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Abstract: We study the space-time geometry generated by coupling a free scalar field with a non-
canonical kinetic term to general relativity in (2 + 1) dimensions. After identifying a family of scalar
Lagrangians that yield exact analytical solutions in static and circularly symmetric scenarios, we
classify the various types of solutions and focus on a branch that yields asymptotically flat geome-
tries. We show that the solutions within such a branch can be divided in two types, namely naked
singularities and nonsingular objects without a center. In the latter, the energy density is localized
around a maximum and vanishes only at infinity and at an inner boundary. This boundary has
vanishing curvatures and cannot be reached by any time-like or null geodesic in finite affine time.
This allows us to consistently interpret such solutions as nonsingular, lump-like, static compact scalar
objects whose eventual extension to the (3 + 1)-dimensional context could provide structures of
astrophysical interest.

Keywords: Einstein gravity; compact objects; nonlinear scalar field

1. Introduction

The search for exact analytical solutions to Einstein equations in the presence of rea-
sonable matter sources and couplings is generally a challenging problem, particularly if one
works in a (3 + 1)-dimensional space-time. Among the known exact solutions of general
relativity (GR), only a handful are imbued with relevant physical meaning [1]. Stationary
solutions with spherical and axial symmetries are notable within this group. Indeed, the
uniqueness theorems [2,3] assure us that the most general possible asymptotically flat
solution of an electromagnetic nature in vacuum is given by the Kerr–Newman one, which
can be interpreted as the gravitational field external to a body described solely by its
mass, electric charge, and angular momentum [4,5]. Since charge is typically neglected in
astrophysical scenarios, the above solution reduces to the Kerr one.

The need to confront observations with the Kerr hypothesis, namely that all rotating,
fully collapsed objects in the universe belong to the Kerr family of solutions, has sparked
much interest in recent years to obtain new solutions that describe alternative compact
astrophysical objects. Solutions of that type are not interesting only for their observational
characteristics, such as shadows [6,7] or gravitational wave emission [8], but also from
a theoretical perspective. In fact, given that classical GR is expected to break down at
high enough energies in order to get rid of the various types of singularities the theory
harbours [9], particularly for black holes, new regular solutions could help us better
understand the possibilities beyond this pessimistic scenario of ill-defined geometries that
give support to our current interpretation of the universe. The theoretical exploration
of nonsingular solutions is thus an important topic on its own and has motivated many
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works within and beyond GR, as well as in higher and lower dimensions, see, e.g., [10]
for a report on the current observational status of many such proposals. In this sense, the
search for new solutions in (2+ 1) dimensions has yielded highly valuable results in a wide
range of gravity–matter scenarios, providing novel perspectives on fundamental questions
in classical and quantum gravity [11]. Among this class of solutions, those obtained by
Bañados, Teitelboim, and Zanelli (BTZ) [12–14] are of particular interest and have been
extensively investigated in various contexts (see, for instance, [15–17]). More recently,
studies in (2 + 1) dimensions coupled to various types of fields have managed to find
regular black holes [18–21] and wormhole solutions [22,23].

In this work, we consider (2+ 1)-dimensional scalar fields, borrowing inspiration from
Wheeler’s notion of geon [24,25], in the sense of self-gravitating free (scalar) fields. We thus
focus on a scalar field with no potential but with a noncanonical kinetic term, bringing in
that way some extra freedom to the problem. Fields of this type are known in the literature
as “k-fields” and were originally introduced in the context of cosmology [26,27]. Though
the study of geons typically involves some kind of time dependence, here, we consider
static scenarios to investigate whether any interesting structures can be found. As we will
see, nontrivial solutions do emerge.

It is well known that in (3 + 1) dimensions, a static, spherically symmetric free scalar
field coupled to Einstein’s gravity may lead to asymptotically flat, localized solutions
that, nonetheless, represent naked singularities. To obtain regular solutions, one must
consider oscillating fields, leading to what are known as boson stars [28], a field of great
activity in the last few years [29–31,31]. Exploration of noncanonical scalar fields in (2 + 1)
dimensions can help us shed some light on whether static, nonsingular exotic solutions
could be possible in the more difficult (3+ 1) case. By considering a modified ansatz for the
line element that is inspired by the (3 + 1) static, spherical case, in this work, we manage to
obtain exact analytical solutions that represent asymptotically flat self-gravitating scalar
objects with a clearly localized circular structure. The compactness of these structures
depends on the model parameters in a quite transparent functional form, which facilitates
their analysis. Moreover, we show that the geodesic structure of the family of solutions
considered is complete, confirming in that way that such objects are nonsingular.

