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Abstract: Quantum revival phenomena, wherein the wave function of a quantum system periodically
returns to its initial state after evolving in time, are investigated in this study. Focusing on electrons
confined within a quantum box with an impurity, both weak- and strong-coupling regimes are
explored, revealing intricate relationships between impurity parameters and temporal dynamics.
This investigation considers the influence of impurity position, impurity strength, and external
factors such as aluminum concentration, temperature and hydrostatic pressure on classical periods
and revival times. Through analytical derivations and graphical analyses, this study elucidates the
sensitivity of quantum revivals to these parameters, providing valuable insights into the fundamental
aspects of quantum mechanics. While no specific physical applications are discussed, the findings
offer implications for quantum heat engines and other quantum-based technologies, emphasizing the
importance of understanding quantum revivals in confined quantum systems.
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1. Introduction

Quantum revival refers to a phenomenon in which the wave function of a quantum
system periodically returns to its initial state after evolving in time [1]. It arises in systems
that are confined or periodic in nature, such as particles in a box or atoms in an optical
lattice [2,3]. It is characterized by the recurrence of interference patterns in the probability
density of finding the system in different states. Quantum revival is a fundamental aspect
of quantum mechanics with applications in various fields, including quantum information
processing [4,5] and condensed matter physics [6]. As is well known, it has counterparts
in other branches of physics. One notable example is in the study of wave phenomena,
where similar periodic behaviors can be observed. For instance, in classical wave physics,
phenomena such as wave interference and diffraction can lead to periodic patterns in the
intensity or amplitude of waves [7]. Additionally, in certain systems in classical mechanics,
such as periodic mechanical oscillators or coupled pendulums, there can be periodic
recurrences of specific states or motions due to the system’s inherent periodicity. While the
underlying principles may differ between classical and quantum systems, the concept of
periodic recurrence is a common thread across various branches of physics.

The time of quantum revival may be relevant not only for studies of electronic prop-
erties in quantum devices [8] but also for the study of quantum thermal machines [9].
The effects of topological defects on quantum revivals have been addressed in [10–12].
Recently, it was shown that the influence of spiral dislocation gives rise to a non-null
revival time in the harmonic oscillator [13]. Additionally, the classical periods and revival
times of electron currents in several bulk nanostructured semiconductor materials were
computed in [14]. The hallmark concept of periodic collapse and revival of coherence in a
room-temperature ensemble of quantum dots is demonstrated in [15]. Quantum revivals
within relativistic theory can be explored in [16], and further investigations concerning
exact quantum revivals for the Dirac equation are detailed in [17].
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Speaking of another topic of great current interest, in article [18], the authors investi-
gated the impacts due to impurity in the quasi-static thermodynamics of thermal machines,
with the quantum system of a particle in a box as the working substance. However, quan-
tum thermodynamics aims to consider, in addition to thermal and quantum fluctuations,
those due to processes with finite time. We will not delve into these investigations at
the moment, but rather focus on a fundamental aspect of quantum mechanics, which is
quantum revival. Inspired by these works, in this contribution, we investigate the classical
periods and revival times for the system mentioned at the beginning of this paragraph. Fur-
thermore, we explore the impact of deformations on the electronic effective mass on these
quantities, that is, we consider electrons in GaAs/Ga1−x Alx As [19]. Effects of hydrostatic
pressure, temperature and aluminum concentration warrant attention due to pronounced
modifications in physical quantities in electronic systems [20–22].

This paper is divided as follows: in Section 2, we present the studied model and the
eigenenergies for the electron in the impurity-doped box. In Section 3, we present its effec-
tive mass as a function of temperature, hydrostatic pressure and aluminum concentration.
In Section 4, we calculate the revival times and perform graphical analyses to observe the
effects of impurity position in the box and the effects of deformations in the effective mass
on these times. Section 5 contains the conclusions of the work.

