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Abstract: Neutrinoless double beta decay nuclear matrix element (M0ν) for 136Xe was recently
analyzed using a statistical approach (Phys. Rev. C 107, 045501 (2023)). In the analysis, three
initial shell model effective Hamiltonians were randomly altered, and their results for 23 measured
observables were used to infer credibility for the M0ν nuclear matrix element (NME) based on a
Bayesian Model Averaging approach. In that analysis, a reasonable Gamow-Teller quenching factor of
0.7 was assumed for each starting effective Hamiltonian. Given that the result of the statistical analysis
was sensible to this choice, we are here improving that analysis by assuming that the Gamow-Teller
quenching factor is also randomly chosen within reasonabe limits for all three starting Hamiltonians.
The outcomes are slightly higher expectation values and uncertainties for the M0ν NME.
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1. Introduction

Neutrinoless double beta decay (0νββ) is undoubtedly one of the most intense area
of research in nuclear and particle physics [1]. The eventual observation of this process
would indicate that the lepton number is not conserved, unlike assumed in the Standard
Model of particle physics, but it is changing by two units in this decay. This conclusion by
itself would indicate physics beyond the Standard Model (BSM), which could lead to many
ramifications, such as establishing the Majorana nature of the neutrino via the black-box
theorems [2,3], addition of new Majorana mass terms in the BSM Lagrangian [4,5], and a
possible explanation of the observed baryonic asymmetry through leptogenesis [6].

An associated process, is the two neutrino double beta decay (2νββ), which is allowed
by the Standard Model, and it was observed for 11 isotopes [7]. In addition, three double
electron capture decays with emissions of two neutrinos were also observed [7]. For both
types of decays the inverse half-life (decay constant) can be described as a product of a
phase space factors (PSF), a nuclear matrix element (NME) squared, and a BSM lepton
number violation (LNV) parameter in the case of the 0νββ. A good theoretical description of
the 0νββ half-lives is essential for providing guidance for effective choices of the expensive
experimental setups.

While the PSF can be calculated with increased accuracy [8–13] there are still significant
discrepancies between the NME calculated with different nuclear structure models. Among
the nuclear structure methods used for calculating the NME are the interacting shell model
methods [14–24], the proton-neutron Quasiparticle Random Phase Approximation (pn-
QRPA) methods [10,25–30], the Interacting Boson Approximation (IBA) methods [31,32],
the Energy Density Functional method [33], the Projected Hartree Fock Bogoliobov (PHFB)
method [34], the Coupled-Cluster method (CC) [35], the in-medium generator coordinate
method (IM-GCM) [36], and the valence-space in- medium similarity renormalization
group method (VS-IMSRG) [37]. As a general rule, each of these methods use a preferred
methodology and a preferred effective nuclear Hamiltonian constructed in a preferred
model space to describe the same NME.
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Recently, there is a larger and consistent interest in the community to study these
observables from a statistical point of view, thus considering fluctuation in the underlying
nuclear dynamics and providing not only values for these observables, but also uncer-
tainties [38]. In two recent papers [39,40] we applied this strategy to the 0νββ decay cases
of 48Ca and 136Xe. In particular, in Ref. [40] we analyzed the case M0ν of 136Xe using
a a Bayesian Model Averaging approach [38,41]. The outcome was a range of values at
90% confidence level for the M0ν NME, an expectation value and an uncertainty.

In the analysis of Ref. [40], three starting shell model effective Hamiltonians were used,
whose two-body matrix elements were randomly altered by ±10%, and their results for 23
measured observables were used to infer credibility for the M0ν based on a Bayesian Model
Averaging approach. In that analysis, a reasonable Gamow-Teller quenching factor of 0.7
was assumed for each starting effective Hamiltonian. Given that the results of the statistical
analysis were sensible to the choice of this quenching factor, we here present an improved
analysis assuming that the Gamow-Teller quenching factor is also random variable chosen
within reasonable limits between 0.35 and 0.75 for all three starting effective Hamiltonians.
The outcome will be a new range of values at 90% confidence level for the M0ν NME, a
new expectation value and uncertainty. As in Ref. [40] the calculations are performed
using three independent starting effective Hamiltonians, i.e., the SVD [42], the jj55t [20]
and the GCN5082 [43], all valid in the same single particle (s.p.) model space, jj55, that is
appropriate for 136Xe. All three effective Hamiltonians are based on theoretical Brueckner G-
Matrix effective Hamiltonians that were fine-tuned to describe the experimental excitation
energies of a large number of nuclei that can be described in this s.p. model space.

