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Abstract: In this work, we discuss the de Sitter swampland conjectures in the context of the general-
ized Chaplygin-inspired inflationary model. We demonstrate that these conjectures can be satisfied,
but only in the region of the parameter space far away from the General Relativity limit. The cosmic
microwave background data had already been found to restrict the allowed inflationary potentials of
this model. Our results impose a further limitation on the possible potentials.
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Swampland conjectures have been put forward in order to identify de Sitter solutions
that do not lie in the string theory landscape. Such apparently consistent solutions do
not allow for a suitable ultraviolet completion (see ref. [1] for the original discussion and
ref. [2] for a review). These conjectures are particularly relevant as they relate the intrinsic
consistency of string theory to the conditions that are necessary for obtaining our four-
dimensional world, and also address the notoriously difficult problem of obtaining inflation
from the fields that naturally arise in string theory.

In fact, quite involved scenarios are required in string theory in order to facilitate
inflation (see, for instance, ref. [3]), which is somewhat surprising as in N = 1 supergravity,
presumably the low-energy limit of string theory, inflationary solutions can be naturally
implemented (see e.g., ref. [4]). From a phenomenological point of view, viable string
theory models, namely those that have an intermediate-scale Grand Unified Theory, have
been shown to require a period of inflation for their implementation [5].

In broad terms, the swampland conjectures amount to a set of necessary conditions
that ensure general low-energy features, such as the presence of local gauge symmetries, as
well as the presence of at least one Planck-mass particle in order to account for the weakness
of gravity. They are also required in order to assure that higher-derivative terms in the
effective action do not lead to superluminal propagation [6]. Not included among these
general requirements is the Strong Equivalence Principle, from which it follows that gravity
has to be described by General Relativity. Nevertheless, in most of the applications of the
swampland conjectures, this latter assumption is tacitly made. Technically, this implies
that when considering the more general setting of alternative theories of gravity, they are
confronted with the swampland conjectures in the so-called Einstein frame.

Indeed, given that General Relativity has some limitations, it is natural to consider
alternative theories of gravity [7] and ask if the swampland conjectures hold for inflationary
models (either single-field or more involved) arising from these theories. This issue has been
recently analyzed for theories of gravity with non-minimal coupling between curvature
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and matter [8], and their inflationary solutions [9]. It was found that inflation in these
theories cannot be reconciled with the de Sitter swampland conjectures [10].

In the current work, we examine another model in the context of the swampland
conjectures, namely the generalized Chaplygin-inspired single field inflationary model
(see ref. [11] for details). This confrontation is particularly interesting as it allows us, through
inflation, to examine models that go beyond the Standard Model of particle physics. An
additional motivation to consider the generalized Chaplygin-inspired inflationary model
concerns the recent claim that a Chaplygin-like equation of state can endow the vacuum
with interesting features related to entanglement entropy generation [12].

The swampland conjectures can be expressed through constraints on scalar fields
in low-energy effective field theories, generically denoted by ϕ [13,14], namely (in the
Einstein frame),

∆ϕ

MP
< c1, (1)

MP
|V′|
V

> c2, (2)

where ∆ϕ denotes a scalar-field variation, MP ≡ MPl/
√

8π is the reduced Planck’s mass,
V(ϕ) is the scalar field potential, V′ ≡ ∂V/∂ϕ, and c1 and c2 are O(1) constants. It has
been argued [15,16] that a more refined condition should also be considered, namely the
potential should satisfy condition (2), or, alternatively,

M2
P

V′′

V
< −c3, (3)

where V′′ ≡ ∂2V/∂ϕ2 and the constant c3 is of order one.
The requirements expressed by Equations (2) and (3) are incompatible with the onset

conditions of single-field (cold) inflation, which require that the inflaton satisfies the slow-
roll conditions ϵϕ ≪ 1 and |ηϕ| ≪ 1 at the onset of inflation [17], where

ϵϕ =
M2

P
2

(
V′

V

)2

(4)

and

ηϕ = M2
P

V′′

V
, (5)

so that at the end of inflation ϵϕ ∼ |ηϕ| ∼ 1. It is remarkable that the conditions for the
onset of inflation match the observational results [17]

ϵϕ < 0.0044 (6)

and
ηϕ = −0.015 ± 0.006, (7)

which are incompatible with the requirements on c2 and c3.
However, this incompatibility can be alleviated or resolved if one considers multi-field

inflationary backgrounds which follow curved, non-geodesic trajectories in field space [18]
and also if one considers either excited initial states for tensor perturbations [19], chaotic
inflation on the brane [20], or a significant dissipation in the context of warm inflationary
models [21] for one [22,23] or any number of scalar fields [24].