2. The Hamiltonian Model and the Eigenenergies

The Hamiltonian describing a particle of mass m confined within a 1-D infinite square
well (ISW) of length L, featuring an impurity situated at position pL (0 ≤ p ≤ 1) inside the
well, is expressed as follows:

H = H0 + H′,

where, H0 = − h̄2

2m
∇2 + V(x), V(x) =

{
0 for 0 ≤ x ≤ L
∞ otherwise

,

and H′ = −λδ(x − pL). (1)

Here, H0 represents the Hamiltonian of the particle within the ISW, governed by
the kinetic energy term and the potential energy function V(x), which is zero within the
well and infinite elsewhere. The additional term H′ introduces the effect of the impurity,
modeled as a delta function potential with strength denoted by λ. The parameter p
determines the precise location of the impurity within the well. A negative λ implies a
repulsive impurity, behaving akin to a barrier, while a positive λ denotes an attractive
impurity, creating a well-like potential. The schematic representation of the ISW potential
featuring a repulsive impurity is depicted in Figure 1. In this section, we will present the
eigenvalues in four cases, leaving the details for Appendix A.

1 
 

 

Figure 1. One-dimensional infinite square well with a Dirac delta barrier representing the potential
induced by an impurity.
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The first-order corrections to the energy eigenvalues caused by either attractive or
repulsive δ function impurities are

E(1)
n,w =

h̄2

2 mL2

(
n2π2 − 4

sin(nπ p)
f

)
. (2)

The eigenenergies up to the second-order correction will be given by

E(2)
n,w =

h̄2

2 mL2

(
n2π2 − 4

sin(nπ p)
f

)
− 2

h̄2(sin(nπ p))4(1 + 2 nπ (1 − 2 p) cot(nπ p))
mL2n2π2 f 2 . (3)

The parameter f is a dimensionless parameter representing the strength of the impurity,
given by f = h̄2

mλL . These two cases hold for f ≥ |0.5|.
For the strong-coupling case, f ≪ 0.1, a perturbative approach is employed to deter-

mine the energy eigenvalue by applying perturbation up to the first order in the strength
parameter, giving rise to two possible eigenenergies:

E(a)
n,str =

h̄2

2 mL2

(
n2π2

p2 +
n f π

p3

)
(4)

and

E(b)
n,str =

h̄2

2 mL2

(
n2π2

(1 − p)2 +
n f π

(1 − p)3

)
. (5)

In what follows, we will consider the particle mass m given by the electronic effective mass
denoted as meff(x, P, T), which depends on the aluminum concentration in the material,
hydrostatic pressure and temperature. Details regarding its dependence on these physical
quantities for the material GaAs/Ga1−x Alx As will be presented subsequently.

3. Effects of Hydrostatic Pressure, Temperature and Al Concentration on the Effective
Electron Mass

The effective mass of an electron in a material is as real as its mass in a vacuum [23].
In this way, we consider a case for electrons on GaAs/Ga1−x Alx As. The effective mass
of electrons in the conduction band, which is assumed to be dependent on x (aluminum
concentration), P (hydrostatic pressure) and T (temperature), and can be expressed as [19]

me f f (x, P, T) = m0

{
1 +

(
28900 − 6290x

3

)[
2

EΓ
g (x, P, T)

+
1

EΓ
g (x, P, T) + 314 − 66x

]
+ ζ(x)

}−1

, (6)

where me = 9.11 × 10−31 Kg is the electron mass in a vacuum,

ζ(x) = −3.950 + 0.488x + 4.938x2 , (7)

and

EΓ
g (x, P, T) = λ1 + λ2x + λ3x2 + aP − bT2

T0 + T
, (8)

with λ1 = 1519 meV, λ2 = 1360 meV, λ3 = 220 meV, a = 107 meV/GPa, b = 0.5405 meV/K
and T0 = 204 K.

These deformations in the effective mass of the electron in this material will be consid-
ered in the subsequent analyses. In the following, we will denote me f f (x, P, T) as me f f for
the purpose of simplifying notation.

4. Quantum Revivals

Quantum revivals manifest when the wave function regains its initial configuration,
marking what is termed a “revival” moment. The theory we consider assumes that
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the index n is discrete. Additionally, it is assumed that the wavefunction expansion is
strongly weighted around a central value n1 for the quantum number n [24]. It is shown in
Ref. [25] that classical periods and quantum revival time are defined in terms of the energy
difference between two adjacent states. The following correspondence is used for the first
order: the first discrete derivative can be approximated by the second-order centered finite
difference as

dE
dn

≈ En+1 − En−1

2∆n
.

Consequently, in quantum systems characterized by a single quantum number n, the energy
eigenvalues can be expanded around it, yielding the energy expressed as a Taylor series:

En ≈ En1 +

(
dE
dn

)
n=n1

(n − n1) +
1
2

(
d2E
dn2

)
n=n1

(n − n1)
2 + . . . (9)

This way, distinct time scales emerge [1,26]: the classical period is determined by

t =
2πh̄(

dE
dn

)
n=n1

. (10)

while the revival time is defined as

τ =
4πh̄(

d2E
dn2

)
n=n1

. (11)

We could also include the third-order term which allows defining the quantum super-
revival time. Let us set aside that case for now.