This paper is organized as follows. In Section 2, we define our general setting and look
for solutions of the nonlinear scalar matter source. This severely constrains the form of the
scalar field Lagrangian but allows us to find exact analytical solutions. We then proceed
to classify the solutions and analyze their physical properties in Section 3, calculating the
line element and some curvature scalars. To better understand the properties of the most
physically appealing solutions, we study their time-like and null geodesic structure in
Section 4 and their energy distribution in Section 5. We conclude with a summary and
discussion of the results in Section 6.

2. (2 + 1)-Einstein Theory with Nonlinear Scalar Field

Let us start by defining the action for (2 + 1)-Einstein gravity coupled to a scalar
field as

S =
∫

d3x
√
−g
(

1
2κ

R− 1
2

L(Y)
)

, (1)

where R ≡ gµνRµν is the usual curvature scalar of a space-time metric gµν and Ricci tensor
Rµν, while L(Y) is an arbitrary function of the scalar field invariant Y ≡ gµν∂µϕ∂νϕ, and
the constant κ = 8πG̃/c4, where G̃ stands for the Newtonian gravitational constant in two
spatial dimensions, which carries units of length [G̃] = ℓ in natural units.

The corresponding Einstein field equations are derived by varying the action (1) with
respect to the metric tensor, leading to

Gµν = κTµν, (2)
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with the energy–momentum tensor given by

Tµν =

(
LY∂µϕ∂νϕ − 1

2
gµνL

)
, (3)

where LY ≡ ∂L
∂Y . On the other hand, variation with respect to the scalar field leads to

1√−g
∇µ

(√
−gLYgµν∇νϕ

)
= 0. (4)

Taking the trace of Equation (2) and plugging the result back, one can rewrite this equation
in the more convenient form

Rµν = κ
(
Tµν − gµνT

)
, (5)

where T ≡ gµνTµν = (YLY − 3
2 L) is the trace of the energy–momentum tensor of the

scalar field.

Static and Circularly Symmetric Solutions

For static and circularly symmetric scenarios, one assumes that the scalar field profile
only depends on the radial coordinate, ϕ ≡ ϕ(x), in a coordinate system represented by
{t, x, θ}. The equation of motion (4) can thus be expressed as

∂x
(√

−ggxxLYϕx
)
= 0, (6)

where ϕx ≡ dϕ/dx. In order to deal with this equation, we adopt an ansatz for the line
element inspired in the choice made by Wyman [32] in the (3 + 1)-dimensional case but
with a modification that is crucial to bring into the (2 + 1) scenario the philosophy behind
the original choice, namely,

ds2 = −eA(x)dt2 + eA(x) L2
Y

W2(x)
dx2 +

1
W2(x)

dθ2, (7)

where A and W are arbitrary functions of the radial coordinate x. This unconventional
form of the line element is justified by the fact that it leads to an almost trivial scalar field
equation: ϕxx = 0. Without loss of generality, this allows us to take ϕ(x) ≡ x. As a result,
the kinetic term Y takes the form

Y = e−A W2

L2
Y

, (8)

which can only be explicitly solved once a concrete function L(Y) is specified. The metric
field Equation (5) with this choice takes the form

Rt
t = Y

(
AxLYx

2LY
− Axx

2

)
= κ(L − YLY), (9)

Rx
x = Y

(
AxLYx

2LY
− AxWx

W
− LYx Wx

LYW

− W2
x

W2 − Axx

2
+

Wxx

W

)
= κL, (10)

Rθ
θ = Y

(
− LYx Wx

LYW
− W2

x
W2 +

Wxx

W

)
= κ(L − YLY), (11)

where we use the relation (8) and denote LYx ≡ ∂LY
∂x .
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Once a scalar Lagrangian L(Y) is specified, the above equations represent a nonlinear
coupled system for the variables A(x), W(x), and L(x). A useful relation can be obtained
by evaluating Rx

x − Rt
t − Rθ

θ , which leads to a first integral of the above system in the form

AxWx

W
= κ

(L − 2YLY)

Y
. (12)

Another useful expression follows by rewriting Equation (9) in the form

Axx − Ax
LYx

LY
= −2κ

(L − YLY)

