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Abstract: We investigate the stochastic version of the paradigmatic model of magnetohydrodynamic
turbulence. The model can be interpreted as an active vector admixture subject to advective processes
governed by turbulent flow. The back influence on fluid dynamics is explicitly taken into account.
The velocity field is generated through a fully developed turbulent flow taking into account the
violation of spatial parity, which is introduced through the helicity parameter ρ. We consider a
generalized setup in which parameter A is introduced in model formulation, which is associated
with the interaction part of the model, and its actual value represents different physical systems.
The model is analyzed by means of the field-theoretic renormalization group. The calculation is
performed using ε-expansion, where ε is the deviation from the Kolmogorov scaling. Two-loop
numerical calculations of the renormalization constant associated with the renormalization of the
magnetic field are presented.

Keywords: magnetohydrodynamics; fully developed turbulence; field-theoretic renormalization
group; parity symmetry breaking; helicity

1. Introduction

Numerous important natural phenomena, spanning a wide range of spatial scales
from microscopic to cosmological, are associated with hydrodynamic flows [1–4]. At all
these scales, fluids can exist in a wide variety of states, each presenting an important
challenge from both an experimental and a theoretical point of view. Especially intriguing
behavior is observed for turbulent flows [5,6], which are generally considered rather a rule
than an exception in nature [3]. Their study represents an exceptionally important task both
from a theoretical perspective and from the standpoint of applications. It is noteworthy to
mention several important areas where turbulence plays a pivotal role, including diverse
challenges in fluid dynamics (such as turbulence in boundary layers [7], atmospheric
turbulence [8,9], etc.), issues related to turbulent mixing and homogenization [10], the
study of fusion plasma [11], and various astrophysical phenomena [12,13], among others.
However, despite the enormous efforts that have been made to study turbulence for more
than a century, the problem remains unsolved.

The modern theoretical approach to turbulence is grounded on the statistical analysis
of the solutions to the Navier–Stokes (NS) equation, which is generally accepted as describ-
ing the motion of viscous (nonrelativistic) media [1]. As already noted, the medium during
its movement can exist in various states depending on the flow parameters, for which
the Reynolds number Re is typically introduced for classification. Defined as Re = VL/ν,
where V is the typical average flow velocity, L is a typical macroscopic scale, and ν is the
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kinematic viscosity of the medium, Re represents the ratio between inertial and dissipative
forces. At low values, Re ≈ 1, a regular (laminar) flow is observed. With an increase in
Re, phenomena ranging from periodic, such as von Kármán vortices, to highly chaotic and
irregular motion at very high values of Re ≫ 1 (practically, Re ⩾ 106 is considered large
enough) occur. The latter state of fluid is known as fully developed turbulence. In this
state, the so-called inertial interval exhibits a transfer of kinetic energy from macroscopic L
to microscopic (dissipative) lD scales. For fully developed turbulence, the symmetry and
dimension arguments have led to important conclusions about the scaling behavior of
velocity correlation functions, primarily through the famous Kolmogorov’s K41 theory.
However, more detailed statistical descriptions of both the fully developed turbulence
regime and its onset in laminar flow are still needed. Mathematically, this research gap
stems from the well-known blow-up problem: the existence of a strong instability inherent
in solutions of the NS equations at high Reynolds numbers. Generally speaking, for this
equation, even the existence of a global smooth solution is in question at present [14].
Moreover, both mentioned problems are still unsolved not only for the Navier–Stokes
equation but even for the simpler Euler equation (inviscid fluid).

Traditionally, the physical theory of developed turbulence models this instability effect
by the addition of a suitably chosen random force to the NS equation. This addition also
simulates the continuous input of mechanical energy necessary to sustain the turbulent
cascade. The selection of the structure and statistics of this random force is the most critical
aspect of the theory. Typically, random forces concentrated at large spatial scales are used to
model large-scale effects on the scale-invariant behavior predicted by Kolmogorov’s theory.
The standard stochastic problem formulation also assumes rotational symmetry of force
correlations but can be expanded by varying the symmetry properties of force correlations
(e.g., anisotropy and reflection asymmetry), to explore the impact of large-scale properties
on velocity correlation scaling behavior [15].

In the context of developed turbulence studies, investigating the advection of specific
quantities (such as temperature fields, concentration fields, or tracers) [4,16] by the turbu-
lent field is paramount. The solution to this problem should shed light on the extent of
turbulence intermittency [5], i.e., its fractal nature. In this case, the Prandtl number Pr is
often used to succinctly describe the flow’s quantitative characteristics [8,17]. For all types
of admixtures, Pr is defined as the dimensionless ratio of the kinematic viscosity coeffi-
cient ν to the corresponding diffusion coefficient D of a given admixture. Since both the
kinematic viscosity and the diffusion coefficient are material- and flow-specific, resulting
Prandtl numbers have to be specified under conditions characterizing the flow, hence are
often found in property tables along with other material-specific properties [18,19]. Yet, in
the limit of high Reynolds numbers, fully developed turbulence manifests through effective
values of kinematic viscosity and the corresponding diffusion coefficient, rendering the
turbulent Prandtl number independent of material and flow specifics. In what follows, we
call such Pr a turbulent Prandtl number [6,8].

Among general turbulence theory issues, describing fully developed turbulence in an
electrically conducting fluid occupies a special place. The system of equations of motion for
an electrically conducting fluid is known as the magnetohydrodynamics (MHD) equation
system (see, e.g., [1,10,17,20]). For the first time, this system (in the case of an inviscid fluid)
was investigated by Hannes Alfvén. For the subsequent fruitful application of it to problems
in plasma physics, Alfvén was awarded the Nobel Prize in 1970. Nowadays, there are many
theoretical methods for studying this system of equations, which constitute the golden
fund of theoretical and mathematical physics. As is well known, in electrically conducting
fluids, turbulent motions are accompanied by magnetic field fluctuations. However, such
conducting fluids, exemplified by ionized gas (plasma) or magma, are rare under typical
laboratory conditions. Conversely, astrophysical or geophysical settings, such as the solar
wind or turbulent dynamo mechanisms generating large-scale magnetic fields, underscore
the enduring interest in MHD turbulence studies [12,21,22].
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From a chronological perspective, the Kazantsev–Kraichnan kinematic model holds
paramount importance in magnetohydrodynamics [23–25]. The main idea of this model is
the assumption that while the magnetic field is passively advected by the hydrodynamic
flow, the reciprocal effect on the main flow from the magnetic field is negligible. However,
this assumption falls short in describing realistic flows. A genuine model of magneto-
hydrodynamics must account for the interplay between the magnetic and velocity fields.
Incorporating this interaction, along with spatial parity nonconservation, suggests the pos-
sibility of generating a uniform large-scale magnetic field within the system—a mechanism
known as the turbulent dynamo [20]. Many studies have focused on this phenomenon, and
here, we provide references only to those that are close in language to this paper [26–28].

As well as Kraichnan-like models, the MHD model should reveal scaling behavior
for accompanying quantitative parameters such as correlation or structure functions. A
quantitative description of these characteristics poses a natural challenge for the theory
to explain and construct reliable approximation schemes for their calculation. As demon-
strated by Kolmogorov’s theory, scaling invariance naturally emerges in turbulent flows [5].
However, exploring behaviors such as anomalous scaling demands extensive, meticulous
analysis. This phenomenon is characterized by singular (arguably, powerlike) behav-
ior of some statistical quantities (correlation functions, structure functions, etc.) in the
inertial–convective range in the fully developed turbulence regime [3,5]. Moreover, it is
worth noting that scaling properties manifest themselves more clearly at higher values of
Reynolds number Re [29], making the Re → ∞ limit critically important. Thus, employ-
ing the well-established renormalization group (RG) theory tools for analytical results on
turbulent flows is prudent. Unlike numerical approaches, where achieving the Re → ∞
limit is difficult, the RG method allows for analytical calculations, ultimately allowing
for the examination of universal turbulent phenomena, i.e., independent of material mi-
crostructure and macroscopic flow conditions [15]. Additionally, the RG framework readily
accommodates various scenarios, including the advection of different admixtures [29].

The renormalization group approach was previously applied to the kinematic MHD at
the level of one-loop approximation in quantum field perturbation theory [27]. The authors
also considered the case of so-called chiral or gyrotropic turbulent media, when the corre-
sponding magnetic fields and velocity fields lack defined spatial parity. Technically, the
presence of chirality means that all correlation functions’ transverse structures (assuming
the medium is incompressible and magnetic field transversality is ensured by Maxwell’s
equations) become a mixture of two quantities: tensor and pseudotensor (with respect to
the three-dimensional rotation group O(3)). It has been shown that spatial parity noncon-
servation, even without magnetic fluctuations, leads to spontaneous symmetry breaking
tied to the instability of linearized MHD and the emergence of a large-scale homogeneous
mean magnetic field |B|.This field potentially stabilizes the system in its new “vacuum
state”, acting through the turbulent dynamo mechanism. From a technical standpoint,
spontaneous symmetry breaking generates new counterterms of mass renormalization type
(here, a homogeneous magnetic field gradient plays the mass role) in a form ∼ iΛεijmkm,
nontrivially arising during the ultraviolet (UV) renormalization procedure, starting from
one-loop diagrams. Here, Λ ≃ 1/lD represents the naturally available cutoff scale in the
theory. However, as demonstrated in [30,31], the appearance of these counterterms does not
compromise the theory’s multiplicative renormalizability, in a sense that their contribution
can always (at least at the one-loop level) be mitigated by an appropriate choice of |B|,
presumably stabilizing the system. Beyond merely positing a stabilizing magnetic field,
the paper [30] predicts a new physical effect: the emergence of disturbances in Alfvén
waves perpendicular to the spontaneous field B, leading to their linear temporal growth.
This results in long-lived pulses ∼ texp(−αt), α ∼ k2, akin to the massless bosons in the
Goldstone model.

