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Abstract: We investigate the cos 2ϕh azimuthal asymmetry contributed by the coupling of the Boer–
Mulders function and the Collins function in K±- and Λ-hyperon-produced SIDIS process. The
asymmetry is studied under the transverse-momentum-dependent (TMD) factorization framework
at the leading order by considering the TMD evolution effects that utilize the parametrization for
non-perturbative Sudakov form factors. The DGLAP evolution effects of the collinear counterpart
of the Collins function of the final-state hadrons are considered by introducing the approximated
evolution kernels. We utilize the available parametrization for the proton Boer–Mulders function
and the Collins function of K±. For the Collins function of the Λ hyperon, the result of the diquark
spectator model is adopted due to the absence of parametrization. The numerical results of the
cos 2ϕh azimuthal asymmetry are obtained in the kinematic regions of EIC and EicC. It can be shown
that the asymmetry is much smaller than the Sivers asymmetry, which means that the convolution of
the Boer–Mulders function and the Collins function may not be the main contributor to the cos 2ϕh

asymmetry. We emphasize the importance of future measurement of the cos 2ϕh asymmetry to
unravel different contributors.

Keywords: transverse-momentum-dependent factorization; Boer–Mulders function; electron ion
colliders

1. Introduction

The Boer–Mulders function h⊥1 (x, pT) [1,2] is one of the eight transverse-momentum-
dependent (TMD) parton distribution functions (PDFs) at the leading-twist level and
gives novel insights into the three-dimensional (3D) partonic structure of hadrons [3–7].
It represents the transverse-polarization asymmetry of partons inside the unpolarized
hadron. However, the T-odd Boer–Mulders function was initially thought to be vanished
because of the time-reversal invariance of QCD [8]. Several QCD-inspired models [9–13]
such as the spectator model [14,15], the light-front constituent quark model [16,17], the MIT
bag model [18], the Nambu–Jona–Lasinio model [19,20], etc., have shown that h⊥1 (x, pT)
is actually nonzero. Wilson lines (also known as gauge links), which appear in the full
gauge-invariant definition of the TMD distributions, are crucial to this argument. In
addition, the Wilson line makes the T-odd distribution functions process-dependent and
flips the sign between the semi-inclusive deep inelastic scattering (SIDIS) and the Drell-Yan
processes [14].

Since the Boer–Mulders function is a chiral-odd distribution function [2], it must be
coupled with another chiral-odd distribution/fragmentation function to survive in the
high-energy scattering process. The convolution of the Boer–Mulders function h⊥1 and the
Collins function H⊥1 (which describes the fragmentation of transversely polarized quarks
into unpolarized hadrons) can give rise to cos 2ϕh azimuthal asymmetry in the unpolarized
SIDIS process.
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In this work, we numerically calculate the cos 2ϕh azimuthal asymmetry of the SIDIS
process in the kinematic regions of the EIC [21,22] and EicC [23] by utilizing the TMD
factorization formalism, which is applicable in the region where the transverse momentum
of the produced hadron in the final state is much smaller than the hard-scale Q. TMD
factorization has been shown to be valid for processes such as SIDIS [8,24], e+e− annihi-
lation [25–27], Drell–Yan [9,28], and W/Z boson production [29,30] processes. We briefly
review the key points of the TMD factorization as well as the evolution effect, which has
been studied intensively in the literature, for convenience.

According to TMD factorization, the differential cross-section of the SIDIS process
can be expressed as the convolution of the hard scattering factor, TMD parton distribution
function (PDF), and TMD fragmentation function (FF). One of the most important aspects
of the TMD formalism is that it provides a systematic way of dealing with the evolution of
TMDs (PDF and FF are collectively referred to as TMDs) and the transverse momentum
dependence of TMDs, from which the scale evolution of TMDs is determined by the
Collins–Soper equation (CS) [31,32] and the renormalization group equation.

After solving the evolution equations, the TMDs from initial energy µ to another en-
ergy Q are encoded in the Sudakov form factor S [33,34] by the exponential form exp(−S),
which can be separated into the perturbatively calculable part Spert(Q; b∗) and the non-
perturbative part SNP(Q; b) [33]. SNP(Q; b) cannot be calculated through perturbative
theory, while it can be obtained by phenomenological extraction from experimental data.
Furthermore, TMDs are expressed in terms of their collinear counterparts with perturba-
tively calculable coefficients in the perturbative region.