From these definitions, and considering the energies described above (Equations (2)–(5)),
the classical periods and the revival times are obtained and described by the following:

t(1)n,w = 4
π meff L2

h̄

(
2 nπ2 − 4

π p cos(nπ p)
f

)−1
, (12)

t(2)n,w = 2
π3meff L2n3 f 2

(A1 + B1 + C1 − D1 + E1)ℏ
, (13)

with A1 ≡ 4 + π4 − 8 p(p − 1/2)π2, B1 ≡ 2
(
(8 p − 2) sin(π p) + π2 p

)
π cos(π p), C1 ≡(

−8 + 40 p(p − 1/2)π2)(cos(π p))2, D1 ≡ 16 sin(π p)(p − 1/4)π (cos(π p))3 and E1 ≡
4 + π4 − 8 p(p − 1/2)π2 ,

t(a)
n,str = 4

π meff L2

h̄

(
2

nπ2

p2 +
f π

p3

)−1

, (14)

t(b)n,str = 4
π meff L2

h̄

(
2

nπ2

(1 − p)2 +
f π

(1 − p)3

)−1

, (15)

τ
(1)
n,w = 8

π meff L2

h̄

(
2 π2 + 4

π2 p2 sin(nπ p)
f

)−1

, (16)

τ
(2)
n,w = 4

π3meff L2n4 f 2

(A2 + B2 + C2 − D2 + E2 + F2)ℏ
(17)
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with
A2 ≡ −12 + π4 f 2n4 + 24 p(p − 1/3)n2π2 ,

B2 ≡ 2 π4 sin(nπ p) f n4 p2 ,

C2 ≡ 80 sin(nπ p)π n
(

n2 p2(p − 1/2)π2 − 3/5 p + 1/10
)

cos(nπ p) ,

D2 ≡
(

24 − 120 p(p − 1/3)n2π2
)
(cos(nπ p))2 ,

E2 ≡ 128 sin(nπ p)π n
(

n2 p2(p − 1/2)π2 − 3/8 p + 1/16
)
(cos(nπ p))3 ,

F2 ≡
(
−12 + 96 p(p − 1/3)n2π2

)
(cos(nπ p))4 ,

τ
(a)
n,str = 4

meff L2 p2

π h̄
(18)

and

τ
(b)
n,str = 4

meff L2(1 − p)2

π h̄
. (19)

In the case of weak coupling, the times depend both on this coupling and on the
position of the impurity. This is not the case for strong coupling, which depends solely on
the position of the impurity.

In the following analysis, we will graphically examine these times with respect to clas-
sical periods and revival times for an electron in the box without the delta potential and with
the effective mass of electrons in GaAs at x = T = P = 0, given by m∗ = 0.067 × me, where
me = 9.11 × 10−31 Kg is the electron mass in a vacuum. They are given, respectively, by
the following:

T0 = 2
m∗L2

π ℏ n
(20)

and

τ0 = 4
m∗L2

π ℏ . (21)

The energy levels are inversely proportional to the effective mass of the electron in the box.
Therefore, any increase in its value results in increased calculated times, as they become
proportional to it. We consider the case n = 1, as this is the value of n for the largest values
for these times. We analyze the classical periods and revival times versus the position of
the impurity for the weak-coupling regime in Figure 2. As the concentration of Al increases,
the profile of the graphs does not change, but the times are increased. The same occurs for
an increase in hydrostatic pressure (see Figure 3). The effects of temperature on the effective
mass are the least pronounced, so we will not plot them here. For f = ±2, the graphs show
that the times behave non-monotonically as a function of the impurity’s position within
the box and in the opposite way. For a classical period and f = 2, the lowest value of time
occurs when the impurity is close to the infinite wall on the right, while the highest value is
near p = 0.3. For f = −2, this behavior inverts. As for the revival time, the highest value
occurs when the impurity approaches the infinite wall on the left, while the lowest value
is near p = 0.7. The inversion in this behavior is also observed for f = −2. Notice that
the classical periods calculated from the energy derived from second-order perturbation
theory deviate, in 0.6 < p < 1, towards slightly smaller values compared to the case for
first-order perturbation. For the revival time, there is a peak time near p = 0.9, but perhaps
this region may not represent a physical value to be observed. Including more terms in the
expansion could correct this situation, but we leave this open-ended.