The paper is organized as follows. In Section 2 we present a quick review of the
methodology of calculating the 23 observables used in this study, and the statistical model.
In Section 3 we present new results and analyze their significance, followed by a statis-
tical analysis based on the Bayesian Model Averaging approach. Section 4 is devoted to
conclusions and outlook.

2. The Statistical Model

Following Ref. [40], we extend our statistical study the neutrinoless NME, M0ν, for the
136Xe isotope that is vigorously investigated experimentally by several current and future
double beta decay (DBD) experiments [44–48]. As in Ref. [40] the calculations are done with
the interacting shell model in the jj55 model space consisting of the 0g7/2, 1d5/2, 1d3/2, 2s1/2
and 0h11/2 orbitals, which assumes 100Sn as a core, and can be used to describe nuclei
with number of neutrons and protons between 50 and 82. Given that the 0g7/2 and 0h9/2
spin-orbit partner orbitals are missing, one could be concerned that in the jj55 model space
some missing Gamow-Teller strength from the Ikeda sum-rule occurs, but prior studies
show that this deficit can be compensated by using effective Gamow-Teller operators (in
our case a less smaller quenching factor).

The starting effective Hamiltonians used in this study are the same as in Ref. [40],
namely SVD [42] (short name svd), jj55t [20] (short name j5t), and GCN5082 [43] (short
name gcn). A full description of these starting effective Hamiltonian can be found in
section II of the above Ref. [40]. The “starting” qualifier for the effective Hamiltonians
indicates that they were fine-tuned for a range of nuclei appropriate for the jj55 s.p. model
space. In our statistical study, these three starting effective Hamiltonians are modified
by adding ±10% random perturbations to their two-body matrix elements (TBME). The
rationale for limiting the changes of the TBME of the starting effective Hamiltonians to
±10% is given in Ref. [39]. Here, as in Ref. [40] we generate 1000 effective Hamiltonians
by adding random perturbations to the TBME of the starting effective Hamiltonians. As
in our previous statistical studies for 48Ca [39] and 136Xe [40], the single-particle energies
were kept unmodified, to avoid changes in the magicity of the 100Sn core.
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The 24 observables used in this study are described in section II of Ref. [40], but we
also list them here for an easier reading of Figures 1–3, below: 0νββ NME, 2νββ NME, the
energies of the first 2+, 4+, and 6+ states in the parent (136Xe) and daughter (136Ba) nuclei,
B(E2)↑ transition probabilities for 136Xe and 136Ba to the first 2+ states, the Gamow-Teller
transition probability for the transition from 136Xe and from 136Ba to the 1+ excited state
in 136Cs, and the neutron and proton occupancies for 136Xe and 136Ba above the 100Sn core
in the jj55 model space shells. Details on how these observables are calculated can be also
found in section II of Ref. [40].
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Figure 1. The heatmap for all 24 observables when using the GCN5082 effective Hamiltonian. See
Section 3 for notations and analysis.
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One important ingredient in these calculation is the 2νββ NME entering into 2νββ
decay half-life [17,39]:

T−1
2ν = G2νg4

A | M2ν |2 (1)

Here, G2ν is the phase space factor [11,13], and gA = 1.276 [49] is the free nucleon weak
axial coupling constant. The 2νββ NME, M2ν, is calculated as

M2ν = ∑
k

〈
0+f | (στ−)e f f | 1+k

〉〈
1+k | (στ−)e f f | 0+i

〉
Ek − E0

, (2)

where the summation is on the 1+k states in 136Cs, and E0 = Qββ/2 + ∆M(136Sc−136Xe).
Details on how the sum one the intermediate 1+k state is performed in the 2νββ Equation (2)
are given in section IV of Ref. [50]. In these calculations, the Gamow-Teller τ−σ operator in
Equation (2) was quenched by the quenching factor q, which is generally found to be around
0.7 for most s.p. model spaces and most effective Hamiltonians. The interacting shell model
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point of view is that this quenching effect is due to the renormalization of the τ−σ operator
in reduced model spaces [51–53], while the axial coupling constant remains that for free
nucleons. Therefore, in this study, the “renormalized” τ−σ operator in Equation (2) is
(στ−)e f f = qτ−σ. However, in the jj55 model one needs a quenching factor of about 0.4 for
the GCN5082 Hamiltonian to describe the experimental value of the 2νββ NME (and an
intermediate value between 0.4 and 0.7 for the jj55t Hamiltonian). In Ref. [40] we used the
reasonable q-value of 0.7 for all three effective Hamiltonians. In this paper, we improve
the analysis by allowing the quenching factor q to take random values between 0.35 and
0.75. The precise methodology on how this change is implemented is described in the
next section.
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Figure 3. Distributions based on experimental data (in red) compared with the KDE (in blue) obtained
from the GCN5082 starting Hamiltonian (see text for details).
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For the 0νββ NME we cannot not use a similar effective operator described by a
simple quenching factor of the Gamow-Teller operator, but that role is played by the short-
range two-body correlation function [39,40]. In the case of 48Ca presented in Ref. [39] we
used a short range correlation function that produces results close to those of the more
sophisticated ab-initio method. Given that there are not similar ab-initio results for 136Xe,
here, as in Ref. [40] we choose a short-range correlation function based on the widely
utilized CD-Bonn parametrization (see e.g., [22–24]). The 0νββ NME is calculated using
the closure approximation [21,54–56].