In this work, we will consider the evolution of both the proton Boer–Mulders function
and the charged kaon and Λ Collins function to estimate the cos 2ϕh asymmetry at the
kinematics of EIC and EicC. For the proton Boer–Mulders function and the charged kaon
Collins function, we adopt the available parametrization. For the Λ Collins function, we
adopt the diquark spectator model result due to the lack of parametrization. The remainder
of the paper is organized as follows. In Section 2, we provide the theoretical framework
of the cos 2ϕh asymmetry in the charged kaon and Λ hyperon production in the SIDIS
process within the TMD factorization formalism. In Section 3, we numerically estimate the
cos 2ϕh asymmetry in the kinematical regions of EIC and EicC. We summarize the work
and discuss the results in Section 4.

2. Formalism of the cos 2ϕh Asymmetry in the SIDIS Process

In this section, we set up the necessary theoretical framework of the cos 2ϕh asymmetry
contributed by the Boer–Mulders function of the proton target and Collins function of
final-state hadrons in the SIDIS process by applying TMD factorization while considering
the evolution effect.

In the studied process, the unpolarized electron beam is scattered off the unpolar-
ized proton target with an unpolarized hadron detected in the final state, which can be
expressed as

e(ℓ) + p(P)→ e
(
ℓ′
)
+ h(Ph) + X(PX), (1)

where ℓ and ℓ′ stand for the four-momenta of the incoming and outgoing electrons, respec-
tively, and P and Ph denote the four-momenta of the proton target and the final-state hadron
(which is a kaon and Λ hyperon in this work), respectively. X denotes the undetected
system, which will not be measured in the final state with the four-momentum of PX .

The following Lorentz invariants are defined to express the differential cross section
as well as the physical observables:

S = (ℓ+ P)2 , x =
Q2

2P · q , y =
P · q
P · ℓ , z =

P · Ph
P · q , Q2 = −q2, (2)



Universe 2024, 10, 280 3 of 16

where S is the total center-of-mass energy squared, x is the Bjorken variable, y denotes the
lepton (quark) energy–momentum transferring fraction, and z represents the longitudinal
momentum fraction of the final fragmented hadron with respect to the parent quark;
q = ℓ− ℓ′ denotes the momentum of the virtual photon, with Q2 = −q2. The reference
frame of the studied SIDIS process is shown in Figure 1, in which the z-axis is defined as
the momentum direction of the virtual photon according to the Trento convention [35].

Figure 1. The reference frame in the SIDIS process.

The azimuthal angle ϕh between the lepton plane and the hadron plane is defined
through

cos ϕh = −
ℓµPhνgµν

⊥√
ℓ2

T P2
hT

, (3)

with ℓ
µ
T = gµν

⊥ ℓν and Pµ
hT = gµν

⊥ Phν being the transverse components of ℓ and Ph with
respect to the z-axis, and the tensor gµν

⊥ is

gµν
⊥ = gµν − qµPν + Pµqν

P(1 + γ2)
+

γ2

1 + γ2 (
qµqν

Q2 −
PµPν

M2 ), (4)

with γ = 2Mx
Q . Under the one-photon exchange assumption, the cross section of the

unpolarized SIDIS process can be written as the general form of [36]

d5σ

dxdydzd2PhT
= σ0

(
y, Q2

)[
FUU + cos ϕh

2(2− y)
√

1− y
1 + (1− y)2 Fcos ϕh

UU +

cos 2ϕh
2(1− y)

1 + (1− y)2 Fcos 2ϕh
UU + . . .