Y
, (13)

which can be seen as a first-order linear ordinary differential equation for the variable Ax
that admits the formal solution

Ax = LY

(
c1 − 2κ

∫
dx

(L − YLY)

YLY

)
, (14)

where c1 is an integration constant. For arbitrary LY, this is an integro-differential equation
for A(x) coupled to W(x). However, for the specific choice

L(Y) = λYα, (15)

with λ a constant with suitable dimensions and α a dimensionless parameter1, the integrand
of the second term in Equation (14) becomes a constant, allowing us to obtain an explicit
solution of the form

Ax = −λαYα−1∆1 , (16)

where we have defined the quantity

∆1 ≡ 2κ(1 − α)

α
(x − x1) , (17)

and x1 ≡ c1α/(2κ(1 − α)) is an integration constant. Note that since the theory is invariant
under constant shifts of the scalar field, ϕ(x) → ϕ(x) + ϕ1, and we have taken a coordinate
system in which ϕ(x) = x, the constant x1 does not play any physical role and can be set to
zero for simplicity. Note also that the above expressions lead to singular results in the cases
of α = 1, 1/2, or 0, so we shall first elaborate on the general case before discussing these
singular ones.

Combining Equation (16) with Equation (12), we also find an important simplification,
namely,

Wx

W
=

κ(2α − 1)
α∆1

=
(2α − 1)
2(1 − α)

1
(x − x1)

, (18)

whose solution can be written as

W(x) =
1
r0

(
x − x1

x0

)γ/2
, (19)

where we have included an integration constant r0xγ/2
0 for dimensional consistency and

have defined the parameter

γ ≡ (2α − 1)
(1 − α)

, (20)
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which will play a relevant role in the classification of solutions. The above expression is
valid as long as α ̸= 0, 1/2, or 1, which belong to the singular cases. Using the above results
in Equation (11), a bit of algebra leads to the following equation for the function Y:

Yx −
2κ

α∆1
Y =

λα∆1

(2α − 1)
Yα , (21)

which turns out to be a nonlinear first-order equation of the Bernouilli type. Such equations
can be linearized by the change of variable ν = Y1−α, leading to

ν(x) = (x − x1)∆2 , (22)

where we have defined

∆2 ≡ c2 +
2κλ(1 − α)

γ
x . (23)

One can thus put Yα−1 = 1/ν(x) into Equation (16) and integrate to obtain

eA(x) = ∆−γ
2 . (24)

With all the above results, the line element for generic α ̸= 0, 1/2, 1 can be written as

ds2 = −∆−γ
2 dt2 +

(αλ)2r2
0xγ

0

(x∆2)(2+γ)
dx2 + r2

0

( x0

x

)γ
dθ2 , (25)

where we have set x1 = 0 for simplicity. We can rewrite this line element in terms of the
usual radial coordinate r by identifying r2 = 1/W2. Using the relation (19) with x1 = 0 for
simplicity, we have that r2 = r2

0xγ
0 /xγ leads to(

dr
r

)2
=
(γ

2

)(dx
x

)2
, (26)

and inserting this result in (25), we obtain

ds2 = −∆−γ
2 dt2 + σ2

0 ∆−(2+γ)
2 dr2 + r2dθ2 , (27)

where σ2
0 ≡ (2αλ/γ)2 is just a constant. This completes our construction of the line element

of this scalar theory.

3. Families of Solutions

We will now proceed to classify the solutions of our model in terms of the parameter α
that characterizes the scalar field Lagrangian or, equivalently, in terms of the exponent γ
defined in Equation (19). The relation between these two parameters is as follows:

• 1
2 < α < 1 corresponds to the interval γ > 0, with γ = 0 identified with α = 1/2 and
γ → +∞ with α → 1−.

• α > 1 leads to −∞ < γ < −2, with α → 1+ corresponding to γ → −∞ and α → ∞
leading to γ → −2.

• α < 0 is mapped into −2 < γ < −1, with α = 0 leading to γ = −1 and α → −∞ to
γ = −2.

• 0 < α < 1
2 is mapped into −1 < γ < 0.