3. Results of the Statistical Analysis
3.1. Description of Experimental Data and Statistical Results

The experimental data used in this study is listed in the first two columns of Table I
of Ref. [40]. The sources for this data and its description can be found in Section III
of the same Ref. [40]. Table I of Ref. [40] also contains the expectation values and the
standard deviations for all 24 observables calculated with the 1000 sample for each starting
effective Hamiltonian.

More statistical results are shown here for the GCN5082 Hamiltonian in Figures 1–3,
while the similar results for the SVD starting effective Hamiltonian can be found in
Figures 1–3 of Ref. [40]. In these figures we used short notations that identify each observ-
able, whose descriptions can also be found in Ref. [40], but they are also briefly repeated
here for an easier reading of these figures. The “parent nucleus” is 136Xe, the “daughter
nucleus” is 136Ba, and the “intermediate nucleus” is 136Cs for the ββ transitions. We use
the letter “P” at the beginning of a label for an observable indicates that it is related to the
parent nucleus, and the letter “D” indicates observables corresponding to the daughter
nucleus. M0ν represents the 0νββ NMEs, and M2ν represents the 2νββ NMEs. PGT and
DGT label the Gamow-Teller strengths to the first excited 1+ state in the 136Cs intermediate
nucleus from 136Xe and from 136Ba, respectively. PB(E2) ↑ and DB(E2) ↑ are the electric
quadrupole transition probabilities (0+ → 2+) for 136Xe and 136Ba, respectively. PE2+ ,
PE4+ , PE6+ and DE2+ , DE4+ , and DE6+ denote the energies of the first 2+, 4+, and 6+

excited states, for 136Xe and 136Ba and respectively. POPg7, POPs1, POPh11, and POPd stand
for the proton occupation probabilities of the 0g7/2, 2s1/2, 0h11/2, and d orbitals in 136Xe,
while DOPg7, DOPs1, DOPh11, and DOPd are the proton occupation probabilities of the
0g7/2, 2s1/2, 0h11/2, and d orbitals in 136Ba. DVNg7, DVNs1, DVNh11, and DVNd represent
the neutron vacancy probabilities in 136Ba. The experimental proton occupancies for 1d5/2
and 1d3/2 orbitals cannot be separated experimentally, and they are listed here as POPd
and DOPd.

Figures 1–3 present detailed statistical results obtained with the GCN5082. Similar
figures for the SVD starting Hamiltonian can be found in Ref. [40], where a full description
of these figures can be also found. Figure 1 shows the heat-map, i.e., the Pearson correlation
coefficients, for all 24 observables in the case of the GCN5082 starting effective Hamilto-
nian. Figure 2 shows the correlation matrix only for the observables that have a Pearson
coefficient larger than 0.5 relative to the M0ν NME. Figure 3 presents in blue the Kernel
Distribution Estimates (KDE) for all 24 observables (the diagonals in Figure 2). The red
curves are Gaussians plotted using the experimental values as expectation values, and the
experimental errors used as standard deviations. These experimental values are listed in
Table I of Ref. [40], and are not repeated here.

The main difference between the GCN5082 statistical results presented here, and SVD
results shown in Ref. [40] is that the Pearson correlation coefficient between the M0ν NME
and the M2ν NME is not as strong for GCN5082 starting effective Hamiltonian as it was for
SVD starting effective Hamiltonian, likely because of the fixed quenching factor of 0.7 used
in these calculation. However, in Section 3.2 below we improve our analysis by letting the
quenching factor q to take random values in the interval 0.35 to 0.75 in our Bayesian Model
Averaging analysis. Other observables that significantly correlate with the M0ν NME are:
the E2+ , E6+ and E4+ excitation energies of the daughter nucleus (136Ba), the E2+ , E4+ and
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E6+ excitation energies of the parent nucleus (136Xe), and the daughter neutron vacancy of
the 0g7/2 orbital.