Turning our attention to the strong-coupling limit, for f = ±0.01, the times behave
monotonically, but in opposite ways for the two distinct energy spectra, which depend on
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the chosen condition (see Figure 4). Where one reaches the highest time, the other reaches
the lowest value, and vice versa. The times are the same for p = 0.5. One additional detail
is that changes in f do not affect these times. In the case of revival time, it does not depend
on this parameter, while, for the classical period, it appears in a small term proportional to
p3, which will be irrelevant regardless of the value of f . Indeed, due to these details, both
cases will behave similarly, proportional to p2.

(a) (b)

(c) (d)

Figure 2. The plots show the changes in classical period (a,b) and revival times (c,d) versus the
impurity position in the box, for weak coupling with an impurity. As the concentration of Al increases,
their profiles do not change, but the times shift to higher values. We considered T = 0.5 K, L = 25 nm
and n = 1. The blue solid lines take into account the first-order corrections to the energy eigenvalues,
whereas the magenta dotted lines include corrections up to the second order.
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(a) (b)

Figure 3. The plots show the changes in classical period (a) , and revival times (b), versus the impurity
position in the box for different hydrostatic pressure, for weak coupling with an impurity. As it
increases, the times shift to higher values. We considered GaAs/Ga0.8 Al0.2 As, with f = 2, T = 0.5 K,
L = 25 nm and n = 1.

(a) (b)

Figure 4. The plots show the changes in classical period (a), and revival times (b), versus the impurity
position in the box for the strong coupling with an impurity. As the concentration of Al increases,
their profiles do not change, but the times shift to higher values. We considered f = 0.01, T = 0.5 K,
L = 25 nm and n = 1. Solid blue lines are related to the eigenenergy (4) and dotted magenta lines to
the eigenenergy (5).

In Figure 5, we present a density plot of the calculated times for the first-order energy
correction in the weak regime coupling with impurity. We show only the case for electrons
in GaAs because altering the aluminum concentration, temperature and pressure results in
an increase in effective mass, thereby increasing these times. For any other case, the profiles
of these density plots remain the same. Firstly, we plotted the graphs for f > |1| because,
for f smaller than that up to |0.5|, the times have negative values and even divergences.
Therefore, our study also suggests that the work [17] is better applied for values of this
coupling constant f > |1|. As we can see, quantum revivals exhibit interesting behaviors
for electrons in a quantum box, and the position of the impurity significantly affects them.
From these plots, we observe that the classical periods and quantum revival times are
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either maximum or minimum in well-defined regions, depending on the values of f and
p involved. In Figure 5a,c, which correspond to positive values of f , the orange regions
indicate the maximum values of these times, while the purple regions indicate the minimum
values. For negative f , Figure 5b,d, the red colors indicate the regions where the classical
period and quantum revival times are maximum, while the orange regions indicate the
minimum values for them.

As mentioned, the aluminum concentration in the sample causes these times to in-
crease, as does the increase in hydrostatic pressure. That is, raising the effective mass of
the electron increases these times. They also depend on L2, with L being the size of the
box. We will not make a physical application here, but this study should be important and
particularly relevant for the case of quantum heat engines based on this physical system as
a working substance.

(a) (b)

(c) (d)

Figure 5. The density plots of classical periods (a,b), and revival times (c,d), against the impurity
position p and impurity strength f , in the weak-coupling regime. We consider GaAs. Changing the
effective mass of the electron will keep their shapes consistent, but the color values will increase.

From an experimental standpoint, our work may extend beyond electronic systems,
as exemplified by the case of a trapped, laser-cooled ion within the combined electrostatic
harmonic potential of a Paul ion trap and a sinusoidal potential of an optical lattice [27]. This
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setup can simulate an infinite well with a δ barrier [16]. In this particular case, the position
of the impurity remains fixed. While this concept is proposed in work [18], it does not
consider any time scale.

5. Concluding Remarks

In conclusion, the investigation presented in this work delves into the realm of quan-
tum revivals in systems featuring confined quantum particles, particularly electrons in a
quantum box with an impurity. By exploring both weak- and strong-coupling regimes,
this study unveils intricate relationships between impurity position, impurity strength,
and the resulting classical periods and revival times. Notably, the effective mass of the elec-
tron, influenced by factors such as aluminum concentration, temperature and hydrostatic
pressure, plays a pivotal role in determining these temporal dynamics.