In essence, numerous vector impurity models bear similarities to kinematic MHD
to varying degrees. As repeatedly noted, the tensor nature of considered impurities
significantly influences diffusion and advection processes [31–34]. For instance, as has been
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shown in [33], introducing spatial parity violation (helicity) into the turbulent flow not
only offers a highly realistic physical scenario but also uniquely highlights the studied
model’s specific tensorial and interactive properties. Consequently, the authors infer
that interaction structures impact diffusion and advection processes more than the tensor
nature of the advected field itself. To extend these findings beyond a few selected models,
examining the general A model of passive vector advection, initially defined in [35], proves
useful. To prevent confusion, it should be emphasized that the current general A model
exclusively pertains to passive vector advection and should not be confused with the model
A according to the classification of Halperin and Hohenberg [36] or with the A model of
the forced Navier–Stokes equation presented in [37,38]. The model’s name stems from the
widely accepted notation for the A parameter [28,31,39], which appears in its definition
(refer to Section 2 for details). The A parameter plays a central role in the appropriate
definition of a unified description of a wide range of vector admixture models. Given its
requirement to be real without explicit restrictions, it can adopt values A = 1, A = 0, and
A = −1, correlating to the kinematic MHD model, the model for passively advected vector
fields, and the scenario of the so-called linearized Navier–Stokes equation [39], respectively.
Thus, the general A model serves as a tool to unite several distinct but physically important
cases into a single model. Overall, for this model, a comprehensive generalization to all
physically permissible values of A (including beyond the boundaries of the interval [−1, 1])
was conducted by the authors of [28]. However, the impact of helical effects in a fully
turbulent environment was confined to what was necessary for calculating the turbulent
Prandtl number. Therefore, to obtain a comprehensive picture of MHD, it seems highly
desirable to calculate the full set of renormalization constants for the general parametric
A model considering the effects of spatial parity violation up to the two-loop order in
perturbation theory.

To conduct the above-discussed studies, this endeavor employs quantum field theory
methods alongside the established renormalization group technique tools (for instance,
see [15,29,40]). The RG method has found extensive application in fully developed turbu-
lence research without admixtures [30,41–43], as well as in studying advection–diffusion
processes involving various admixtures, including passive scalar admixtures [35,43–47],
magnetic admixtures [27,45,48], and also vector admixtures [33,39,45]. Highlighting the
nuances of applying standard quantum field techniques to stochastic hydrodynamics issues
is also pertinent. Among various regularization techniques in field theory, a distinguished
role is played by dimensional regularization accompanied with ε-expansion [29,40]. This
approach directly yields regularized counterparts for divergent Feynman diagrams, with
the associated ε-expansion serving as a valuable perturbative method for calculating uni-
versal quantities in critical phenomena and stochastic dynamics theory [29,40]. It is worth
mentioning that the ε parameter’s interpretation within stochastic turbulence theory differs
from its role in critical phenomena models (e.g., well-known φ4-theory), where the small
ε-expansion parameter is usually determined by a difference dc − d from the upper critical
dimension [29,40]. In the stochastic theory of developed turbulence, its definition has no
relation to the dimension of space. Most studies integrate ε into the scaling behavior of
random forces, strictly considering a three-dimensional context [5,15]. The ε parameter
thus derives from the logarithmic theory where ε = 0, aligning with the ideal scenario of
(delta-shaped) energy infusion into the system from infinitely vast spatial scales [15,41].
Once a model undergoes correct renormalization, perturbative results for universal quanti-
ties, such as critical (scaling) exponents, become attainable. These invariably take the form
of asymptotic series. Despite the existence of impressive multiloop outcomes in critical and
stochastic dynamics [49–51], the developed turbulence RG theory predominantly limits an-
alytical calculations to two-loop approximations [29,52,53]. In fact, it might be argued [42]
that the complexity of such endeavors is arguably an order of magnitude greater than
first-order analyses. Not only is the number of Feynman diagrams much higher but there
are also intrinsic numerical problems with the correct extraction of divergent parts of
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Feynman diagrams. Therefore, any attempt that might help to make two-loop calculations
feasible seems worthwhile to undertake.

A comprehensive two-loop calculation for the dynamo effect in stochastic MHD has
not yet been finished. Our goal herein is to make progress in this direction and present
particular results of two-loop approximation. In particular, we present details on the
two-loop calculation of a three-point interaction vertex, which, by itself, presents quite
demanding technical problems. To make the problem tractable, it is necessary to rely on
powerful algorithmic and numerical approaches [54–56].

This paper is structured as follows. Section 2 defines the A model of passive advection
of a vector admixture as a generalization of the stochastic MHD and introduces its field
theoretical counterpart. Section 3 is devoted to a detailed renormalization group analysis.
The final Section 4 is devoted to concluding remarks and plans for the future.

2. Formulation of the Quantum Field Model

It is well-known [1] that the hydrodynamics of a nonrelativistic incompressible viscous
fluid is described by the Navier–Stokes equation

∂tv + (v ·∇)v = −∇p + ν0∇2v + F. (1)

Here, v(x) represents the velocity field, F(x) stands for the (transverse) random force
exerted per unit density, and scalar function p(x) denotes the pressure per unit density.
Throughout the text, the argument of all field functions is defined as x ≡ (t, x), where
x is a d-dimensional spatial vector and t is the time. The parameter ν0 represents the
kinematic viscosity, the symbol ∇is the spatial gradient, ∂t ≡ ∂/∂t is the time derivative,
∇2 = ∆ is the Laplace operator, and parentheses indicate the standard dot product of
three-dimensional vectors. Let us also stress that for possible verification and transparency
in intermediate calculations, we retain general dimension d in actual expressions, although
in the end, we are mainly interested in arguably the most relevant three-dimensional case
d = 3. In other space dimensions, the used approach, strictly speaking, will not work.

In the approximation of an incompressible fluid (low Mach number), the explicit
dependence on the pressure in (1) can be simply eliminated by taking the divergence of (1).
The result is the following elliptic equation,

∆p = −div div (v ⊗ v), (2)

from which it follows that the pressure can be formally represented in terms of the fun-
damental solution of Equation (2). The symbol ⊗ here represents the outer product.
Substituting this solution into (1), it is easy to see that the purely longitudinal contribution
of pressure ∇p reduces the longitudinal part of the value (v ·∇)v. Therefore, the pressure
term in (1) can be eliminated by discarding the contribution ∇p and at the same time
placing a transverse projector in front of (v ·∇)v.

In the conventional field theory setting, the problem in (1) is analyzed throughout the
entire space and along the whole time axis, which requires zero divergence-free boundary
conditions and the implementation of a retardation condition, which entails that the velocity
field v vanishes as t → −∞. Note that, generally speaking, these assumptions do not fix
either the existence or the uniqueness of the solution of (1). A comprehensive overview of
the current developments in the mathematical theory of the Navier–Stokes equations can
be found, e.g., in [57].

Particularly, developed turbulence across a sufficiently broad range of parameters is
described within the approximation of an incompressible fluid. This is adequate as long
as the flow velocity is much less than the speed of sound [58,59]. As already noted in
the introductory Section 1, investigating the turbulent regime at the level of numerical
solutions of Equation (1) is extremely complicated by the fact that in this regime, all scales
(mixing lengths) are interconnected in a cascade-like manner. Consequently, the flow in
the boundary layer (the scale at which the pressure gradient becomes comparable to the
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viscous term) affects everything up to the overall scale of the system. This “entanglement
of scales” implies that inevitable tiny errors at the smallest scales of the approximation grid
will ultimately have a huge impact on the overall structure of the solution. For example, in
the simplest idealized model of the atmosphere (considered as a two-dimensional ideal
fluid on the surface of a torus), deviations increase by 105 times in two months. Clearly, this
fact alone renders dynamic weather forecasting for such a duration practically impossible,
regardless of the computational power or the density of the data network employed.
Therefore, in practical calculations, people often entirely forego solving the NS equation,
describing the fluid flow not hydrodynamically but kinetically, i.e., through an ensemble of
interacting particles with the same statistics as the real medium (see, for example, the lattice
Boltzmann method [60,61]). By averaging such a lattice system over all particles in the
continuum limit, the Navier–Stokes equations are obtained. However, the ensemble itself
can be modeled without any approximations, which yields the correct fluid flow without
solving any equations.

Taking these difficulties into account, the physical theory of developed turbulence
follows a different route based on the stochastic version of Equation (1) (see, e.g., [3,5,8,15]).
More specifically, in this approach, F in Equation (1) is generalized to the random vari-
able with prescribed stochastic properties. This modification aims to simulate physical
processes, such as the injection of energy into the system and the influence of boundaries.
Consequently, the theory’s main objective shifts to identifying the statistical characteristics
of the (stochastic) velocity field v.