3.2. The Bayesian Model Averaging

A thorough statistical analysis of the 0νββ NME could provide valuable insights into
its range, mean value, and its uncertainty. It appears that the values of all observables
listed in Figure 3 remain robust in response to small variations in the GCN5082 starting
effective Hamiltonian. There is though no indication of any significant deviation from
its starting values (e.g., sudden deviations indicating phase transitions, double bumps,
etc.), similar to the results for the SVD effective Hamiltonian shown in Ref. [40]. However,
the experimental data with errors (red curves) are not always on top of the theoretical
distributions, especially the 2νββ NME that is proportional to the quenching factor squared
(q2). In Ref. [40] we used a Bayesian Model Averaging analysis that includes the statistical
results of all three starting effective Hamiltonians to provide a range of values, a mean
value and its uncertainty for the 0νββ NME. For that we introduced a common model
distribution function that mixes the distributions of the 0νββ NME for each starting effective
Hamiltonian depicted in Figure 3 using weighting factors WH ,

P(M0ν) =WsvdPsvd(M0ν) + WgcnPgcn(M0ν) + Wj5tPj5t(M0ν). (3)

The normalized weights Wk with k = svd, gcn, j5t can be obtained using the the Bayesian
Model Averaging method [38,41] described in Section IV of Ref. [40]. The main difference
between the present analysis and that of Ref. [40] is that here we allow the quenching
factor q to vary uniformly in a reasonable range of values between 0.35 and 0.75. This
range is chosen while for q = 0.4 the GCN5082 Hamiltonian better describes the 2νββ NME
that is strongly correlated with the 0νββ NME, for q = 0.7 the SVD Hamiltonian better
describes the 2νββ NME, and the jj55t Hamiltonian is favored by intermediate values of
the quenching factor q.

As in Ref. [40] we associate the weights Wk with the Bayesian posterior probabilities,
p(Mk|(ye, σe), given some prior probabilities π(Mk) (see Equations (3)–(5) of Ref. [40]). To
estimate these posterior probabilities one needs to calculate the so-called evidence integrals
(Equation (4) of Ref. [40]) using Monte Carlo techniques. In Ref. [40] the evidence integrals
were obtained integrating on all NTBME number of two-body matrix elements describing
each effective Hamiltonians, denoted by θj. Here we also include the integration over q by
randomly choosing its value for each Monte-Carlo sample:

p(ye, σe|Mk) =
∫ Nobs

∏
i

dyi pye ,σe(yi)

[∫
dq

NTBME

∏
j

dθj p(yi|θj, q,Mk)π(θj, q|Mk)

]
, (4)

Here Nobs refers to those obsevables that have a Pearson coefficient larger than 0.5 relative
to the M0ν NME (see Figure 2). Assuming as in Ref. [40] that the priors are chosen
democratically equal, i.e., 1/3 for each model described by a starting effective Hamiltonian,
one gets for the posterior probabilities

p(Mk|ye, σe) =
1

1 + ∑j ̸=k
p(ye ,σe |Mj)

p(ye ,σe |Mk)

. (5)

where the indexes k and j go over the collection of model: svd, gcn, and j5t. Our new
calculations of the evidence integrals provides the following ratios:

p(ye, σe|Msvd)

p(ye, σe|Mgcn)
= 6 × 10−10 (6)
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and
p(ye, σe|Mj5t)

p(ye, σe|Mgcn)
= 2 × 10−5. (7)

Based on these results one can conclude that the gcn model has a much better posterior
credence than the other two models, likely because it describes better most of the other
observables, except for the 2νββ NME when one takes q much larger than 0.4. Therefore,
the normalized posterior probabilities become p(Mgcn|ye, σe) ≈ 1, p(Msvd|ye, σe) ≈ 0, and
p(Mj5t|ye, σe) ≈ 0. Given the ascribed connection between the posterior probabilities of the
Bayesian Model Averaging method and the weights in Equation (3), one could surmise that
all Wk = 0, except the Wgcn = 1. However, in the spirit of the predictor-corrector approach
of a step-by-step evolution, as described in Ref. [40], we consider for the weights Wk an
average between the prior probabilities π(Mk) and the posterior probabilities p(Mk|ye, σe),
where k = svd, gcn, jj5. Therefore, we take Wgcn = 4/6, Wsvd = Wjj5 = 1/6. Certainly, if
new relevant observables were to be considered, such as the ordinary muon capture [57],
and they correlate significantly with the M0ν NME, one could further evolve these posterior
probabilities to finding improved ranges, mean values and uncertainties.