The generalized Chaplygin gas model was originally proposed to unify dark matter
and dark energy by resorting to a fluid with an exotic equation of state

p = − A
ρα

, (8)
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where p is the isotropic pressure, ρ is the energy density, A is a positive constant, and
0 < α ≤ 1. The original Chaplygin gas model corresponds to α = 1. It is well known that
this equation of state has many interesting features [25–27]. Support for the Chaplygin equa-
tion of state (α = 1) comes from the Born–Infeld action that describes a brane [26] which
can be parametrised through the action of a complex [26,27] or a real scalar field [25,28].

The evolution equation for the energy density can be seen below,

ρ̇ + 3H(ρ + p) = 0, (9)

where the dot denotes a derivative with respect to the cosmic time, H = ȧ/a is the expansion
rate and a(t) is the scale factor of the Friedmann–Lemaître–Robertson–Walker metric, with
p given by Equation (8), which can be easily integrated, yielding [25–27]

ρ =

[
A +

B
a3(1+α)

] 1
1+α

, (10)

where B is an integration constant.
This type of behavior of the energy density ρ can also arise from a modification of

gravity, particularly from a generalized Born–Infeld action for a scalar field ϕ with energy
density ρϕ, giving rise to a modified Friedmann equation with the form [11]

H2 =
1

3M2
P

[
A + ρ1+α

ϕ

] 1
1+α , (11)

where the scalar field satisfies the usual equation of motion

ϕ̈ + 3Hϕ̇ + V′ = 0, (12)

where V is a suitable inflationary potential. Note that the setup proposed by Equation (11)
differs from the one where the Chaplygin gas energy density expression, Equation (10), is
considered in a braneworld scenario. Its adequacy with respect to the de Sitter swampland
conditions was discussed in ref. [29] for warm inflation. The Chaplygin-inspired model
suggested in ref. [11] and discussed here assumes a change in gravity itself that amounts
to a modification of the standard Friedmann equation as in Equation (11), in which the
contribution of the energy density of matter in Equation (10) is replaced by the energy
density of the inflation.

Compatibility with the cosmic microwave background (CMB) data for monomial and
hilltop potentials has been examined for the generalized Chaplygin-inspired inflationary
model described by Equations (11) and (12) with respect to Planck data in the r-ns plane [30].
Interestingly, compatibility with CMB Planck data is ensured in the limit A ≫ V1+α for
hilltop potentials, a situation where the inflationary features of the generalized Chaplygin-
inspired model differ from the ones arising from the General Relativity limit, A ≪ V1+α,
where the expansion rate is given by the usual Friedmann equation. On the other hand,
monomial models are not compatible with the CMB data for A ≫ V1+α. We shall see below
that these results can be further restricted by the swampland conjectures (2) and (3).

Now let us investigate if the generalized Chaplygin-inspired inflationary model de-
scribed by Equations (11) and (12) satisfies the de Sitter swampland conjectures (2) and
(3) for a generic form of the potential V(ϕ) and an arbitrary nonvanishing value of the
constant A.

From Equations (11) and (12) it is straightforward to obtain an expression for the time
derivative of the Hubble parameter, namely,

Ḣ = − 1
2M2

P
ρα

ϕ(ρϕ + pϕ)
(

A + ρ1+α
ϕ

)− α
1+α , (13)
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where ρϕ = ϕ̇2/2 + V and pϕ = ϕ̇2/2 − V are the energy density and pressure of the scalar
field ϕ, respectively.

In the slow-roll approximation, for which ϕ̇2/2 ≪ V and |ϕ̈| ≪ |3Hϕ̇|, Equations (11)–(13)
can be written as

H2 ≃ 1
3M2

P

(
A + V1+α

) 1
1+α , (14)

ϕ̇ ≃ −MPV′
√

3

(
A + V1+α

)− 1
2(1+α) , (15)

Ḣ ≃ −1
6

Vα(V′)2
(

A + V1+α
)−1

, (16)

where the symbol ≃ means “equal within the slow-roll approximation”.
Using the above equations, the quantities −Ḣ/H2 and ϕ̈/(Hϕ̇) can be related to the

slow-roll parameters ϵϕ and ηϕ defined in Equations (4) and (5), respectively. We obtain