As is evident from this classification, there are three values of the parameter α, corre-
sponding to {0, 1/2, 1}, that require a separate discussion and will be considered later. We
will address the features of the general case first. For this purpose, we focus on the radial
dependence of the function ∆2 defined in Equation (23). Since (19) allows us to write

x = x0

( r0

r

)2/γ
, (28)
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we can rewrite ∆2 as

∆2 ≡ c2

[
1 +

2λκ(1 − α)x0

γc2

( r0

r

)2/γ
]

. (29)

Note that the factor c2 in front of this expression can be absorbed into a redefinition of the
time coordinate, in a rescaling of σ0, and in a rescaling of λκx0 (as long as c2 > 0, which we
will assume from now on). Thus, without loss of generality, we can set c2 = 1 in ∆2.

Let us now consider the radial dependence of (29). We see that only when γ > 0 will
we have asymptotically flat solutions, which happens in the interval 1/2 < α < 1. These
are the solutions we are mostly interested in. On the other hand, we see that λ determines
the sign of the second term in the square bracket. Considering the far limit, r → ∞, of the
gtt component of the metric in its representation (27), we see that

gtt ≈ −
(

1 − 2λκ(1 − α)x0

( r0

r

)2/γ
+ . . .

)
. (30)

This expansion shows that the sign of λ in the second term determines if the source is
attractive (λ > 0) or repulsive (λ < 0). We can thus write ∆2 as

∆2 ≡
[

1 ±
(

R0

r

)2/γ
]

, (31)

which will simplify our discussion of these asymptotically flat solutions. In this last
expression, we have just defined R0 as

R2/γ
0 ≡

2|λ|κ(1 − α)x0r2/γ
0

γc2
, (32)

and the positive sign in the bracket represents an attractive source with λ > 0.

Cases α = 0, 1/2, and 1

Let us consider first the case α = 1, which represents a canonical massless scalar field.
Going back to Equations (16) and (17), we see that Ax = λc1 can be trivially integrated

to obtain A(x) = A0 + λc1x. It is also easy to find that W(x) = 1/(r0e
κx
c1 ), which allows

us to define r(x) = r0e
κx
c1 . Combining these results in Equation (8), we obtain that Y =

e−
(

λc1+
2κ
c1

)
x/(λr0)

2. In terms of the radial coordinate r, the line element can thus be
written as

ds2 = −
(

r
r0

)λc2
1/κ

dt2 +

(
λc1

κ

)2( r
r0

)λc2
1/κ

dr2 + r2dθ2 . (33)

This line element represents the exact solution for a free, massless scalar field in (2 + 1)
dimensions. In (3 + 1) dimensions, the solution for a free, massless scalar field is well
known in exact form [32], and one can find an asymptotically flat solution for some choice
of parameters. In that case, the solution approaches the Schwarzschild geometry far from
the peak of the matter distribution, while the solution in the high-density region is formally
similar to the expression found above. In fact, using the notation of [33] (see Sec.V.A. in
that paper), the internal geometry of the (3 + 1) solution can be approximated as

ds2
3+1 = −

( r
2M

) 8M2

µ2 dt2 +
( r

2M

) 8M2

µ2
(

4Mr
µ2

)2
dr2 + r2dΩ2 , (34)

where M represents the asymptotic mass of the object and µ ≪ M is a small mass scale.
This comparison allows us to see that both cases represent naked singularities with a strong
curvature and energy density divergence at r → 0 (for instance, the Ricci scalar goes as
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∼ r−(2+λc2
1/κ)). This suggests that the (2 + 1) solutions may be seen as a rough description

of the innermost regions of the (3 + 1) configurations (at least qualitatively).
On the other hand, the case α = 1/2 is very peculiar because Equation (18) implies

that either Wx or Ax must vanish. In both cases, such a fact leads to Y = 0, which generates
inconsistencies in the equations. We will thus not explore this case in any further detail.

Finally, when α = 0, the original matter action reduces to a cosmological constant-type
term, resulting in the well-known BTZ black hole solution [12,13].

4. Asymptotically Flat Solutions

Let us now focus on the line element (27) with ∆2 defined as in (31) and with γ > 0.
For positive λ, the line element becomes

ds2 = − 1(
1 +

(
R0
r

) 2
γ

)γ dt2 +
σ2

0 dr2(
1 +

(
R0
r

) 2
γ

)2+γ
+ r2dθ2 , (35)

and it represents a horizonless space-time with a delicate point at r → 0. For negative λ,
the line element is

ds2 = − 1(
1 −

(
R0
r

) 2
γ

)γ dt2 +
σ2

0 dr2(
1 −

(
R0
r

) 2
γ

)2+γ
+ r2dθ2 , (36)

where a delicate point arises as r → R0 > 0. In both cases, the problems cannot be avoided
by a redefinition of the radial coordinate because they affect also the gtt component. A look
at the Ricci and Kretschmann curvature scalars leads to