]
,

σ0 =
2πα2

em
Q2

1 + (1− y)2

y
, (5)

where αem is the fine-structure constant. PhT is the transverse momentum of the final-state
hadron with respect to the z-axis. The ellipsis refers to other structure functions that are
not considered in this work. The subscripts in the structure function FXY represent the
polarization status of the lepton beam (X) and target proton (Y), with U being unpolar-
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ized. The structure functions in Equation (5) can be expressed as the convolutions of the
corresponding PDFs and FFs [36]:

FUU = C[ f1D1], (6)

Fcos ϕh
UU =

2M
Q
C
[
(ĥ · kT)

zMh

(
xhH⊥1 +

Mh
M

f1
D̃⊥

z

)
− (ĥ · kT)

M

(
x f⊥D1 +

Mh
M

h⊥1
H̃
z

)]
, (7)

Fcos 2ϕh
UU = C

[
−2(ĥ · kT)(ĥ · pT)− kT · pT

MMh
h⊥1 H⊥1

]
, (8)

where the notation C represents the convolution among the transverse momenta:

C
[
ω f D

]
= x ∑

q
e2

q

∫
d2 pTd2kTδ(2)

(
pT − kT − PhT/z

)
ω(pT , kT) f q(x, p2

T) Dq(z, k2
T). (9)

Fcos ϕh
UU is the structure function related to the Cahn effect [37], which can be written at

twist-3 order and can be simplified under Wandzura–Wilczek approximation:

Fcos ϕh
UU ≈ −2M

Q
C
[
(ĥ · kT)

M
k2

T
M2 h⊥1 H⊥1 +

(ĥ · kT)

M
f1D1

]
. (10)

Here, f1(x, pT) and h⊥1 (x, pT) are the unpolarized TMD parton distribution function
and the Boer–Mulders function of the target proton, respectively. They depend on the
Bjorken variable x and the transverse momentum pT of the quarks in the proton target. On
the other hand, D1(z, kT) and H⊥1 (z, kT) are the unpolarized fragmentation function and
the Collins function, respectively, which depend on the longitudinal momentum fraction z
and the transverse momentum kT of the final-state quark with respect to the z-axis that
will fragment to the final-state hadrons; ĥ = PhT

|PhT |
is the unit vector along PhT . One can

see from Equation (10) that the Cahn effect can receive a contribution proportional to the
convolution of the Boer–Mulders function and the Collins function.

At the leading twist order, the structure function Fcos 2ϕh
UU can be written as the convolu-

tion of the Boer–Mulders function h⊥1 and Collins function H⊥1 as Equation (8). Meanwhile,
the Cahn effect contributes to the cos 2ϕh structure function at twist-4 order as well:

Fcos 2ϕh
UU|Cahn =

2M2

Q2 C
[

2
2(ĥ · kT)

2 − k2
T

M2 f1D1

]
. (11)

Along with the contributions from the convolution of the Boer–Mulders function and
the Collins function as well as the Cahn effect, the cos 2ϕh structure function may also
have a large contribution from the perturbative effect, which has been calculated by the
Drell–Yan process [38] as well as the e+e− annihilation process [39].

In this work, we only discuss the contribution from the convolution of the Boer–
Mulders function and Collins function at the twist-2 level. Therefore, the cos 2ϕh asymmetry
is defined as the ratio of the cos 2ϕ-dependent cross section and the unpolarized differential
cross section, which can be written as

Acos 2ϕh
UU =

σ0(y, Q2)

σ0(y, Q2)

2(1− y)
1 + (1− y)2

Fcos 2ϕh
UU
FUU

, (12)
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where 2(1−y)
1+(1−y)2 is the depolarizing factor. The expressions for the structure functions in

Equation (12) are shown in Equation (6) and Equation (8). By integrating other variables
among the kinematical regions, we can obtain the x-, y-, and PhT-dependent asymmetries as

Acos 2ϕh
UU (x) =

∫
dydzd2PhT σ0(y, Q2) 2(1−y)

1+(1−y)2 Fcos 2ϕh
UU∫

dydzd2PhT σ0(y, Q2)FUU
, (13)

Acos 2ϕh
UU (z) =

∫
dxdyd2PhT σ0(y, Q2)Fcos 2ϕh

UU∫
dxdyd2PhT σ0(y, Q2)FUU

, (14)

Acos 2ϕh
UU (PhT) =

∫
dxdydz PhTσ0(y, Q2) 2(1−y)

1+(1−y)2 Fcos 2ϕh
UU∫

dxdydz PhTσ0(y, Q2)FUU
. (15)