In the weak-coupling regime, the classical period and revival times exhibit nuanced
behaviors as the impurity position varies within the box. Additionally, changes in alu-
minum concentration and hydrostatic pressure lead to shifts in these times, underlining
the sensitivity of quantum revivals to external conditions. Similarly, in the strong-coupling
limit, classical period and revival times display distinct trends depending on the cho-
sen condition, emphasizing the complex interplay between impurity characteristics and
temporal dynamics.

Moreover, the density plots provide insightful visualizations of these temporal phe-
nomena, offering a comprehensive understanding of the intricate relationship between
impurity parameters and quantum revival dynamics. What brought richness to the prob-
lem was the variation in the position of the impurity within the box, along with the
deformations in the effective mass. This variation led to the results discussed based on the
graphs investigated here. The maximum and minimum times were observed in regions
of these graphs that showed the relationship between the position of the impurity and
its intensity. This relationship should be used to optimize the system, depending on the
desired application. Although no specific physical applications are discussed in this study,
the findings hold potential implications for quantum heat engines and other quantum-
based technologies, underscoring the relevance of understanding quantum revivals in
confined quantum systems.

Overall, this investigation contributes valuable insights into the fundamental aspects
of quantum mechanics, shedding light on the rich dynamics of quantum revivals and their
dependence on impurity characteristics and external conditions. Future work perspectives
include the need to investigate higher-dimensional systems, such as the use of electronic
metamaterials [28], variable mass systems [29] and curvature effects [30], among other
things. These aspects may lead to exploring the impacts of quantum revivals on optical
and electronic properties [31], as well as investigating more elaborate versions of thermal
machines with impurities beyond those discussed in [18], taking into account finite-time
thermodynamics.
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Appendix A. The Wave Solutions and the Eigenenergies

Detailed solutions can be found in the article [18]. Here, we will invoke the results of
the eigenenergies in the cases of the perturbative solutions for the weak-coupling regime
and for the perturbative solution for the strong-coupling regime. The objective is to
solve the time-independent Schrödinger equation HΨ = EΨ, where Ψ satisfies three
boundary conditions:

lim
x→pL−

Ψ(x) = lim
x→pL+

Ψ(x), (A1)

lim
x→pL+

dΨ(x)
dx

− lim
x→pL−

dΨ(x)
dx

= −2mλ

h̄2 Ψ(pL), (A2)

Ψ(0) = Ψ(L) = 0. (A3)

For positive energies E = h̄2k2

2m > 0, the solution of the Schrödinger equation, satisfying
the boundary conditions in Equations (A1) and (A3), is expressed as follows:

Ψ(x) =


A sin(k(L − x)) sin(kpL), for pL ≤ x ≤ L,
A sin(kx) sin(kL(1 − p)), for 0 ≤ x < pL,
0 otherwise.

(A4)

Here, A is the normalization constant for the wavefunction and k =
√

2mE
h̄2 .

By applying Equation (A2) and utilizing the wave function from Equation (A4), we
obtain the dispersion relation as follows:

(kL) f sin(kL) = 2 sin(kpL) sin(kL(1 − p)) , (A5)

where

f =
h̄2

mλL
is a dimensionless parameter representing the strength of the impurity. Thus, f < 0 ( f > 0)
signifies a repulsive (attractive) δ potential.

We will now direct our attention to two cases amenable to analytical solutions: the
scenario of a weak-coupling regime and that of a strong-coupling regime. As indicated by
reference [18], these arise for | f | ≥ 0.5 and | f | << 1, respectively.

We start by the perturbative eigenenergy correction for the weak-coupling regime
up to the first order. It can be obtained through the application of Rayleigh–Schrödinger
perturbation theory for time-independent systems. The initial energy correction at the first
order is derived by treating H′ as a perturbation within the framework of Equation (1). Ob-
taining the eigenfunctions and eigenvalues of the infinite potential well without impurities
is straightforward. These are given by the following:

Ψn(x) =

√
2
L

sin
(nπx

L

)
, En =

n2π2h̄2

2mL2 , n = 1, 2, 3 . . . (A6)

The first-order corrections to the energy eigenvalues caused by either attractive or repulsive
δ function impurities can be readily computed [32]. These corrections yield the energy
eigenvalues (2).