Let us turn our attention to magnetohydrodynamics [12,21,22], where, as is known,
any movement of a conducting fluid in a magnetic field generates an electromotive force,
inducing electric currents. Due to the presence of the magnetic field, these currents create
mechanical forces that alter the state of motion of the fluid. Accordingly, when examining
the hydrodynamics of an electrically conducting fluid, Equation (1) has to be suitably
modified to incorporate the interaction between the velocity field and the magnetic field
and complemented by an appropriate equation of motion for the magnetic field. More
specifically, a hydrodynamic description here implies the adoption of three fundamental
assumptions: firstly, the fluid should be considered highly conductive; secondly, its motion
is nonrelativistic; and finally, the bulk variables must change slowly over time compared to
all relevant characteristic time scales. Summarizing the above, magnetohydrodynamics is
the simplest sufficient approximation to describe many large-scale low-frequency phenom-
ena. Experience shows that MHD is applicable across a vast range of spatial scales, from
nanometer (10−9 m) scales in, e.g., physics of semiconductors, to interstellar and galactic
(1021 m) scales, e.g., galactic arms.

Let us clarify here the theoretical setup needed to write the system of MHD equations
in the case of a viscous liquid with finite conductivity. In general, magnetohydrodynamics
studies the interaction of the electromagnetic field with a liquid or gaseous moving conduc-
tor, treated as a continuous medium. The MHD equations are a combination of Maxwell’s
equations for the electromagnetic field and the conventional hydrodynamic equations
that describe the motion of the continuous medium. The hydrodynamic equations of an
electrically conductive fluid are valid under the conditions of the so-called MHD limit.
Broadly speaking, this corresponds to the limit in which the charge and volume densities
are obtained from the fluid equations rather than from the Boltzmann equation [12]. As-
suming this limit to be fulfilled, let us derive the equation of motion for the magnetic field
in the MHD system. When the fluid is moving at the velocity v, the corresponding electric
current density is connected with the electromagnetic fields through generalized Ohm’s
law [22]. Following [27], we use its simplest form here, omitting the Hall term and others:

J = σ0(E + v × B). (3)

Here, E and B are the electric and magnetic fields in the “laboratory” system of
coordinates, where we measure the velocity v, and σ0 is the electrical conductivity, which is
assumed to be finite but large enough, i.e., the electromagnetic processes are not very fast.
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The last assumption regarding the value of σ0 allows us to omit displacement currents (and
convection currents) compared to conduction currents; therefore, J in Formula (3) denotes
precisely the conduction current [12,22]. Then, taking the curl of Equation (3) using the
Maxwell–Faraday equation ∇× E = −∂tB, one can obtain

∇× J = σ0(−∂tB +∇× (v × B)). (4)

Utilizing another of Maxwell’s equations, ∇× B − c−2∂E/∂t = µ0 J, with c represent-
ing the speed of light and µ0 denoting the vacuum magnetic permeability, and noting that
in the case of nonrelativistic motion, the time derivative of the electric field is much smaller
than the spatial derivative of the magnetic field, we can eliminate J in favor of B and finally
derive the governing dynamic equation for the magnetic field in the form

∂tB −∇× (v × B) = −κ0∇× (∇× B), κ0 ≡ 1/(µ0σ0). (5)

Here, the parameter κ0 is introduced, which has the meaning of the magnetic diffusion
(or magnetic viscosity) coefficient. By elementary manipulations, Equation (5) can be
reduced to the form

∂tB − (B ·∇)v + (v ·∇)B = κ0∇2B, (6)

which presents a starting point for a majority of studies in the MHD area. For a more
detailed exposition, the interested reader is referred to the literature [12,20].

Let us now go back to the dynamics of the velocity field in the presence of a magnetic
field. To describe it, we will use the Navier–Stokes equation (1), where the Lorentz force con-
tribution (per unit density) FL = J × B is explicitly allocated in the force term F = FL + Fext.
Applying further reasoning similar to that used to obtain Equation (5), we obtain

∂tv + (v ·∇)v = − 1
µ0

B × (∇× B)−∇p + ν0∇2v + Fext. (7)

Rewriting the first term on the right side of (7), we arrive at the final desired general-
ization of the Navier–Stokes equation:

∂tv + (v ·∇)v =
1

µ0
(B ·∇)B −∇

(
p +

B2

2µ0

)
+ ν0∇2v + Fext, (8)

where the second term on the right side is the total pressure, consisting of two terms: gas
(or thermal) pressure p and the so-called magnetic pressure B2/2µ0.

A stochastic version of the MHD model is obtained by generalizing the external
force term in the Navier–Stokes equation (8) to a random variable Fext → f v, as well as
adding the corresponding random force term f b modeling a magnetic noise to Equation (6).
Stochastic random forces f v and f b serve to mimic microscopic effects such as the presence
of boundaries or interactions between the mean velocity flow and its fluctuating part [29].
Notwithstanding their obvious physical relevance, it is widely believed that their actual
form is unimportant for interesting universal quantities. Note that from now on, variables
v and B in Equations (6) and (8) should already be understood as the fluctuation parts of
the corresponding total magnetic field and velocity field [26,44]. Furthermore, as has been
pointed out in introductory Section 1, here we will consider a generalization of Equation (6)
by introducing a new parameter A into the nonlinear term (B ·∇)v. Such a generalization
corresponds to the transition to the general model A [28,31]. Note that the conventional
formulation of MHD corresponds to the value A = 1 [26,27]. Eventually, the stochastic
MHD can be formulated by two intercoupled stochastic differential equations [28,31]

Dtb = −∇q + ν0u0∇2b + A(b ·∇)v + f b, (9)

Dtv = −∇p + ν0∇2v + (b ·∇)b + f v, (10)
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with material (covariant) derivative Dt ≡ ∂t + (v ·∇), complemented by transversality
conditions for all vector fields

∇ · v = ∇ · b = ∇ · f v = ∇ · f b = 0. (11)

In Equations (9)–(11), fields v(x) and b(x) ≡ B(x)
/√

µ0 are the stochastic magnetic
and velocity fields, ν0u0 ≡ κ0, where u0 is a reciprocal magnetic Prandtl number (by
definition, magnetic Prandtl number Prm ≡ ν0/κ0). The scalar functions p(x) and q(x)
have the meaning of total pressure (see Equation (8)) and have no significance for further
analysis for reasons similar to the text after Formula (2) and will be omitted. In general,
within the framework of homogeneous and isotropic developed turbulence, the random
velocity field in Equation (8) is represented as v = u + v̂, where u is the constant mean
flow velocity and v̂ is a relatively small stochastic (fluctuating) component. The statistical
characteristics of the latter are the subject of our study, since u can always be eliminated by
transitioning to a moving reference frame through an appropriate Galilean transformation
v(t, x) → v(t, x − ut) − u ≡ v̂(t, x − ut). Given the smallness of v̂ compared to v, any
explicit dependence on t in v̂(t, x − ut) is neglected in comparison to x − ut. In terms of the
correlators ⟨v̂v̂⟩, this means that the average value of the corresponding dynamic correlator
over time ∆t is nothing other than the value of the static (simultaneous) correlator for the
distance r = u∆t. For brevity, we will henceforth denote v̂ as v, always understanding it to
refer specifically to the fluctuating component. In contrast to v, the average value of the
random field b is usually assumed to be zero, and the corresponding uniform magnetic
field required for mass applications is introduced as an additive to the source f b.

The influence of Galilean symmetry in the model governed by Equations (9) and (10)
extends beyond the aspects previously discussed. This symmetry encapsulates the founda-
tional physics of the model and has significant implications for the RG analysis (see Section 3
and [31]). Moving forward, we interpret the Galilean invariance of Models (9) and (10) in
a broader context, specifically, as symmetry under what we term the generalized Galileo
transformation (see, e.g., [15,31]). This concept goes beyond a mere constant speed trans-
formation u to include transformations with an arbitrarily variable speed w(t) that rapidly
diminishes as |t| → ∞. Being essentially similar to gauge transformations, the generalized
Galilean transformation is structured as follows:

{v, v′} → {vw, v′
w} : vw(x) = v(xw)− w(t), v′

w(x) = v′(xw)

x 7→ xw : xw ≡ (t, x + s(t)), s =
∫ ∞

−∞
dt′ θ(t − t′)w(t′).

(12)

Hereinafter, θ(x) denotes the Heaviside step function. Transformations (12) are considered
here as an independent Lie group and not as a representation of the corresponding group of
coordinate transformations. They generalize the usual Galilean transformations [1], in which
the velocity w is constant and s = wt.

Let us briefly discuss the physical relevance of the parameter A [28,31]. First, we note
that the aforementioned Galilean symmetry (12) demands A only to be real, yet the interval
A ∈ {−1, 0, 1} already includes quite diverse, physically significant models. As already
mentioned in Section 1, choosing A = 1 leads us to the kinematic MHD model [27]. On
the other hand, the choice A = 0 leads to passive advection of a vector field in turbulent
environments [35,39], and finally A = −1 yields the model of the linearized Navier–Stokes
equations [39]. Thus, the parameter A stands in front of the stretching term, and, due to
its continuous nature, represents a measure of specific interactions allowed by Galilean
symmetry. Varying A allows for the investigation of many passively advected vector
admixtures with different interaction properties. Although A can take any real value, it is
often discussed only within the smallest possible continuous interval that encompasses
these three mentioned distinguished cases. However, as shown in [28], in cases where
spatial parity conservation is violated in the model, in general, there are conditions under
which it can be considered for all real A, without restrictions. The general conclusion is that
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adopting A as a general parameter of the theory allows for the simultaneous investigation
of a multitude of diverse diffusion–advection processes. Particularly intriguing behavior
is observed in processes occurring in MHD (A = 1) that possess additional instability
in helical environments, which can be stabilized on large scales by the emergence of a
macroscopic field B [28,30].