R = ±
2(γ + 4)

(
1 ±

(
R0
r

) 2
γ

)γ+1(
R0
r

) 2
γ

γσ2
0 r2

(37)

K =

4
(
3γ2 + 8γ + 8

)(
1 ±

(
R0
r

) 2
γ

)2(γ+1)(
R0
r

) 4
γ

γ2σ4
0 r4

,

where the ± sign corresponds to the sign of λ. When λ > 0, curvature scalars diverge as
r → 0, pointing towards a curvature singularity caused by the concentration of energy
at the center (recall that λ > 0 represents an attractive field). For negative λ, instead,
the curvature vanishes as r → R0 and we gain no new information about what may be
happening in that region to generate a divergence in the metric. Note also that though the
hypersurface r = R0 is null, it does not represent a Killing horizon because the norm of
∂t diverges rather than vanishes, which is a rather unconventional situation. To deepen
into this aspect and try to unveil what is really going on in that region, we must study the
behavior of geodesics.

Geodesics

We will now explore whether the solutions found above represent singular or non-
singular space-times from the perspective of their geodesic structure. For this purpose,
we must determine if the affine parameter is defined over the whole real line (complete
geodesics) or if it can only cover a portion of it (incomplete geodesics). A space-time with
any nonzero number of incomplete geodesics is regarded as singular. This is so because
incomplete null geodesics imply that information (light rays) can be created and/or de-
stroyed, while incomplete time-like geodesics imply that observers can be created and/or
destroyed, which is physically unacceptable. This is the key notion behind the theorems
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proving the existence of space-time singularities within GR, see, e.g., ref. [9] for a discussion
of this topic.

The Lagrangian from which the geodesic equations can be obtained can be written as

L =
1
2

(
ds
dτ

)2
=

1
2

−(1 ±
(

R0

r

) 2
γ

)−γ

ṫ2 + σ2
0

(
1 ±

(
R0

r

) 2
γ

)−2−γ

ṙ2 + r2θ̇2

, (38)

where τ is an affine parameter (the proper time for time-like observers), and the overdot
denotes differentiation with respect to it. Taking into account the symmetries of the
Lagrangian, i.e., its static and invariant nature under rotations, we find the presence of two
conserved quantities, as given by

E = −∂L
∂ṫ

=

(
1 ±

(
R0

r

) 2
γ

)−γ

ṫ, (39)

J =
∂L
∂θ̇

= r2θ̇, (40)

where E and J denote the energy and angular momentum per unit mass of the particle,
respectively. As usual, we can normalize the four-velocity Uµ to one, so that

UµUµ =

(
ds
dτ

)2
≡ ϵ = ±1, 0, (41)

where the parameter ϵ characterizes the type of geodesics we are dealing with: time-like
(ϵ = −1), space-like (ϵ = 1), or null (ϵ = 0).

Combining Equations (39)–(41), we can conveniently write the geodesic equation as

σ2
0

(
dr
dτ

)2

(
1 ±

(
R0
r

)2/γ
)2+2γ

= E2 − 1(
1 ±

(
R0
r

)2/γ
)γ

(
J2

r2 − ϵ

)
. (42)

Since the left-hand side of this equation must be positive by construction, if ϵ = −1 or
J ̸= 0, the domain of r(τ) must be restricted to the region

E2 ≥ 1(
1 ±

(
R0
r

)2/γ
)γ

(
J2

r2 − ϵ

)
. (43)

This means that any massive particle (ϵ = −1) or massless particle with angular momentum
(J ̸= 0) that moves inwards in the radial direction will eventually reach a minimum, rm ≥ 0
if λ > 0 and rm ≥ R0 if λ < 0, at which the equality above is satisfied. The motion then
must continue towards increasing values of r (the particle moves away after reaching the
closest radial distance), thus guaranteeing the completeness of all such geodesics.