Performing the Fourier transformation of the structure function from the transverse
momentum space to b space (which is conjugated to the transverse momentum space [30,40]
through the Fourier transformation), the structure function in the b space can be expressed
as the simple product instead of the complicated convolution of TMDs in the transverse
momentum space. We retrieve the unpolarized structure function from ref. [41] as

FUU(Q; PhT) = C[ f1D1]

= x ∑
q

e2
q

∫
d2 pTd2kTδ(2)(pT − kT − PhT/z) f q

1

(
x, p2

T

)
Dq

1

(
z, k2

T

)
=

x
z2 ∑

q
e2

q

∫
d2 pTd2KTδ(2)(pT + KT/z− PhT/z) f q

1

(
x, p2

T

)
Dq

1

(
z,

K2
T

z2

)

=
x
z2 ∑

q
e2

q

∫
d2 pTd2KT

∫ d2b
(2π)2 e−i(pT+KT/z−PhT/z)·b f q

1

(
x, p2

T

)
Dq

1

(
z,

K2
T

z2

)

=
x
z2 ∑

q
e2

q

∫ d2b
(2π)2 eiPhT ·b/z f̃ q/p

1 (x, b)D̃h/q
1 (z, b), (16)

where KT represents the transverse momentum of the final hadrons with respect to the
parent quark and has the relation KT = −zkT [30]. The TMD distribution function f̃1(x, b)
and the fragmentation function D̃1(z, b) in the b space can be obtained by performing the
Fourier transformation from transverse momentum space to b space:∫

d2 pTe−ipT ·b f q
1 (x, p2

T) = f̃ q/p
1 (x, b), (17)∫

d2KTe−iKT/z·bDq
1(z, K2

T) = D̃h/q
1 (z, b). (18)

Hereafter, we denote the terms in b space as the terms with a tilde. One should notice
that the distribution function and the fragmentation function must depend on the energy
scale, which has been neglected in Equation (16) and will be discussed in detail in the
following subsection.
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Similarly, the structure function Fcos 2ϕh
UU can be rewritten as:

Fcos 2ϕh
UU (Q; PhT) = C

[
−2ĥ · kT ĥ · pT − kT · pT

MMh
h⊥1 H⊥1

]
= ∑

q
e2

q

∫
d2 pTd2kTδ(2)(pT − kT − PhT/z)

×
[
−2ĥ · kT ĥ · pT − kT · pT

MMh

]
h⊥,q

1

(
x, p2

T

)
H⊥,q

1

(
z, k2

T

)
=

x
z2 ∑

q
e2

q

∫
d2 pTd2KTδ(2)(pT + KT/z− PhT/z)

×
[

2ĥ · KT ĥ · pT − KT · pT
MMh · z

]
h⊥,q

1

(
x, p2

T

)
H⊥,q

1

(
z,

K2
T

z2

)

=
x
z2 ∑

q
e2

q

∫
d2 pTd2KT

∫ d2b
(2π)2 e−i(pT+KT/z−PhT/z)·b

×
[

2ĥ · KT ĥ · pT − KT · pT
MMh · z

]
h⊥,q

1

(
x, p2

T

)
H⊥,q

1

(
z,

K2
T

z2

)

=
x
z3 ∑

q
e2

q

∫ d2b
(2π)2 eiPhT ·b/z(2ĥα ĥβ − g⊥αβ)h̃

⊥,q/p,α
1 (x, b)H̃⊥,β

1,h/q(z, b). (19)

Here, the Boer–Mulders function and Collins function in b space can be obtained as

h̃⊥,q/p,α
1 (x, b; Q) =

∫
d2 pTe−ipT ·b pα

T
M

h⊥,q
1

(
x, p2

T

)
, (20)

H̃⊥,β
1,h/q(z, b; Q) =

∫
d2KTe−iKT ·b/z Kβ

T
Mh

H⊥1,h/q(z,
K2

T
z2 ), (21)

where α, β are the uncontracted spatial index of the momentum space [41]. Therefore, the
transverse-momentum-dependent cos 2ϕh azimuthal asymmetry can be rewritten as:

Acos 2ϕh
UU =

σ0
(
y, Q2)

σ0(y, Q2)