The perturbative eigenenergy correction for the weak-coupling regime up to the
second order can be obtained within a different approach. It is obtained from the expansion
k = k0 + λk1 + λ2k2 + · · ·. The details can be viewed in [18] and the eigenenergy up to the
second-order correction will be given by Equation (3).

In the context of strong coupling, a perturbative approach is employed to determine the
energy eigenvalue by applying perturbation up to the first order in the strength parameter.
Considering the case where f ≪ 0.1, we expand k as k = k0 +

1
λ k1 +

1
λ2 k2 + . . . in the
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dispersion relation represented by Equation (A5). This expansion, as derived in [18], leads
to the expression

β sin(βL) =
2mλ

h̄2 sin(βpL)× sin(β(1 − p)L) , (A7)

where β = k0 +
1
λ k1 +

1
λ2 k2 + . . . . By calculating the power series expansion of sin and

isolating terms with λ1 on both sides, we arrive at the following:

sin(k0 pL) sin(k0(1 − p)L) = 0 . (A8)

This equation implies that either sin(k0 pL) = 0 or sin(k0(1 − p)L) = 0. Then, two spectra
for the energy were obtained, stemming from these two conditions (which we will index
by a and b). They are given by Equations (4) and (5), respectively.

References
1. Robinett, R. Quantum wave packet revivals. Phys. Rep. 2004, 392, 1–119. [CrossRef]
2. Rempe, G.; Walther, H.; Klein, N. Observation of quantum collapse and revival in a one-atom maser. Phys. Rev. Lett. 1987,

58, 353–356. [CrossRef]
3. Saif, F.; Fortunato. Quantum revivals in periodically driven systems close to nonlinear resonances. Phys. Rev. A 2001, 65, 013401.

[CrossRef]
4. Krizanac, M.; Altwein, D.; Vedmedenko, E.Y.; Wiesendanger, R. Quantum revivals and magnetization tunneling in effective spin

systems. New J. Phys. 2016, 18, 033029. [CrossRef]
5. Kaur, T.; Kaur, M.; Arvind.; Arora, B. Generating Sustained Coherence in a Quantum Memory for Retrieval at Times of Quantum

Revival. Atoms 2022, 10, 81 . [CrossRef]
6. Abanin, D.A.; Altman, E.; Bloch, I.; Serbyn, M. Colloquium: Many-body localization, thermalization, and entanglement. Rev.

Mod. Phys. 2019, 91, 021001. [CrossRef]
7. Dubois, M.; Lefebvre, G.; Sebbah, P. Quantum revival for elastic waves in thin plate. Eur. Phys. J. Spec. Top. 2017, 226, 1593–1601.

[CrossRef]
8. D’Errico, A.; Barboza, R.; Tudor, R.; Dauphin, A.; Massignan, P.; Marrucci, L.; Cardano, F. Bloch–Landau–Zener dynamics

induced by a synthetic field in a photonic quantum walk. APL Photonics 2021, 6, 020802 . [CrossRef]
9. Hammam, K.; Hassouni, Y.; Fazio, R.; Manzano, G. Optimizing autonomous thermal machines powered by energetic coherence.

New J. Phys. 2021, 23, 043024. [CrossRef]
10. Maia, A.; Bakke, K. Revival time and Aharonov–Bohm-type effect for a point charge in a uniform magnetic field under the spiral

dislocation topology effects. Quantum Stud. Math. Found. 2022, 10, 79–87. [CrossRef]
11. Bakke, K. Topological effects of a disclination on quantum revivals. Int. J. Mod. Phys. A 2022, 37, 2250046 . [CrossRef]
12. Silva, W.; Bakke, K. On the effects of rotation and spiral dislocation topology on the persistent currents and quantum revivals in a

cylindrical wire. Eur. Phys. J. Plus 2021, 136, 920. [CrossRef]
13. Maia, A.V.D.M.; Bakke, K. Topological Effects of a Spiral Dislocation on Quantum Revivals. Universe 2022, 8, 168. [CrossRef]
14. de los Santos, F.; Romera, E. Quantum recurrence times in nanostructures. Phys. Lett. A 2023, 483, 129062. [CrossRef]
15. Khanonkin, I.; Eyal, O.; Reithmaier, J.P.; Eisenstein, G. Room-temperature coherent revival in an ensemble of quantum dots. Phys.