The cornerstone of the stochastic theory of developed turbulence is the choice of the
random force correlator, along with the corresponding dynamic equations that define the
model [29]. In the general case, in the system under consideration, all elements of the
correlator matrix Dbb, Dbv, and Dvv are different from zero. In particular, this situation was
considered in [27], applicable to magnetohydrodynamics. Let us start with the correlation
function Dbb of a magnetic noise f b(x), which is assumed to be a transverse Gaussian
random vector with zero mean

Dbb
ij ≡ ⟨ f b

i (x) f b
j (0)⟩ = δ(t)Cij(|x|/Lb),

where Lb is an integral scale related to the stirring of the magnetic field b and function Cij is
finite in the asymptotic limit Lb → ∞, while in the limit |x| ≫ Lb, it should rapidly decrease.
As noted above, the requirement of time decorrelation in Dbb and other correlators is
necessary to ensure the Galilean invariance of the model. A detailed form of Cij is not
relevant for the actual RG analysis [15]. In a physically more realistic formulation, the noise
term f b could be substituted by something like (B0 ·∇)v, where B0 represents a strong
(≈100–102 G), large-scale magnetic field [45,62].

Let us stress that, in contrast to the original work [27], our study explicitly omits both
the correlators Dbb and Dbv. Here, we refer to a more general formulation of the problem
considered previously in [27], which shows that both Dbv and Dbb can be discarded as they
are zero at the kinetic (Kolmogorov’s) fixed point which we are interested in.

Our primary interest lies in the correlator Dvv. The transverse random force f v(x)
describes the injection of kinetic energy into the turbulent system on a large spatial scale.
Therefore, the actual form of its correlator should match the expected behavior of energy
injection, which is supposed to be concentrated in the infrared (IR) region. It turns out that
this choice can be reconciled with the RG approach [29]. It is important to note that the
universality of fully developed turbulence is not confined to the specific statistical properties
of the random force, including the case with broken spatial parity. Hence, without loss of
generality, we prescribe the pair correlation function of zero-mean Gaussian statistics

Dvv
ij ≡ ⟨ f v

i (x) f v
j (0)⟩ = δ(t)

∫ ddk
(2π)d dp(k)Rij(k)eik·x, (13)

where the function dp(k) of k ≡ |k| is the so-called pumping function and represents the
pumping rate, and Λ ≃ 1/lD (lD is the dissipative length) is a typical ultraviolet turbulence
scale. The tensor quantity Rij(k) will be specified later. Let us also note that in stochastic
turbulence theory, we also require that dp(k) correctly models the physical injection of
energy (IR injection). Since for the problems of the theory, the exact macroscopic structure
of a turbulent flow is negligible, the simplest cutoff can be taken as the corresponding
IR regularization. Technically, this can be implemented by introducing the step function
θ(k − m) into the pumping function dp(k), where the parameter m ≃ L−1, and L is the
integral scale of turbulence (size of the system). Thus, by adopting such a sharp IR cutoff, we
effectively regularize the model in the IR region. It is also worth noting that regularization
by cutoff in our case does not break the global symmetry group of Model (12), unlike in
relativistic field theory models.

To apply the standard RG technique effectively, it is crucial for the function dp(k) to
exhibit a power-law behavior as k becomes large [29]. In particular, this requirement is
fulfilled when dp(k) acquires the specific power-law dependence

dp(k) = g0ν3
0 k4−d−2εθ(Λ − k)θ(k − m), g0ν3

0 > 0. (14)
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Here, g0 ≃ Λ2ε is a coupling constant of the theory, m represents IR cutoff, and ε is the
model parameter characterizing the type of pumping. For generality, we write expressions
everywhere for an arbitrary dimension of space d, but we are mainly interested in the case
d = 3. It is also worth mentioning that, strictly speaking, such a representation is valid
only in the limit ϵ → 2− (see, e.g., [15]). Let us also stress that Formula (14) represents
the correlator in a kind of natural condition: there are two direct physical cutoff scales
L and lD. Such a form is convenient for the correct setting of the problem (so-called Λ-
renormalization of the model) but not for practical purposes. In practice, when calculating
all necessary quantities, the limit of Λ → ∞ is always taken, transferring the regularization
function to the parameter ε.

In a normal fluid (i.e., fluid invariant under Galilean transformations), to each quantity
we can assign a specific spatial parity: v and f v are vectors, whereas b and f b are pseudovec-
tors, and correlator Dvv is a tensor. Due to the additional requirement of transversality (11),
any tensor is necessarily proportional to the transverse projector Pij(k) ≡ δij − kik j/k2,
and any pseudotensor is proportional to the structure ϵijlkl/k, where ϵijk is the Levi-Civita
tensor. The transition to a helical fluid corresponds to the abandonment of spatial parity
conservation and technically implies that the correlator (13) should be given by a sum of
a true tensor and a pseudotensor, i.e., the tensor quantity Rij(k) in correlator (13) corre-
sponds to the sum of the transverse projection operator Pij(k) and a so-called helical term
Hij(k) ≡ iρϵijlkl/k (summation over repeated index l is implied) [30]. Hence, we choose
the quantity Rij(k) in the following form:

Rij(k) = Pij(k) + Hij(k) = δij −
kik j

k2 + iρϵijl
kl
k

. (15)

Here, the helicity parameter ρ is constrained within the range |ρ| ≤ 1, expressing the
positive definiteness of the correlator (13). It can be naturally interpreted as the amount of
reflection symmetry breaking: the case ρ = 0 corresponds to the nonhelical case, and ρ = 1
is a state with maximal broken spatial parity.

Nonlinear stochastic differential equations (9) and (10) are notorious for their mathe-
matical complexity. However, their behavior in specific circumstances can be effectively
analyzed by methods of quantum field theory. In particular, the RG method provides a
natural framework for the analysis of macroscopic behavior, i.e., the behavior of various
correlation functions in the infrared limit. In order to apply the RG method, it is advan-
tageous to recast the Langevin-like formulation of the model in terms of path integrals.
Following the well-known Janssen–De Dominicis procedure [29,53], stochastic equations (9)
and (10) are fully equivalent to the field-theoretic model of a double set of (unrenormalized)
fields Φ̊ = {v̊, b̊, v̊′, b̊′}, where v̊′ and b̊′ are Martin–Siggia–Rose (MSR) response fields [63].
For the ensuing application of the RG method, it is necessary to distinguish between bare
(unrenormalized) and renormalized parameters [29,40]. Therefore, we denote the bare
fields with a circle on top “˚”, and later on, we write renormalized parameters and fields
without any symbol whatsoever.

The field-theoretic model is then given by the De Dominicis–Janssen–Martin–Siggia–
Rose (unrenormalized) action functional [28], which takes the compact form:

S [Φ̊] =
1
2

v̊′
i D

vv
ij v̊′

j + v̊′ ·
[
−Dtv̊ + ν0∇2v̊ + (b̊ ·∇)b̊

]
+ b̊′ ·

[
−Dtb̊ + ν0u0∇2b̊ + A(b̊ ·∇)v̊

]
.

(16)

Hereinafter, we employed a condensed notation, in which all integrals over space-time
are not explicitly written, and summations over repeated Latin indices i, j ∈ 1, 2, 3 are
implicitly assumed. Thus, for instance, the expression v̊′Dtv̊ in the action (16) actually
stands for

v̊′Dtv̊ =
∫

dt
∫

ddx
[
v̊′

i(t, x)∂tv̊i (t, x) + v̊′
i(t, x)v̊j(t, x)∂jv̊i(t, x)

]
, (17)
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where ∂i ≡ ∂/∂xi denotes the i-th component of the gradient.
The starting point of perturbation methods in quantum field theory is to express

Green functions in terms of a corresponding sum of Feynman diagrams, whose relevance
is controlled by interaction parameters (coupling constants). Throughout this text, by
Green functions, we mean both correlation and response functions of the fields. These
functions are derived from the functional averages of specific field products, weighted by
the exponential of the action exp(S). In graphical terms, these objects can be represented
by Feynman diagrams constructed according to the standard diagrammatic rules of quan-
tum field theory. The Feynman diagram technique serves as a convenient graphical tool
for organizing various algebraic structures that arise from the basic perturbation theory
elements (propagators and interaction vertices) [29]. The graphical representation of these
elements can be straightforwardly obtained. For completeness, we also present the nec-
essary expressions here. In the frequency–momentum representation, the nonvanishing
propagators of the model are expressed as

∆vv′
ij =

Pij(k)
−iω + ν0k2 , ∆bb′

ij =
Pij(k)

−iω + u0ν0k2 , ∆vv
ij =

dp(k)Rij(k)
| − iω + ν0k2|2 , (18)

and are illustrated in Figure 1.

Figure 1. Graphical representation of all propagators corresponding to the action (16).

The interaction part in (16) gives rise to three interaction vertices: v′iUijlbjbl/2, v′iWijlvjvl/2
and b′iVijlbjvl , depicted in Figure 2, where

Uijl(k) = −i(k jδil + klδij), Wijl(k) = i(k jδil + klδij), Vijl(k) = i(k jδil − Aklδij), (19)

and k stands for the momentum entering the vertex via the auxiliary field (b′ for Uijl and
v′ for Wijl and Vijl).

Figure 2. Graphical representation of all interaction vertices of the model-related velocity nonlineari-
ties of the action (16).