2(1− y)
1 + (1− y)2

x
z3 ∑q e2

q
∫ d2b

(2π)2 eiPhT ·b/z(2ĥα ĥβ − g⊥αβ)h̃
⊥,q/p,α
1 (x, b)H̃⊥,β

1,h/q(z, b)

x
z2 ∑q e2

q
∫ d2b

(2π)2 eiPhT ·b/z f̃ q/p
1 (x, b)D̃h/q

1 (z, b)
. (22)

2.1. TMD Evolution Effects

We establish the framework of the TMD evolution effects that will solve the energy
dependence of the TMD PDFs f1(x, pT), h⊥1 (x, pT) and TMD FFs D1(z, kT), H⊥1 (z, kT)
in this subsection. The evolution effects for the TMDs are performed in b space; the
TMD physical observables that can be measured experimentally will be recovered after
performing the reverse Fourier transformation from b space to the transverse momentum
space. Thus the b behavior of the TMDs is essential for studying the TMD observables.

TMD PDF F̃(x, b) and TMD FF D̃(z, b) in b space actually have two energy scale depen-
dencies µ and ζF (ζD) according to TMD factorization. The scale µ is the renormalization
scale related to the corresponding collinear PDFs/FFs, while ζF (ζD) is the energy scale that
serves as a cut-off point to regularize the light-cone singularity in the operator definition
of the TMDs. The ζF(ζD) dependence of the TMDs is encoded in the Collins–Soper (CS)
equation [30,31]:

∂ ln F̃(x, b; µ, ζF)

∂ ln
√

ζF
=

∂ ln D̃(z, b; µ, ζD)

∂ ln
√

ζD
= K̃(b; µ), (23)
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while the µ dependence is derived from the renormalization group equation:

dK̃
d ln µ

= −γK(αs(µ)), (24)

d ln F̃(x, b; µ, ζF)

d ln µ
= γF

(
αs(µ);

ζ2
F

µ2

)
, (25)

d ln D̃(z, b; µ, ζD)

d ln µ
= γD

(
αs(µ);

ζ2
D

µ2

)
, (26)

where αs is the running strong coupling, K̃ is the CS evolution kernel, and γK, γD and γF
are anomalous dimensions. Hereafter, we set µ =

√
ζF =

√
ζD = Q; then the TMD PDFs

and FFs can be written as F̃(x, b; Q) and D̃(z, b; Q).
Solving these TMD evolution equations, the general form of the solution for the energy

dependence of TMDs can be written as

F̃q/p(x, b; Q) = F × e−S × F̃q/p(x, b; µB), (27)

D̃h/q(z, b; Q) = D × e−S × D̃h/q(z, b; µB), (28)

with F and D being the hard scattering factors that depend on the factorization schemes
and S being the Sudakov form factor. Equations (27) and (28) show that the energy evolution
of TMDs from the initial energy µ to another energy Q can be realized through the Sudakov
form factor S by the exponential form exp(−S).

Studying the b dependence of the TMDs can provide useful information regarding
the transverse momentum dependence of the hadronic 3D structure through Fourier
transformation, which makes understanding the b dependence quite important. In the
small-b region (b ≪ 1/ΛQCD), the b dependence of TMDs is perturbatively calculable,
while in the large-b region, the dependence turns non-perturbative and must be obtained
from the experimental data due to the lack of non-perturbative calculation. To combine the
information about the b dependence from the perturbative calculation valid at the small-b
region with the non-perturbative part at the large-b region, a matching procedure must be
introduced, with a parameter bmax serving as the boundary between the two regions. Then,
a b-dependent function b∗ is defined with the properties that b∗ ≈ b at small-b values and
b∗ is not larger than bmax at large-b values:

b∗ =
b√

1 + b2/b2
max

, bmax < 1/ΛQCD , (29)

which was introduced in the original CSS prescription [30]. The typical value of bmax is
chosen to be around 1.5 GeV−1 to ensure that b∗ is always in the perturbative region.