− Ḣ
H2 ≃ ϵϕ

(
1 +

A
V1+α

)− 2+α
1+α

, (17)

ϕ̈

Hϕ̇
≃ ϵϕ

(
1 +

A
V1+α

)− 2+α
1+α

− ηϕ

(
1 +

A
V1+α

)− 1
1+α

. (18)

Taking into account that in the slow-roll regime |Ḣ|/H2 ≪ 1 and |ϕ̈/(Hϕ̇)| ≪ 1, we
conclude that

ϵϕ ≪
(

1 +
A

V1+α

) 2+α
1+α

, (19)

|ηϕ| ≪
(

1 +
A

V1+α

) 1
1+α

. (20)

Note that the parameters ϵϕ and ηϕ are related to the constants c2 and c3 of the de Sitter
swampland conjectures [see Equations (2) and (3)] through the relations

c2
2 < 2ϵϕ and c3 < |ηϕ|. (21)

In the regime A ≪ V1+α, Equations (19) and (20) reduce to ϵϕ ≪ 1 and |ηϕ| ≪ 1,
implying, in turn, that c2 ≪ 1 and c3 ≪ 1, which goes against the de Sitter swampland
conjectures. This result coincides with that of General Relativity for the single-field (cold)
inflation case.

Much more interesting is the regime A ≫ V1+α. In this case, Equations (19) and (20)
reduce to

ϵϕ ≪
(

A
V1+α

) 2+α
1+α

and |ηϕ| ≪
(

A
V1+α

) 1
1+α

, (22)

which allow ϵϕ and |ηϕ| to take values larger than one. Relations (21) then imply that both
c2 and c3 can be of order one during quasi-exponential inflation, thus satisfying the de
Sitter swampland conjectures.

Let us now turn to the swampland distance conjecture, given by Equation (1). The
number of e-foldings of inflation is given by

N = ln
( a f

ai

)
=

∫ a f

ai

da
a

=
∫ ϕ f

ϕi

H
dϕ

ϕ̇
, (23)



Universe 2024, 10, 271 5 of 6

where the subscripts i and f denote the inflationary period’s beginning and end, respec-
tively, and typically N ∼ 50 − 60. In the slow-roll regime, the above expression can be
approximated by

N ≃ H
|ϕ̇| |∆ϕ|. (24)

Now, using Equations (14) and (15), the field excursion for the inflation can be written as

|∆ϕ| ≃ NM2
P

∣∣∣∣V′

V

∣∣∣∣(1 +
A

V1+α

)− 1
1+α

(25)

or, taking into account the definition of ϵϕ given by Equation (4), as

|∆ϕ| ≃ NMP

√
2ϵϕ

(
1 +

A
V1+α

)− 1
1+α

. (26)

Finally, using Equation (19), we obtain

|∆ϕ|
MP

≪
√

2N
(

1 +
A

V1+α

) α
2(1+α)

, (27)

from which it follows that the swampland distance conjecture, given by Equation (1), can
be satisfied in both regimes, A/V1+α ≪ 1 or A/V1+α ≫ 1.

The compatibility of the generalized Chaplygin-inspired model with the CMB data has
been investigated in ref. [30]. It was found that for potentials of the form V(ϕ) = V0(ϕ/Mp)n

with n = 1, 2, compatibility with CMB data is not possible for x ≡ A
V1+α > 1. Hence, the

latter are incompatible with the swampland conjectures (2) and (3).
On the other hand, for quadratic and quartic hilltop potential models, V(ϕ) =

V0
(
1 − γ

n (ϕ/Mp)n) with 0 < γ < 1 and n = 2, 4, compatibility with CMB data was
explicitly shown to be possible for α = 0.5 or 1 for a wide range (including large) of val-
ues of x. Therefore, these potentials can be made to be compatible with the swampland
conjectures (1)–(3).

In conclusion, in this work we have considered the generalized Chaplygin-inspired
single field inflationary model and shown that it is compatible with the swampland con-
jectures (2) and (3) provided that the condition x ≫ 1 is satisfied. Interestingly, this limit
corresponds to the situation where some of the features of the model differ from the ones
arising in the General Relativity limit x ≪ 1. As we have seen, the compatibility of the gen-
eralized Chaplygin-inspired inflationary model with the CMB data restricted the potentials
that were allowed. The de Sitter swampland conjectures impose a further limitation on
the possible potentials. In fact, these conjectures suggest that one should stretch the model
parameter x to large values, far from the General Relativity limit.
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