In actual calculations, it is often more suitable to work preferably with so-called connected
Feynman diagrams, i.e., those diagrams that remain connected even if one of the internal lines
is cut [29,40]. They can be obtained from the generating functional W defined as

W [J] = ln
∫

DΦ exp{S(Φ) + ΦJ}, (20)

by taking the corresponding number of functional derivatives with respect to external
sources J and then substituting J = 0. For dynamic models, the symbol Φ = {ψ, ψ̃}, where
ψ is the complete set of fields of the model and ψ̃ are their MSR-conjugated analogs.

For translationally invariant theories, additional simplification consists of introducing
functional Γ[α] for one-particle irreducible (1PI or vertex) functions [29,40]. This is an even
more restricted class than that of connected Feynman diagrams since they are obtained
from all possible diagrams by throwing away those Feynman graphs which fall into disjoint
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parts when one internal line is cut. Then, for each external leg in a diagram, we divide out
one factor of the propagator. In this way, we arrive at so-called proper vertices [40,64] that
are convenient for the RG analysis. It can be shown that [29] the corresponding functional
for 1PI diagrams can be obtained by means of functional Legendre transform with respect
to external sources A(x)

Γ[α] = W[J]− αJ, α(x) =
δW[J]
δJ(x)

, (21)

where x denotes the set of all discrete and continuous arguments of the field. Within the
framework of the approach used, the set of independent variables α for the functional Γ is
conveniently divided as follows: α = {αψ, αψ̃}. Then, the 1PI functions Γ[m,n] are obtained
by differentiation with respect to fields α

Γ[m,n] ≡ δm+n

δαm
ψ δαn

ψ̃

Γ(α)
∣∣∣∣
α=0

. (22)

Let us also note that for reasons of causality, all 1PI Green functions of the form Γ[0,n]

vanish [29]. In the next section, we are primarily interested in the quantities of Γ[1,1] (for
velocity fields and magnetic fields, respectively), as well as Γ[2,1] for the vertex U in Figure 2,
since they are the only ones responsible for the renormalization of the model.

3. Renormalization and Results

To obtain relevant information about the macroscopic behavior of solutions to the stochas-
tic problem obeying Equations (9) and (10), we adopt the field-theoretic RG method [29]. This
approach utilizes powerful quantum field theory techniques such as Feynman diagrams and
RG resummation, among others. The starting point of RG analysis involves determining
canonical dimensions and identifying all permissible structures (conveniently represented
through Feynman diagrams) that exhibit superficial ultraviolet divergences [40], as de-
termined by their respective canonical dimensions. Typically, dynamical models like (16)
exhibit two independent scaling dimensions [29,53], implying that each field quantity Q
is assigned two independent canonical dimensions: the momentum dimension dp[Q] and
the frequency dimension dω [Q]. These dimensions are individually determined based on
standard normalization conditions and the requirement that each term in the action must be
dimensionless (momentum and frequency separately) [29,40]. As in most models of critical
dynamics, in the model under consideration, one can introduce the total canonical dimen-
sion d[Q] for a given quantity Q, expressing invariance with respect to some “cumulative”
transformation of coordinates and time. Since in linearized dynamic Equations (9) and (10),
the operations ∂t and ∇ are included in the combination ∂t + const∇2 common to all fields,
the total canonical dimension d[Q] in our case is determined by the relation

d[Q] = dp[Q] + 2dω [Q]. (23)

By direct calculation from the action (16), the canonical dimensions of all relevant
parameters are computed. In fact, the obtained values reproduce the result found in [27].
For the reader’s convenience, we also list it here in Table 1. From this table, we infer that
Model (16) is logarithmic at ε = 0 and there is just one coupling constant g0.

Table 1. Canonical dimension of the bare fields and parameters of the model (16).

Q v̊ v̊′ b̊ b̊
′

ν0 u0, ρ g0 m, Λ, µ

dp[Q] −1 d + 1 −1 d + 1 −2 0 2ε 1
dω [Q] 1 −1 1 −1 1 0 0 0

d[Q] 1 d − 1 1 d − 1 0 0 2ε 1
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A detailed analysis of all relevant UV-divergent parts and related technical details can
be found in previous papers [27,28]. Here, it is only noted that in our case, in addition to the
1PI functions ⟨viv′j⟩1PI and ⟨bib′j⟩1PI of the general A-model considered in [28], an additional
vertex ⟨vibjbl⟩1PI is added. The counterterms to it have the structure of the bare vertex Uijl
and define the renormalization constant Z3. Furthermore, as a direct consequence of Galilean
invariance (12) (the derivative ∂t enters (16) only in the form of Dt), the terms v′(v ·∇)v and
b′(v ·∇)b do not renormalize [27]. However, it is important to understand that we have
no renormalization of the vertex ⟨b′ibjvl⟩1PI only for the trivial case A = 0 and for A = 1.
For the case A = 1, this statement relies on the antisymmetry of the corresponding vertex
Ab′(b ·∇)v − b′(v ·∇)b = b′iVijlbjvl with Vijl = Aδil∂j − δij∂l [27], which obviously does
not exist, e.g., for A = −1. Thus, further, we present expressions for all quantities in the
form of expansions by the parameter A, not explicitly fixing its value but always keeping in
mind the two cases A = 0 and A = 1, where the latter corresponding to MHD is of primary
interest to us in the context of RG analysis.

Thus, taking into account the comments made above, the model is multiplicatively
renormalizable, and its action (16) can be written in the form

SR[Φ] =
1
2

v′iD
vv
ij v′j + v′ ·

[
−Dtv + νZ1∇2v + Z3(b ·∇)b

]
+ b′ ·

[
−Dtb + νuZ2∇2b + A(b ·∇)v

]
,

(24)

where only renormalized parameters and fields appear. The parameters of action SR[Φ]
are associated with the corresponding parameters of S [Φ̊] by multiplicative UV renormal-
ization transformations of the following form:

v̊ = vZv, v̊′ = v′Zv′ , b̊ = bZb, b̊′ = b′Zb′ ,

ν0 = νZν, u0 = uZu, g0 = gµ2εZg,
(25)

where the whole set of the renormalization constants of the fields and parameters is
determined from the relations

Zν = Z1, Zg = Z−3
1 , Zu = Z2Z−1

1 ,

Zv = Zv′ = 1, Zb = Z−1
b′ = Z1/2

3 .
(26)

At this step, we have introduced the so-called renormalization mass parameter µ [29,40].
The renormalization constants Zi, i = 1, 2, 3 are calculated using the ultraviolet renor-

malization procedure, which can be vividly described as follows. To make sense of the
diverging Feynman integrals, some intermediate regularization is introduced (in our case,
it is the natural ultraviolet cutoff Λ). Simultaneously, the bare parameters of the model are
replaced with their renormalized counterparts by introducing Λ-dependent counterterms
into the action. Renormalizability, then, means that with a special choice of the dependence
of Zi on Λ (the requirement to cancel the UV-divergent parts of the diagrams), the limit
Λ → ∞ exists, at least for all integrals necessary for calculating all observables. This limit
is defined up to a finite number of constants that can be fixed by setting the values of
observables and the normalization of fields. In statistical field theory, the so-called minimal
subtraction scheme (MS) is considered the most convenient, where only the divergent parts
of the diagrams are subtracted [29,40].

As noted in Section 2, from a technical perspective, the natural cutoff regularization
is not very convenient for multiloop calculations, so usually, another step is taken: tran-
sitioning to the limit Λ → ∞ along with the introduction of a new type of regularization
like dimensional, in which singularities are presented as poles by the regulator and the
corresponding Green functions are understood as corresponding meromorphic functions.
In our case, such a regularization parameter is ε, previously introduced in the correla-
tor (13), which parameterizes the energy pumping into the system. In this setting, the
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renormalization constants of Model (24) are simply the principal parts of the Laurent series
in the parameter ε, whose coefficients, being polynomials in g, can also parametrically
depend on the space dimension d (however, in this work, we assume d = 3), the gyrotropy
parameter ρ, the parameter A, and the renormalized magnetic Prandtl number u. Thus, a
unified representation for these constants takes the form

Zi = 1 +
∞

∑
n=1

gn
n

∑
j=1

z(i)n,j

εj , i = 1, 2, 3. (27)

For convenience, we assign specific notation to the sets of coefficients {z(i)n,j} for each
constant: {an,j} for i = 1, {bn,j} for i = 2, and {cn,j} for i = 3. In what follows, to simplify
the notation, we do not explicitly indicate the dependence on these parameters in the
arguments of the corresponding renormalization constants.

The constants Z1, Z2, and Z3 are determined from the condition of UV finiteness for
the corresponding vertex functions, each obviously associated with its own set of diagrams.
The last fact proves useful when verifying results with existing special cases. We are already
familiar with the one-loop calculation results for specific cases A = 1 [27], A = 0 [44],
and A = −1 [65]. Our further goal is to complete the full two-loop calculation for all
renormalization constants. In this regard, we present here details of the corresponding
calculation for the renormalization constant Z3.

Let us begin the description of the renormalization constants’ calculation process
from the constant Z1. Here, the previously noted issue regarding each renormalization
constant corresponding to its own subclass of Feynman diagrams immediately becomes
apparent. As can be directly inferred from the action functional (24), the constant Z1
corresponds to the pure Navier–Stokes equation (without the inclusion of the magnetic
field) and can be calculated from Feynman diagrams constructed solely by propagators
and vertices containing the fields v and v′ [27]. As a consequence, it cannot depend on
parameters A and u, but it may depend on the gyrotropy parameter ρ. Directly, the constant
Z1 ≡ Z1(g, d, ε, ρ) can be determined through the corresponding Dyson Equation [40] of
the following form

⟨v′
i vj⟩1PI =

[
iω − νZ1 p2

]
Pij(p)− Σv′v

R ij(p, ω), (28)

where Σv′v
R ij represents the renormalized self-energy operator defined as a sum containing

all permissible 1PI Feynman diagrams. Hereinafter, all quantities where all variables are
replaced by renormalized ones are marked with a subscript “R”.