In the small-b region (1/Q ≪ b ≪ 1/ΛQCD), the TMDs can be expressed as the
convolution of the perturbative hard coefficients and the collinear counterpart at fixed
energy µB, which are the collinear PDFs/FFs or the multi-parton correlation function
(µB = c0/b∗, with c0 = 2e−γE , the Euler constant γE ≈ 0.577, and⊗ denotes the convolution
in the momentum fraction x):

F̃q/p(x, b; µB) = Cq←i ⊗ Fi/p(x, µB) ≡∑
i

∫ 1

x

dξ

ξ
Cq←i

(
x
ξ

, µB

)
Fi/p(ξ, µB), (30)

D̃h/q(z, b; µB) = Ĉj←q ⊗ Dh/j(z, µB) ≡∑
j

∫ 1

z

dξ

ξ
Ĉj←q

(
z
ξ

, µB

)
Dh/j(ξ, µB), (31)
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where C represents the hard scattering coefficient and depends on the studied processes,
and the summation over i runs over all parton flavors. Combining all of the above informa-
tion, the expressions of the TMD distribution function and the fragmentation function have
the form:

F̃q/p(x, b; Q) = F × e−S ×∑
i

Cq←i ⊗ Fi/p(x, µB), (32)

D̃h/q(z, b; Q) = D × e−S ×∑
j

Ĉj←q ⊗ Dh/j(z, µB). (33)

Introducing the prescription in Equation (29) will separate the Sudakov form factor S
into the perturbatively calculable part Spert(Q; b∗) and the non-perturbative part SNP(Q; b):

S(Q; b) = Spert(Q; b∗) + SNP(Q; b). (34)

According to the intensive studies in refs. [42–45], the perturbative part of the Sudakov
form factor Spert(Q; b∗) can be expanded as the series of ( αs

π )n:

Spert(Q; b∗) =
∫ Q2

µ2
b

dµ̄2

µ̄2

[
A(αs(µ̄)) ln(

Q2

µ̄2 ) + B(αs(µ̄))

]
, (35)

with the coefficients A and B as

A =
∞

∑
n=1

A(n)(
αs

π
)n, (36)

B =
∞

∑
n=1

B(n)(
αs

π
)n. (37)

Within the scope of this work, we list A(n) to A(2) and B(n) to B(1) [30,34,42,44,46,47]:

A(1) = CF, (38)

A(2) =
CF
2

[
CA

(
67
18
− π2

6

)
− 10

9
TRn f

]
, (39)

B(1) = −3
2

CF, (40)

where CF = 4
3 , TR = 1

2 , CA = 3, and n f = 5. The values of the strong coupling αs are
obtained at 2-loop order as an approximation:

αs

(
Q2
)
=

12π(
33− 2n f

)
ln
(

Q2/Λ2
QCD

)
1−

6
(

153− 19n f

)
(

33− 2n f

)2

ln ln
(

Q2/Λ2
QCD

)
ln
(

Q2/Λ2
QCD

)
, (41)

with fixed n f = 5 and ΛQCD = 0.225 GeV. Inspired by refs. [46,48], a widely used
parametrization of SNP for TMDs at the initial energy Q2

0 = 2.4 GeV2 is proposed [46,49]:

Spdf/ff
NP = b2

(
gpdf/ff

1 +
g2

2
ln

Q
Q0

)
. (42)

The 1/2 factor in front of g2 comes from the fact that only one hadron is involved
for the parametrization of Spdf/ff

NP . The parameter gpdf/ff
1 depends on the type of TMDs

and can be regarded as the width of the intrinsic transverse momentum for TMDs at the
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initial energy scale Q0 [34,47]. Assuming that the dependence of the transverse momentum
follows Gaussian form, g1 can be obtained as

gpdf
1 =

⟨p2
⊥⟩Q0

4
, gff

1 =
⟨k2
⊥⟩Q0

4z2 , (43)

where ⟨p2
⊥⟩Q0 and ⟨k2

⊥⟩Q0 represent the averaged intrinsic transverse momenta squared
for TMDs at initial scale Q0. We adopt the value of g2 to be g2 = 0.184 [45]. Thus, the
non-perturbative Sudakov form factors for PDF and FF have the following form:

Spdf
NP (Q; b) =

g2

2
ln
(

Q
Q0

)
b2 + gpdf

1 b2, (44)

Sff
NP(Q; b) =

g2

2
ln
(

Q
Q0

)
b2 + gff

1 b2. (45)

Combining everything mentioned above, the scale-dependent TMD PDFs and FFs in
b space can be rewritten as

F̃q/p(x, b; Q) = e−
1
2 SPert(Q;b∗)−Spdf

NP (Q;b)F (αs(Q))∑
i

Cq←i ⊗ Fq/p(x, µB), (46)

D̃h/q(z, b; Q) = e−
1
2 SPert(Q;b∗)−Sff

NP(Q;b)D(αs(Q))∑
j

Ĉj←q ⊗ Dh/q(z, µB). (47)

The TMD distribution functions and the fragmentation functions can be obtained by
Fourier transformation from b space back to kT space.