Rev. Res. 2021, 3, 033073. [CrossRef]
16. Strange, P. Relativistic Quantum Revivals. Phys. Rev. Lett. 2010, 104, 120403. [CrossRef] [PubMed]
17. Chamizo, F.; Santillán, O.P. Exact quantum revivals for the Dirac equation. Phys. Rev. A 2024, 109, 022231. [CrossRef]
18. Prakash, A.; Kumar, A.; Benjamin, C. Impurity reveals distinct operational phases in quantum thermodynamic cycles. Phys. Rev.

E 2022, 106, 054112. [CrossRef] [PubMed]
19. Reyes-Gómez, E.; Raigoza, N.; Oliveira, L.E. Effects of hydrostatic pressure and aluminum concentration on the conduction-

electron g factor in GaAs-(Ga,Al)As quantum wells under in-plane magnetic fields. Phys. Rev. B 2008, 77, 115308. [CrossRef]
20. Hernández, N.; López-Doria, R.; Fulla, M. Optical and electronic properties of a singly ionized double donor confined in coupled

quantum dot-rings. Phys. E Low-Dimens. Syst. Nanostruct. 2023, 151, 115736. [CrossRef]
21. Caicedo-Ortiz, H.; Castañeda Fernández, H.; Santiago-Cortés, E.; Mantilla-Sandoval, D. Energy Levels in a Single-Electron

Quantum Dot with Hydrostatic Pressure. Acta Phys. Pol. A 2018, 134, 570–573. [CrossRef]
22. Xu, G.L.; Zhen, Z.; Shi, Y.S.; Guo, K.X.; Feddi, E.; Yuan, J.H.; Zhang, Z.H. Effects of hydrostatic pressure and temperature on the

nonlinear optical properties of semiparabolic plus semi-inverse squared quantum wells. Commun. Theor. Phys. 2021, 73, 085502.
[CrossRef]

23. Wang, Z.Y. Sagnac effect and EMF in heavy-electron materials: Revisitation of Coriolis force and Euler force. Results Phys. 2024,
56, 107117. [CrossRef]

24. Bluhm, R.; Kostelecký, V.A.; Porter, J.A. The evolution and revival structure of localized quantum wave packets. Am. J. Phys.
1996, 64, 944–953. [CrossRef]

http://doi.org/10.1016/j.physrep.2003.11.002
http://dx.doi.org/10.1103/PhysRevLett.58.353
http://dx.doi.org/10.1103/PhysRevA.65.013401
http://dx.doi.org/10.1088/1367-2630/18/3/033029
http://dx.doi.org/10.3390/atoms10030081
http://dx.doi.org/10.1103/RevModPhys.91.021001
http://dx.doi.org/10.1140/epjst/e2016-60364-7
http://dx.doi.org/10.1063/5.0037327
http://dx.doi.org/10.1088/1367-2630/abeb47
http://dx.doi.org/10.1007/s40509-022-00283-z
http://dx.doi.org/10.1142/S0217751X22500464
http://dx.doi.org/10.1140/epjp/s13360-021-01922-x
http://dx.doi.org/10.3390/universe8030168
http://dx.doi.org/10.1016/j.physleta.2023.129062
http://dx.doi.org/10.1103/PhysRevResearch.3.033073
http://dx.doi.org/10.1103/PhysRevLett.104.120403
http://www.ncbi.nlm.nih.gov/pubmed/20366519
http://dx.doi.org/10.1103/PhysRevA.109.022231
http://dx.doi.org/10.1103/PhysRevE.106.054112
http://www.ncbi.nlm.nih.gov/pubmed/36559514
http://dx.doi.org/10.1103/PhysRevB.77.115308
http://dx.doi.org/10.1016/j.physe.2023.115736
http://dx.doi.org/10.12693/aphyspola.134.570
http://dx.doi.org/10.1088/1572-9494/abee70
http://dx.doi.org/10.1016/j.rinp.2023.107117
http://dx.doi.org/10.1119/1.18304


Universe 2024, 10, 269 12 of 12

25. Styer, D.F. Quantum revivals versus classical periodicity in the infinite square well. Am. J. Phys. 2001, 69, 56–62. [CrossRef]
26. Bluhm, R.; Alan Kostelecký, V.; Tudose, B. Wave-packet revivals for quantum systems with nondegenerate energies. Phys. Lett. A

1996, 222, 220–226. [CrossRef]
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