The coefficient a1,1 representing the one-loop contribution to Z1 was calculated for the
first time in the work [41]. Subsequently, the corresponding two-loop contributions for
both the nonhelical (ρ = 0) and helical cases were detailed in [42] and [34], respectively. In
addition, in ref. [42], it was shown that the coefficient a2,2 is exactly related to the coefficient
a1,1 through the relation a2,2 = −(a1,1)

2. The explicit expression for the coefficient a2,1 is
rather long and we shall not rewrite it here explicitly (see [34] for the details). Its value for
the most physically important case d = 3, along with the exact value of the coefficient a1,1,
is given in

a1,1 = −Sd
d − 1

8(d + 2)
, a2,1 = −0.00825. (29)

Here, we introduce a typical geometric factor Sd ≡ Sd/(2π)d, where Sd = 2πd/2/Γ(d/2)
is the surface of the d-dimensional unit sphere, and Γ(z) is the Euler gamma function. At this
point, it is important to note that the presence of a spiral contribution in the turbulent system
not only does not destroy the stability of the Kolmogorov scaling regime determined by the
coefficients indicated in (29) but also has no impact on its properties at all [34]. Additionally, it
is worth mentioning that this parameter naturally arises when the magnetic field is included.
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From RG analysis of the three-dimensional MHD problem with a general correlator matrix, it
is clear that ρ in our case plays a role similar to the gauge parameter ξ in QED [27].

The RG constant Z2 ≡ Z2(g, u, A, d, ρ, ε) is calculated in the same vein as Z1. Direct
inspection of Feynman diagrams reveals that only those for which the vertex Γv′bb is not
present contribute to Z2. This omitting in action (24) is equivalent to moving to the passive
admixture model [28,65]. The corresponding Dyson equation in the frequency–momentum
representation for the renormalized 1PI Green function ⟨bb′⟩1PI takes a similar (28) form

⟨b′ibj⟩1PI =
[
iω − νuZ2 p2

]
Pij(p)− Σb′b

R ij(p, ω). (30)

Note that from the last relation (26), it follows that the product of fields in Σb′b
R ij is not

renormalized: ZbZb′ = 1. The coefficient b1,1 representing the one-loop contribution to Z2,
is given by

b1,1 = −Sd
(d2 − 3)(1 + u) + A[d + u(d − 2)] + A2(1 + 3u)

4d(d + 2)u(1 + u)2 . (31)

Corresponding two-loop expressions for Z2 coefficients can be found in [28,65] for the
nonhelical term and the helical term, respectively. Since they are generally rather technical
and not very illuminating, we shall not reproduce them here.

The renormalization constant Z3 is up to now known in the perturbation theory
only for the MHD problem in the leading one-loop approximation [27]. For the two-loop
calculation, the procedure follows similar steps to the previous cases. However, from a
technical point of view, it poses a more challenging task. We determine RG constants Z3
from the three-point 1PI Green function ⟨v′bb⟩1PI. The needed perturbative relation can be
formally expressed in the form

⟨v′
i bjbl⟩1PI = Z3Uijl(p) + Γv′bb

R ijl (p, ω). (32)

The subclass of Feynman diagrams that contribute to vertex Γv′bb
R can be defined

simply as an absolute complement to the two subclasses already discussed, defining Σv′v
R

and Σb′b
R . Using (32), the renormalization constant Z3 ≡ Z3(g, u, A, d, ρ, ε) is determined

from the UV finiteness condition for ⟨v′
i bjbl⟩1PI, which is more preferable to formulate in

terms of a scalar quantity

Γv′bb
R ≡ − lim

p→0

Uijl(p)⟨v′
i bjbl⟩1PI(p, ω)

2p2(d + 1)

∣∣∣∣∣
ω=0

. (33)

Here, we take advantage of the fact that ⟨v′
i bjbl⟩1PI has the bare vertex index structure.

The limit p → 0 in Expression (33) does exist, provided the IR regularization of the graphs
has been properly taken care of. In terms of quantity Γv′bb

R , Equation (32) can be reorganized
as follows:

Γv′bb
R = Γ(0) + Γ(1) + Γ(2) + · · · , (34)

where Γ(0) = Z3 is the loopless (tree) approximation, Γ(1) denotes scalarized contributions
from the one-loop diagrams, Γ(2) represents the scalarized total contribution from the
two-loop diagrams, etc. In diagram language, this equation then takes the form

Γv′bb
R = Z3 + + 2 +

29

∑
l=1

slΓ
(2)
l + · · · , (35)

where the diagrams depicted represent the one-loop contribution Γ(1), diagrams Γ(2)
l are

shown in Figure 3, and sl are their symmetry factors. The symmetry factors s1 = s4 = s28 = 1,
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s22 = 1/2, and other two-loop diagrams have symmetry factor equal to 2. Then, the UV
finiteness condition for ⟨v′

ibjbl⟩1PI may be cast in the form

Γv′bb
R (ε)− Z3(ε) = O(ε0), ε → 0, (36)

where only the pole contributions to Γv′bb
R (ε) are meant.

By direct calculation, it is not difficult to obtain the pole contribution to Γ(1) in the
following form:

Γ(1) = − gSd
2d(d + 2)

( µ

m

)2ε A(A + u)
u(1 + u)

1
ε

, (37)

from which we immediately obtain a one-loop contribution to Z3 in the form

c1,1 =
Sd

2d(d + 2)
A(A + u)
u(1 + u)

. (38)

Formula (38) generalizes the expression obtained in [27] to the case A ̸= 1. From (37),
one can see that the contribution singular in ε of the correction Γ(1) vanishes at A = 0.
This is a general property due to the fact that the model with a passively advected vector
field (case A = 0) does not contain divergence in ⟨v′

i bjbl⟩1PI [33]. From this observation, it
directly follows that Z3 = 1 for the case A = 0.

Γ
(2)
1 Γ

(2)
2 Γ

(2)
3 Γ

(2)
4 Γ

(2)
5 Γ

(2)
6

Γ
(2)
7 Γ

(2)
8 Γ

(2)
9 Γ

(2)
10 Γ

(2)
11 Γ

(2)
12

Γ
(2)
13 Γ

(2)
14 Γ

(2)
15 Γ

(2)
16 Γ

(2)
17 Γ

(2)
18

Γ
(2)
19 Γ

(2)
20 Γ

(2)
21 Γ

(2)
22 Γ

(2)
23 Γ

(2)
24

Γ
(2)
25 Γ

(2)
26 Γ

(2)
27 Γ

(2)
28 Γ

(2)
29

Figure 3. Two-loop diagrams contributing to the renormalization constant Z3 through the operator
Γv′bb defined in Equation (34).

Calculating of the two-loop correction Γ(2) turns out to be a significantly more complex
task. Compared to Z1 and Z2, not only does the number of Feynman diagrams increase
(twenty-nine versus eight diagrams) but also their structure is considerably more compli-
cated. The diagrams are computed in the frequency–momentum (ω, k) representation, and,
after analytic integration over frequencies, the remaining expressions can only be examined
numerically in the same manner as in [43]. The integrals remaining after frequency integra-
tion contain parameters such as the reciprocal Prandtl number u, whose value in [28] was
determined to the two-loop precision. Note that within the framework of the ε-expansion,
for the second-order calculation, it suffices to compute the two-loop Feynman integrals
at the value of u∗ determined at the one-loop fixed point. This is so because the integrals
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themselves are already proportional to g2, which is of order ε2. Finally, the general pole
part of Γ(2) can be formally expressed through the following structures:

Γ(2) =
SdSd−1

(2π)2d
g2

4d(d + 2)

( µ

m

)4ε 1
ε

[
C
ε
+ B(0) + ρ2B(ρ)

]
(39)

where the coefficients C, B(0), and B(ρ) are functions of d, u, and A and are to be further
computed. The nonzero value of the coefficient C arises specifically in cases where the
diagram contains one of the two divergent subgraphs represented in Equation (35). Its
independence from the chirality parameter ρ stems from the model’s multiplicative renor-
malizability and the fact that the one-loop contribution does not depend on ρ. The values
of the coefficients C, B(0), and B(ρ) for each specific diagram in Figure 3 can be found in
Appendix A. In addition, to explain intermediate steps in the aforementioned described
calculational procedure, we briefly elaborate in Appendix B on the used methodology in
the analysis of a particular two-loop Feynman diagram.