2.2. The Structure Functions

In this subsection, we present the detailed formalism of the structure functions FUU and
Fcos 2ϕ

UU , which are the denominator and numerator, respectively, of the cos 2ϕh asymmetry.
We performed the Fourier transformation to obtain FUU in b space in Equation (16);

after solving the evolution equations for the TMDs, we derived the TMDs in b space in
Equations (46) and (47). Combing Equations (16), (46) and (47), one can have the specific
expression for the unpolarized structure function as:

FUU(Q; PhT) =
x
z2 ∑

q
e2

q

∫ d2b
(2π)2 eiPhT ·b/z f̃ q/p

1 (x, b)D̃h/q
1 (z, b)

=
x
z2 ∑

q
e2

q

∫ ∞

0

bdb
(2π)

J0(
PhTb

z
)e−Spert(Q;b∗)−SSIDIS

NP (Q;b)

×F (αs(Q))∑
i

Cq←i ⊗ f i/p
1 (x, µB)D(αs(Q))∑

j
Ĉj←q ⊗ Dh/j

1 (z, µB)

=
x
z2 ∑

q
e2

q

∫ ∞

0

bdb
(2π)

J0(
PhTb

z
)e−Spert(Q;b∗)−SSIDIS

NP (Q;b) f q/p
1 (x, µB)Dh/q

1 (z, µB). (48)

Here, we adopt the LO results of the C coefficients, i.e., we take Cq←i = δqiδ(1−
x), Ĉj←q = δjqδ(1− x) and take the hard factor F = 1,D = 1. The non-perturbative
Sudakov form factor SSIDIS

NP (Q; b) is a combination of the unpolarized distribution function
part and the unpolarized fragmentation function part:

SSIDIS
NP (Q; b) = Sf1

NP(Q; b) + SD1
NP(Q; b) = g2 ln

(
Q
Q0

)
b2 + gf1

1 b2 + gD1
1 b2, (49)

where gf1
1 and gD1

1 are obtained from Equation (43).
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Similarly, we can have the expression for the structure function Fcos 2ϕh
UU (Q; PhT). The

Boer–Mulders function and the Collins function in the small-b region are also written as
the convolution of the correlation function and hard scattering coefficient as

h̃⊥,α
1,q/p(x, b; Q) = (

−ibα

2
)e−

1
2 SPert(Q;b∗)−S

h⊥1
NP(Q;b)T(σ)

q/p,F(x, x; µB), (50)

H̃⊥,β
1,h/q(z, b; Q) = (

ibβ

2
)e−

1
2 SPert(Q;b∗)−S

H⊥1
NP (Q;b)Ĥ(3)

h/j(z, µB), (51)

where the LO result of the C coefficient is used and the hard scattering coefficient
HCollins(αs(Q)) is taken as 1. Here, T(σ)

q/H,F(x, x; µ) is the chiral-odd twist-3 quark–gluon–
quark correlation function and is related to the first-pT moment of the Boer–Mulders
function h⊥(1)1,q/H by:

T(σ)
q/H,F(x, x; µB) =

∫
d2 pT

p2
T

M
h⊥1,q/H(x, pT ; µB) = 2Mh⊥(1)1,q/H(x). (52)

Furthermore, Ĥ(3)
h/q(z, µB) is related to the first-kT moment of the Collins function

as [50]

Ĥ(3)
h/j(z) = z2

∫
d2kT

|k2
T |

Mh
H⊥1,h/j = 2Mh H⊥(1)1,h/j(z)(z, k2

T). (53)

