [CrossRef]
- Lusso, E.; Comastri, A.; Vignali, C.; Zamorani, G.; Brusa, M.; Gilli, R.; Iwasawa, K.; Salvato, M.; Civano, F.; Elvis, M.; et al. The X-ray to optical-UV luminosity ratio of X-ray selected type 1 AGN in XMM-COSMOS. Astron. Astrophys. 2010, 512, A34. [Google Scholar] [CrossRef]
- Kruijssen, J.M.D.; Pfeffer, J.L.; Chevance, M.; Bonaca, A.; Trujillo-Gomez, S.; Bastian, N.; Reina-Campos, M.; Crain, R.A.; Hughes, M.E. Kraken reveals itself—The merger history of the Milky Way reconstructed with the E-MOSAICS simulations. Mon. Not. R. Astron. Soc. 2020, 498, 2472–2491. [Google Scholar] [CrossRef]
- Karachentsev, I.D.; Makarov, D.I.; Kaisina, E.I. Updated Nearby Galaxy Catalog. Astron. J. 2013, 145, 101. [Google Scholar] [CrossRef]
X-ray Telescope | Flux Limit | Detectability |
---|---|---|
AXIS | ||
Chandra | ||
eRosita |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pacucci, F.; Seepaul, B.; Ni, Y.; Cappelluti, N.; Foord, A. Detecting Wandering Intermediate-Mass Black Holes with AXIS in the Milky Way and Local Massive Galaxies. Universe 2024, 10, 225. https://doi.org/10.3390/universe10050225
Pacucci F, Seepaul B, Ni Y, Cappelluti N, Foord A. Detecting Wandering Intermediate-Mass Black Holes with AXIS in the Milky Way and Local Massive Galaxies. Universe. 2024; 10(5):225. https://doi.org/10.3390/universe10050225
Chicago/Turabian StylePacucci, Fabio, Bryan Seepaul, Yueying Ni, Nico Cappelluti, and Adi Foord. 2024. "Detecting Wandering Intermediate-Mass Black Holes with AXIS in the Milky Way and Local Massive Galaxies" Universe 10, no. 5: 225. https://doi.org/10.3390/universe10050225
APA StylePacucci, F., Seepaul, B., Ni, Y., Cappelluti, N., & Foord, A. (2024). Detecting Wandering Intermediate-Mass Black Holes with AXIS in the Milky Way and Local Massive Galaxies. Universe, 10(5), 225. https://doi.org/10.3390/universe10050225