From Expression (39), it follows in a straightforward manner that the two-loop contri-
butions c2,1 and c2,2 to constant Z3 have the form

c2,2 = −C(d)
2

C, c2,1 = −C(d)
[

B(0) + ρ2B(ρ)
]
, C(d) ≡ SdSd−1

(2π)2d
1

4d(d + 2)
. (40)

The coefficient C at the second-order pole is not of particular interest to us because
it does not contribute to the RG analysis. Its value is only needed to verify calculations
through cancellation with corresponding one-loop contributions. The corresponding expres-
sions are given in Appendix A. Therefore, we limit ourselves to presenting the value of the
coefficient c2,1 for the most physically interesting case of three-dimensional MHD

c[A=1]
2,1 = C(3)

[
0.201432 + ρ20.288499

]
, C(3) = 1/480π4. (41)

The RG analysis for all 1PI Green functions Γ[m,n] is based on the fundamental dif-
ferential equation [29,40] expressing the independence of the renormalized functionals
Γ[m,n]

R from the finite renormalization transformation parameter µ at the fixed model’s bare
parameters e0 ≡ {g0, u0, ν0}. The equation can be presented in the following form:[

µ∂µ + βg∂g + βu∂u − γνν∂ν − mγb − nγb′
]
Γ[m,n]

R (g, u, ν, µ, . . . ) = 0. (42)

Here, we have slightly abused the notation and returned to the terminology of Section 2
for 1PI functions. The gamma functions, namely, γν, γb, and γb′ are commonly defined
through the following relations: γi ≡ Dµ ln Zi, i ∈ {u, ν, b, b′}, where Dµ ≡ µ∂µ|e0 , i.e.,
the logarithmic derivative is taken at the constant bare parameters. Concurrently, the beta
functions βg and βu expressing the change in the charges g and u under the renormalization
group flow are defined as follows

βg ≡ Dµg = g(−2ε + 3γν), βu ≡ Dµu = −uγu. (43)

The RG functions γb and γb′ are associated with the calculated two-loop constant Z3.
The direct calculation yields two relations,

γb = −γb′ = −(gc1,1 + 2g2c2,1), (44)

where the former one is a consequence of the equation Zb = Z−1
b′ given in (26).

In MHD, as in the theory of homogeneous and isotropic turbulence, the nontrivial
asymptotic large-scale behavior of Green functions is governed by anomalous dimensions
(exponents) γ∗

i , which are determined by corresponding gamma functions γi taken at an IR
stable fixed point of the corresponding RG equation (42). In its turn, coordinates of fixed
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points (g∗, u∗) in the plane of renormalized couplings are determined from the requirement
that all beta functions simultaneously vanish: βg(g∗) = 0 and βu(g∗, u∗) = 0. The stability
of the found fixed point is determined by the positive definiteness of the real part of the

matrix Ωij =
(
∂βi/∂gj

)∣∣∣
(g∗ ,u∗)

, i, j ∈ {g, u} in the vicinity of ε = 0.

In our model, there is one nontrivial stable fixed point – the so-called kinetic
point [29]. With two-loop accuracy, its coordinates are determined by the following
relations: g∗ = g(1)∗ ε + g(2)∗ ε2 and u∗ = u(1)

∗ + u(2)
∗ ε, where the corresponding coefficients

of ε-expansions were calculated in general form in [28]. In the case of the three-dimensional
MHD, they take the following form:

g(1)∗ =
40
3

π2, g(2)∗ = −1.0994g(1)∗ , (45)

u(1)
∗ =

1
2

(√
43
3

− 1

)
, u(2)

∗ = 0.0138 + 0.0312ρ2. (46)

An important difference between MHD and ordinary hydrodynamic turbulence is
the presence of a nontrivial anomalous dimension (exponent) γ∗

b of the magnetic field,
calculated perturbatively. Let us recall that due to the absence of renormalization of the
velocity field, the corresponding anomalous exponent of the velocity field is exactly equal
to zero: γ∗

v = 0. The two-loop anomalous exponent γ∗
b at the kinetic point has the form

γ∗
b = −0.1595ε +

(
0.0278 − 0.2101ρ2

)
ε2, (47)

which, along with the well-known exact (lacking corrections of order ε2 or higher) values
of the anomalous dimensions γ∗

ν = 2ε/3 and γ∗
u = 0 [29], completes the set of two-loop

anomalous exponents in the model under consideration.
Along with the canonical dimensions d[Q] given by (23), the large-scale behavior

of Green functions (critical scaling in the language of RG) is also characterized by the
corresponding critical dimensions

∆Q = dp[Q] + dω [Q]∆ω + γ∗
Q , (48)

where dp[Q] and dω [Q] are the corresponding canonical dimensions listed in Table 1.
Therefore, the critical dimensions in MHD are determined by the following relations:

∆ω = −∆t = 2 − γ∗
ν , ∆v = 1 − γ∗

ν , ∆b = ∆v + γ∗
b , (49)

∆v′ = d − ∆v , ∆b′ = d − ∆b . (50)

Note that the absence of γ∗
v entails the fact that the second condition in (49) includes

only exact γ∗
ν . This precisely determines the Kolmogorov spectrum “−5/3” for the statistics

of the velocity field correlations at the “physical” ε = 2. In its turn, the presence of a
nontrivial anomalous exponent γ∗

b of the magnetic field can have a significant influence on
the scaling behavior of the statistical correlations of the magnetic field.

In what follows, we finally restrict ourselves to considering only the case of three-
dimensional MHD. Thus, using Expression (47), one obtains the critical dimension of the
magnetic field

∆b = 1 − 0.8262ε +
(

0.0278 − 0.2101ρ2
)

ε2. (51)

For the physical setting where ε = 2, the critical dimension ∆b manifests as
∆b = −0.5412 − 0.8404 ρ2. This dimension peaks at ρ = 0 and and reaches a minimum of
∆b = −1.3816 for ρ = 1. This observation underscores the significant influence of helicity
on the scaling behavior within at least the regime governed by a kinetic fixed point.
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4. Conclusions

In this study, we performed a two-loop calculation of the constant Z3 in the paradig-
matic model of three-dimensional magnetohydrodynamic turbulence in a chiral medium.
Conceptually, we followed the same calculation procedure previously applied to constants
Z1 [65] and Z2 [28]. For the most interesting special case of stochastic MHD, corresponding
to the value A = 1, RG analysis was performed, within which the dimension ∆b of the
magnetic field b was calculated. A strong influence of the effect of spatial parity violation
on scaling behavior was discovered: the value of the critical dimension of the magnetic
field in the absence of parity violation (ρ = 0) differs by 2.5 times from its value in the state
with maximally violated mirror symmetry (ρ = 1).

It should be emphasized here that the main motivation for this study was a desire to
more thoroughly investigate the statistical properties of magnetic fluctuations in magne-
tohydrodynamics, which are precisely determined by the anomalous dimension ∆b. At
first glance, it may seem that even such a complex model as the one we employ here for
this task is unsuitable, due to the absence of a magnetic field correlator in it. However,
this is not the case. The reason is that even in the absence of a magnetic correlator in the
Model (24), the normal state with ⟨b⟩ = 0 in a chiral medium turns out to be unstable and
stabilizes in a more “low-energy” state due to the spontaneous emergence of a uniform
large-scale magnetic field [30]. Re-expansion (24) in the vicinity of this new ground state
entails the appearance of the correlator ⟨bb⟩, as well as ⟨bv⟩ and others. The corresponding
scaling behavior in this case becomes nontrivial and will be described using the anomalous
dimension ∆b obtained in this work. An article that will provide a detailed analysis of
helical MHD with a spontaneously generated homogeneous magnetic field is reserved for
future publication.
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Abbreviations

The following abbreviations are used in this manuscript:

1PI One-particle irreducible
RG Renormalization group
IR Infrared
MHD Magnetohydrodynamic
MSR Martin–Siggia–Rose (formalism)
MS Minimal subtraction
NS Navier–Stokes
UV Ultraviolet

Appendix A. Coefficients C, B(0), and B(ρ)

Let us now present the results on coefficients C, B(0), and B(ρ) from Equation (39),
which correspond to contributions of the graphs shown in Figure 3. All the graphs Γ(2)

l ,
l = 1, . . . , 29 were calculated using the technique presented in ref. [43]. In this appendix, we
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present numerical results for B(0) and B(ρ), alongside analytical results for C, in the spatial
dimension d = 3 at A = 1, relevant to helical stochastic MHD. Additionally, we include
parameter values for A = −1 for illustrative purposes. It is noteworthy that for A = 0, all
the contributions from the corresponding diagrams vanish. The numerical estimates for B(0)

and B(ρ) are calculated at the one-loop kinetic point value of u(1)
∗ =

(√
43/3 − 1

)
/2 [29],

ensuring two-loop precision. Each diagram’s numerical precision reaches six decimal
places, with negligible errors not exceeding the tenth decimal place, hence not detailed
here. All results obtained are collected in Table A1.

Table A1. The results on coefficients Ci, B(0)
i , and B(ρ)

i , i = 1, . . . , 29 from Equation (39), which

correspond to contributions of graphs Γ(2)
i depicted in Figure 3 and are multiplied by the appropriate

symmetry factors. The zeros in the column for B(ρ)
i at A = 1 are explained by the vanishing of

the corresponding tensor structure and in the column for values Ci by the absence of a divergent
subgraph in the diagram.