Considering now radial null geodesics, i.e., those with ϵ = 0 and J = 0, then Equa-
tion (42) can be written in the simpler form

dr̂(
1 ±

(
1
r̂

)2/γ
)1+γ

= ±dτ̂ , (44)

where we have defined the dimensionless variables r̂ ≡ r/R0 and also τ̂ = Eτ/R0σ0. This
equation can be formally integrated for arbitrary γ, yielding the result

2F1

(
−γ

2
, γ + 1; 1 − γ

2
;∓r̂−2/γ

)
r̂ = ±τ̂ + β , (45)
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where β is an integration constant and 2F1 a hypergeometric function. Note that the ±
sign in 2F1 is associated with the sign of λ, while on the right-hand side it represents if the
geodesic is outgoing (+) or ingoing (−). In the far limit, where r̂ → ∞, we can approximate
this hypergeometric function by 2F1

(
− γ

2 , γ + 1; 1 − γ
2 ; 0
)
= 1, which leads to r̂ ∓ τ̂ = α

and represents the usual straight lines of light rays in asymptotically flat geometries. In the
opposite limit, we need to split the discussion because for λ > 0, the limit corresponds to
r̂ → 0, while for λ < 0, we have r̂ → 1.

The expansion around r̂ → 0 can be easily derived from (44) by approximating the
left-hand side as r̂2+2/γdr̂. By direct integration, we find that radial null geodesics in this
region behave as

r̂3+2/γ

3 + 2/γ
≈ ±τ̂ + β̃ , (46)

which implies that they reach r̂ → 0 in finite affine time, confirming that this space-time is
singular, as we had guessed from the curvature scalars.

Let us now focus on the case with λ < 0. When r̂ → 1, one can show that the dominant
term of the solution takes the form

−1
2

(
γ/2
r̂ − 1

)γ

≈ ±τ̂ + β (47)

and diverges as r̂ → 1. This means that the affine parameter always diverges as the minimal
circumference r = R0 is approached, implying that all these geodesics are complete. Thus,
the circumference r = R0 represents a boundary of the manifold and cannot be reached in
finite affine time. Together with the completeness of the other geodesics discussed above,
this results in a nonsingular space-time despite the divergence of the metric functions in
that region. Note that this situation has been found before in the literature within other
gravitational settings, see, e.g., [34].

The left-hand side of Equation (45) admits a representation in terms of elementary
functions for some values of the parameter γ. Some examples for λ < 0 are as follows:

• γ = 1 ⇒ r̂
2−2r̂2 + r̂ + 3

4 log (r̂−1)
(r̂+1)

• γ = 2 ⇒ r̂ + 5−6r̂
2(r̂−1)2 + 3 log(r̂ − 1)

• γ = 3 ⇒ 1
16

(
−693r̂5/3+144r̂7/3+16r̂3−315 3√r̂+840r̂

(r̂2/3−1)
3

−315
[
tanh−1

(
3
√

r̂
)
+ iπ

2

])
The representation of radial null geodesics for these and other values of the parameter γ
appears in Figure 1, where their completeness, as given by the affine parameter τ going to
±∞ at both ends of the coordinate r̂, i.e., r̂ → ∞ and r̂ → 1, is evident.
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Figure 1. Representation of the (normalized) affine parameter E
R0σ1/2

0
τ as a function of the radial

coordinate r̂ for ingoing (blue) and outgoing (red) geodesics. The dashed lines depict the trajectories
±r̂ that represent the Minkowskian geodesics (for illustration). Note that for 0 < γ < 1, the
convergence to the Minkowskian value is very fast, being fastest in the limit γ → 0. The divergence
of the affine parameter as r̂ → 1 shows that this region is a boundary of the manifold that cannot be
reached by any observer or light signal.

5. Energy Density Distribution

Let us now focus on how the energy density is distributed in the solutions studied
above. From Equation (8) and a little algebra using the line element (36), we see that the
kinetic term Y can be written as

Y = Y0

(
1 ± r̂−2/γ

)2+γ

r̂
2(2+γ)

γ

, (48)

where Y0 ≡ (λαR0)
− 2(2+γ)

γ is an irrelevant constant factor.
For the singular solutions corresponding to λ > 0, it is easy to see that this kinetic

energy density diverges when r̂ → 0 as Y/Y0 ≈ 1/r4(2+γ)/γ, which provides further
evidence about its pathological nature.

On the contrary, for λ < 0, the energy density goes to zero both at infinity and at the
minimal circumference r̂ = 1, both of which represent boundaries of the manifold. One thus
expects the existence of a maximum located somewhere in between these two asymptotic
regions. An elementary calculation indicates that Yr̂ vanishes at r̂ = 1, at infinity, and at
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r̂M = 2γ/2, where the kinetic term takes the maximum value Y = Y02−2(2+γ). Therefore, our
nonsingular solutions represent localized energy distributions with a maximum around the
circumference of radius r = R02γ/2. A representation of the amplitude of the kinetic term
Y on the plane is provided in Figure 2, while in Figure 3 we provide a three-dimensional
representation to clearly see the tubular, localized nature of this distribution. One can verify
by direct calculation that the total energy of the system is finite (integrating the scalar action
from r̂ = 1 to infinity) for all γ > 0.