An updated Figure 4 of Ref. [40] is presented in Figure 4, which shows the probability
distribution functions (PDF) for the three starting effective Hamiltonians. The red curve
shows the weighted sum of Equation (3). The PDF were calculated using kernel-density
estimates [58,59] for the histograms describing the M0ν NME for each starting effective
Hamiltonians, an example of which is in the upper-left panel of Figure 3. Using the results
of our statistical analysis summarized in Figure 4 (the red curve) one can conclude that
with 90% confidence the 0νββ NME lies in the range between 1.65 and 2.85, with a mean
value of about 2.20 and a standard deviation of 0.48. These values are slightly higher than
those obtained in Ref. [40].

1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00
M0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5
SVD
jj55t
GCN5082
weighted sum

Figure 4. PDFs of the 0νββ NME distributions for the SVD, jj55t and gcn5082 Hamiltonians, and their
weighted sum (red curve, see text for details).

4. Conclusions and Outlook

In conclusion, we presented an improved statistical analysis of the 0νββ NME for
136Xe that builds up on the first such analysis presented in Ref. [40], where we observed that
the results are sensitive to the choice of the quenching factor for the effective Gamow-Teller
operator. The main difference between the present work and that reported in Ref. [40]
is that we allow the Gamow-Teller quenching factor to become a statistical parameter,
for which we choose a reasonable range of 0.35 to 0.75. In addition, we present detailed



Universe 2024, 10, 252 9 of 12

statistical results for the GCN5082 starting effective Hamiltonian, which is favored by the
Bayesian Model Averaging when the quenching factor is included in the evidence integrals.

As in Ref. [40] in the analysis we used three known starting effective Hamiltonians
that were widely tested for tin isotopes and other nuclei near 132Sn, namely SVD, GCN5082
and jj55t, and we randomly change their two-body matrix elements uniformly within
±10% of their original values. Using sample sizes of 1000 Hamiltonians we analyzed
for each starting effective Hamiltonian the correlations between 0νββ NME and other
23 observables that are accessible experimentally. We show that for the GCN5082 starting
effective Hamiltonian, as in the case of the SVD effective Hamiltonian [40], the 0νββ NME
still correlates significantly with the 2νββ NME, and the 2+, 4+, 6+ states in 136Xe and 136Ba.
Finally, we compare the posterior probabilities for each starting effective Hamiltonian
within the framework of the Bayesian Model Averaging method. Based on this statistical
analysis we propose a common probability distribution function for the 0νββ NME, which
favors the distribution of the GCN5082 starting effective Hamiltonian, it has a range of
1.65–2.85 at 90% confidence level, with a mean value of 2.20 and a standard deviation of
0.48. These results are somewhat larger from those of Ref. [40]: the predicted 0νββ NME
just increased form 1.99 to 2.2, the uncertainty got a little larger from 0.37 to 0.48, so in sum
the range is slightly larger and shifted towards larger values

In principle, the Bayesian Model Averaging results can be further improved if new
reliable experimental observables become available and they show significant correlation
with the 0νββ NME. In that case the present posterior probabilities can be used as prior
probabilities, and the new data can be used to update them. One example of such data
could be the ordinary muon capture rate [57]. However, one needs to first show that this
observable is as robust as the other to small changes in the effective Hamiltonians. Another
observable that is often though to be used in calibrating the 0νββ NME is the B(M1) [38].
Unfortunately, there are not many cases where B(M1) strengths available for the states
involved in the 0νββ decays, i.e., the 0+ states in the parent and daughter and the 1+ states
in the intermediate nucleus. However, one can still consider other M1 transitions if they
correlate significantly with the 0νββ NME. One could think of investigating changes in the
TBME random contributions from ±10% to say ±15%. We plan to pursue these venues
of research in the near future. Similar analyses for other 0νββ cases, such as 82Se, will be
reported in the near future.

Finally, one should mention that here and in Ref. [40] we only analyzed the 0νββ NME
for the mass mechanism. It is well known that other mechanisms can contribute to the
0νββ decay [24,60]. One then could ask if contributions from different mechanisms could
interfere and cancel each others. In Ref. [61] we showed that the maximum interference
between the mass mechanism and so called η mechanism could be close to 50% for 136Xe.
One should investigate if this potential cancellation could be even much higher if small
changes in the effective Hamiltonians are allowed.
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DBD Double Beta Decay
pn-QRPA proton-neutron Quasiparticle Random Phase Approximation
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PDF Probability Distribution Function
SVD (svd) name of nuclear effective Hamiltonian
GCN5082 (gcn) name of nuclear effective Hamiltonian
jj55t (j5t) name of nuclear effective Hamiltonian
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