Γ(2)
i B(0)

i (A=1) B(ρ)
i (A=1) B(0)

i (A=−1) Ci

Γ(2)
1

−0.005184 0.028027 −0.010480 0

Γ(2)
2

0.000133 0 −0.009861 0

Γ(2)
3

0.013824 −0.013968 0.023773 0

Γ(2)
4

0.017541 −0.015008 0.004902 0

Γ(2)
5

−0.033581 0 −0.144054 0

Γ(2)
6

−0.003710 0.028578 0.011960 (1−A)A(3+u)
60(1+u)3

Γ(2)
7

0.015908 −0.018471 −0.037389 (A−1)A
60(1+u)2

Γ(2)
8

0.015700 0 −0.037389 A2

30(1+u)2

Γ(2)
9

−0.010609 0 0.011960 A3

15u(1+u)2

Γ(2)
10

0.034854 −0.030778 0.099229 (A−1)A2

30u(1+u)2

Γ(2)
11

−0.035370 0 0.107024 0

Γ(2)
12

−0.010861 0.046424 −0.002345 (1−A)A2(3+u)
30u(1+u)3

Γ(2)
13

0.012655 0.016862 0.003233 (A−1)A2

15u(1+u)3

Γ(2)
14

0.006314 0.009655 −0.006129 (A−1)A
30(1+u)3

Γ(2)
15

−0.004281 0.003448 −0.006129 A2

30(1+u)2

Γ(2)
16

0.047515 −0.056194 −0.056851 −A
60(1+u)

Γ(2)
17

−0.047638 −0.074310 −0.162065 A4

15u2(1+u)2

Γ(2)
18

0.072961 −0.074529 −0.088968 −A
60(1+u)

Γ(2)
19

0.015903 −0.012151 −0.019181 0

Γ(2)
20

−0.008252 0 0.132589 A3

15u(1+u)2

Γ(2)
21

−0.152579 0.187110 0.186143 A
30(1+u)

Γ(2)
22

−0.094516 0.060609 −0.160662 0
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Table A1. Cont.

Γ(2)
23

0.003675 −0.068108 −0.028273 Equation (A3)

Γ(2)
24

0.014622 −0.081034 0.032238 A2(2+u)
10u(1+u)2

Γ(2)
25

0.060210 −0.133739 −0.082297 A(2+u)
10(1+u)2

Γ(2)
26

0.000189 −0.036347 −0.028273 A
20(1+u)

Γ(2)
i B(0)

i (A=1) B(ρ)
i (A=1) B(0)

i (A=−1) Ci

Γ(2)
27

0.020574 −0.111778 0.116378 Equation (A4)

Γ(2)
28

−0.147619 0.09355 0.179162 0

Γ(2)
29

0.000190 −0.036347 −0.000227 A
20(1+u)

∑i Γ(2)
i

−0.201432 −0.288499 0.028018 Equation (A5)

We did not provide in Table A1 the values for the coefficients B(ρ)
i in the case A = −1,

because their total sum, in fact, exactly equals zero. To clarify this point, let us consider
the total contribution to the sum of coefficients B(ρ)

i from all Feynman diagrams. It has the
form of the following integral

B(ρ) =
29

∑
i=1

B(ρ)
i =

1∫
−1

dz
∞∫

m

dk dq (kq)1−2ε(k2 − q2)F(k, q, z), (A1)

where z ≡ (k · q)/kq and function F (k, q, z) is given by

F(k, q, z) =
(1 − z2)(4kqz2 + 4(k2 + q2)z − kq)
32(k2 + q2 + kqz)3(k2 + q2 + 2kqz)

. (A2)

Directly from (A2), it is clear that F(k, q, z) is symmetric with respect to the replacement
k ↔ q, which ensures that the integral (A1) is zero. Thus, the renormalization constant Z3
does not depend on the ρ for model A = −1 at the level of two-loop approximation.

Furthermore, we present here the cumbersome expressions for the coefficients C23
and C27:

C23 =
A

30(1 + u)4

[
6(1 + u) + A(3 + u) + A2(1 + 3u)

]
, (A3)

C27 =
A2(1 + 2u)

30u2(1 + u)4

[
6 + 3A + A2 + u(6 + A + 3A2)

]
. (A4)

The total value of the coefficient C = ∑i Ci finally takes the form

C =
A2

30u2(1 + u)4

[
A2(3 + 9u + 8u2) + A(3 + 11u + 11u2 + 7u3)

+ 6 + 24u + 32u2 + 17u3 + 5u4
]
+

A(5 + 5u + 2u2)

20(1 + u)3 . (A5)

There are certain cancelations in the given sum of Ci. Let us consider a group of
diagrams enumerated by indices 16, 18, and 21 in Figure 3. Each of them has a divergent
subgraph ⟨v′vv⟩, but in total sum, these divergences are canceled

subgraph ⟨v′vv⟩ : C16 + C18 + C21 = 0. (A6)
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Generally speaking, this fact is a corollary of the absence of divergences in the 1PI
Green function ⟨v′vv⟩1PI. Another cancelation is observed for the diagrams containing a
subgraph ⟨b′bv⟩. In Figure 3, diagrams containing subgraph ⟨b′bv⟩ numbered 6, 7, 10, 12,
13, and 14, collectively, give zero contribution to C in this case:

subgraph ⟨b′bv⟩ C6 + C7 + C10 + C12 + C13 + C14 = 0. (A7)

Note that in magnetohydrodynamics (case A = 1), such contributions do not arise
at all, because all corresponding coefficients contain a factor (A − 1). This is a general
consequence of the fact that the vertex ⟨b′bv⟩1PI is not renormalized in MHD (see text after
Equation (23)). It is worth mentioning that the given observation aligns with the analysis
of the constant Z1 in the stochastic Navier–Stokes equation [42].

Let us write condition (36) at order g2 for d = 3. With the use of the corresponding
terms of the one-loop contribution (37), the summed two-loop contributions (39), and
expression for the renormalization constant

Z3 = 1 +
c1,1

ε
g +

( c2,1

ε
+

c2,2

ε2

)
g2 + O(g3), (A8)

we obtain

( c2,2

ε2 +
c2,1

ε

)
−
(
1 + 2ε ln µ

m
)

ε2 c1,1

[
c1,1 − 2a1,1 − b1,1 +

u(1 − A)(b1,1 − a1,1)

(1 + u)(A + u)

]
+

SdSd−1

(2π)2d
1

4d(d + 2)ε

[(
1 + 4ε ln

µ

m

)C
ε
+ B(0) + ρ2B(ρ)

]
= 0. (A9)

Taking into account relations (40), we see that the terms with ln(µ/m) in Equation (A9)
are automatically canceled (as a consequence of renormalizability of the model), whereas
for the coefficient c2,2 of the second-order pole, we obtain

c2,2 = −c1,1

[
c1,1 − 2a1,1 − b1,1 +

u(1 − A)(b1,1 − a1,1)

(1 + u)(A + u)

]
, (A10)

where one-loop coefficients a1,1, b1,1, and c1,1 are given by (29), (31), and (38), respectively.
The verification of the results given in this section consists of the coincidence of the expres-
sions for c2,2 from (A10) based on one-loop results and obtained using the first relation
in (40) and the value of C in (A5) calculated directly from the two-loop diagrams.

Appendix B. Calculation of Feynman Diagram Γ
(2)
15

In this section, we briefly discuss the two-loop calculation of Feynman diagrams
⟨v′bb⟩1PI, using one particular diagram Γ(2)

15 as an example. The diagram with the distri-
bution of momenta and vector indices is shown in Figure A1. We are interested in the
asymptotic behavior of Γ(2)

15 as p → 0. After standard integration over frequencies and
scalarizing the diagram, according to condition (33), we obtain

Γ(2)
15 =

g2µ4ε

16(1 + u)2
SdSd−1

(2π)d

∞∫
m

dk
k1+2ε

∞∫
m

dq
q1+2ε

1∫
−1

dz f15(k, q, z), (A11)

where f15(k, q, z) is a scalar function depending only on k, q and z ≡ (k · q)/kq. It is defined
through the relation

f15(k, q, z) = lim
p→0

Tijl(k, q, z, p)Uijl(p)
(−2p2(d + 1))

, (A12)
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where the expression Tijl(k, q, z, p) is obtained as a result of frequency integration and
computing all tensor convolutions in the diagram. Finally, the explicit form of the function
f15(k, q, z) is given by

f15(k, q, z) =
−2A2qz(1 − z2)(d−1)/2

(d − 1)d(2 + d)(k2 + kqz + q2)(k2 + q2 + 2kqz)

×
[
(d − 1)k3 − 2q3z − 2k2q

(
(d − 2)ρ2 + z − dz

)
+ kq2

(
−3 + d − 2(d − 2)ρ2z

)]
.

(A13)

Note that for this particular diagram, the entire dependence on u0 turned out to be
pulled out from the function f15(k, q, z) and collected before the integral sign.

The representations similar to (A11) are derived for all remaining Γ(2)
i diagrams, with

specific functions fi(k, q, z, u0). For detailed instructions on executing integrals of this form,
refer to sources such as [42,43]. In our case, the methodology remains largely unchanged,
involving first the isolation of poles followed by the computation of the integral’s residual
part. Calculating contribution for the pole ε−2 is straightforward and can be performed
for arbitrary values of parameters. The numerical integration for the ε−1 pole component
was executed using the Wolfram Mathematica software [66], specifically for d = 3 and
A = ±1, and employing the one-loop kinetic point value of u(1)

∗ =
(√

43/3 − 1
)
/2. This

process achieved high precision swiftly and concluded without issues. The outcomes for
the ε−1 segment of the Γ(2)

15 diagram are documented in Table A1, detailing both helical
(proportional to ρ2) and nonhelical contributions.

1
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~p

~k

~p− ~k

~s− ~k

~p− ~k − ~q

~q

~r − ~q

~r

~s

Figure A1. The diagram Γ(2)
15 with momenta and indices distribution. We use digit notation for vector

indices instead of letters. For convenience, here p⃗ denotes the momentum flowing into the diagrams
through the field v′,and r⃗, s⃗ are momenta flowing out through fields b.
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