γ=1/2

γ=1

γ=2

2 4 6 8 10
r/R0

0.005

0.010

0.015

0.020

0.025

0.030

Y/Y0

Figure 2. Representation of the kinetic term Y = gµν∂µϕ∂νϕ for the cases γ = 1/2, 1, and 2 (recall
that α = (1 + γ)/(2 + γ)) when λ < 0. Vertical dashed lines indicate the location of the maximum.
The localized nature of these solutions is evident. Note that the smaller the value of γ, the higher the
peak and the more compact the structure.

Figure 3. Left: three-dimensional representation of the kinetic term Y = gµν∂µϕ∂νϕ when λ < 0 for
the case γ = 1. Right: same representation for γ = 1/2 (blue) and γ = 2 (orange). Note how the
more compact solution γ = 1/2 is always hidden by the γ = 2 one except at the innermost region.
The different amplitudes of the maxima are also evident in this plot.

6. Summary and Conclusions

In this work, we have studied (2 + 1)-dimensional Einstein gravity coupled to a static,
nonlinear scalar field with a purely kinetic term and circular symmetry. The search for
analytical solutions led us to consider a family of power-law models with a Lagrangian
density of the form given in Equation (15), characterized by a coupling constant λ and a
power α of the Lagrangian density L. After classifying the various branches of solutions,
we focused on the case γ ≡ (2α−1)

(1−α)
> 0 (equivalently 1/2 < α < 1) and showed that the

resulting geometries are determined by the line element (36), which represents asymptot-
ically flat spaces. We showed that when the parameter λ that sets the amplitude of the
scalar Lagrangian is positive, we have an attractive source, whereas for negative λ we
have a repulsive source. All solutions with λ > 0 represent naked singularities (divergent
curvatures and energy density, and incomplete geodesics), whereas for λ < 0 all solutions
are regular and nonsingular.

Though in the λ < 0 case the gtt and grr components of the metric diverge at
r = R0 > 0, we found that curvature invariants vanish at that location. Furthermore, we
showed that the circumference r = R0 represents a boundary of the manifold, as all radial
null geodesics take an infinite affine time to reach there. Time-like geodesics and null rays
with nonzero angular momentum never reach this boundary and have an r > R0 as their
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minimal radial coordinate. The analysis of the kinetic term of the scalar field shows that
these geometries are generated by localized volcano-like lumps of energy with maximum
amplitude at r = 2γ/2R0, remaining positive everywhere and vanishing only at r = R0
and at infinity (see Figures 2 and 3). For other kinds of localized scalar structures, see, for
instance [35,36].

In our view, the most relevant result of this paper is the discovery of exact analytical
solutions that represent nonsingular static compact scalar objects in an asymptotically
flat geometry. These localized structures are possible thanks to the exotic (non-canonical)
dynamics of the scalar field, and the fact that they generate an inner boundary of radius
R0 is a surprise that could have not been anticipated a priori. In practical terms, this
boundary and its neighborhood act like a region of repulsive forces (because geodesics
bounce) that prevent the collapse of the energy distribution and regularize its maximum
amplitude. Even though this kind of exotic matter source has repulsive gravitational
properties, it is worth exploring its stability and potential interactions with other sources to
better understand alternative singularity avoidance mechanisms.

If analogous structures could be found in (3+ 1)-dimensional extensions of this model,
there could be important implications for the astrophysics of compact objects and dark
matter/energy models. In particular, boson stars are regarded as spherical distributions of
scalar matter with peak density at the center. Our analysis puts forward that nonsingular
compact objects without a center do exist within GR. This means that, contrary to the
standard approach, one should look for new solutions of self-gravitating scalar fields with
boundary conditions which are not defined at a center, since the latter may not exist. These
and other related questions are currently under study.
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Note
1 For the static scenarios we are considering, the kinetic term Y is always positive. In more general settings, and in order to prevent

problems if Y becomes negative, one could consider a redefinition of α as α → 2α̃ to force that the Lagrangian is indeed a real
quantity.
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