Combining all the ingredients, the structure function Fcos 2ϕh
UU (Q; PhT), which is the

numerator part of the cos2ϕh asymmetry, can be rewritten as

Fcos 2ϕh
UU (Q; PhT) =

x
z3 ∑

q
e2

q

∫ d2b
(2π)2 eiPhT ·b/z(2ĥαĥβ − g⊥αβ)h̃

⊥,q/p
1 (x, b)H̃⊥1,h/q(z, b)

= − x
z3 ∑

q
e2

q

∫ ∞

0

b3db
(8π)

J2(
PhTb

z
)e−Spert (Q;b∗)−SSIDIS

NP Collins(Q;b)

× T(σ)
q/H,F(x, x; µB)H(3)

h/j(z, µB), (54)

where the non-perturbative Sudakov form factor SSIDIS
NP (Q; b) is the combination of the one

for the Boer–Mulders function and the one for the Collins function:

SSIDIS
NP (Q; b) = Sh⊥1

NP(Q; b) + SH⊥1
NP (Q; b)

= g2 ln
(

Q
Q0

)
b2 + gh⊥1

1 b2 + gH⊥1
1 b2. (55)

3. Numerical Estimate

In this section, based on the formalism established above, we present the numerical
estimate for the cos 2ϕh asymmetry Acos 2ϕh

UU in the charged-kaon- and Λ-hyperon-produced
SIDIS process at the kinematics regions of EicC and EIC. We need to utilize the collinear un-
polarized distribution function f1(x) and the collinear unpolarized fragmentation function
D1(z) as the inputs of the evolution, for which we adopt the parameterizations of these
functions. For the collinear unpolarized distribution function f1(x) of the proton, we adopt
the LO set of CT10 parameterization [51] (central PDF set), while for the fragmentation
function D1(z) of charged kaon, we apply the leading-order DSS parametrization [52]. For
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the collinear unpolarized fragmentation function DΛ
1 (z) of the Λ hyperon, we adopt the

model results of the diquark spectator model [53]:

DΛ
1 (z) =

g2
s

4(2π)2
e−

2m2
q

Λ2

z4L2

{
z(1− z)

((
mq + MΛ

)2 −m2
D

)
× exp

(
−2zL2

(1− z)Λ2

)
+
(
(1− z)Λ2 − 2

((
mq + MΛ

)2 −m2
D

))
× z2L2

Λ2 Γ
(

0,
2zL2

(1− z)Λ2

)}
. (56)

The value of the free parameters gs, mq, mD as well as L2 and Λ2 in Equation (56)
is taken from ref. [53], and MΛ is the mass of the Λ hyperon. Since the model result is
obtained at an initial energy of 0.23 GeV2, we use the QCDNUM evolution package [54] to
evolve the unpolarized fragmentation function D1(z) from the initial energy of 0.23 GeV2

to another energy scale.
For the first pT-moment of the Boer–Mulders function for the proton target needed in

the calculation, we adopt the parametrization of h⊥,(1)
1,q/p from ref. [55] as:

h⊥,(1)
1,q/p(x) = Hqxcq

(1− x)b f q
1 (x). (57)

Here, the parameters Hq, cq, and b are free parameters that need to be obtained by
fitting the experimental data with the parameterized form using the specific fitting results
given in ref. [55]. We should note that there is no parametrization for the s(s̄) quark
Boer–Mulders function; we assume that it follows h⊥q,(1)

1,s(s̄)/p(x) = Hd̄xcd̄
(1− x)b f s(s̄)

1 (x) due

to s(s̄) and d̄ both being the sea quark of the proton. The collinear correlation function
Ĥ(3)

h/q(z) can be obtained from the first kT-moment of the Collins function for kaon and
Λ. The kaon Collins function is extracted from the semi-inclusive hadron pair production
in e+e− annihilation, which turns out to be in good agreement with the measurements
performed by the HERMES [56,57] and COMPASS [58,59] collaborations. ∆N Dh/q↑(z, p⊥)
was parameterized in ref. [60], while the Collins function H⊥1,h/j(z, p⊥) and ∆N Dh/q↑(z, p⊥)
have the following relationship:

H⊥1,h/j(z, p⊥) =
zMh
2|p⊥|

∆N Dh/q↑(z, p⊥); (58)

one can obtain the expression for Ĥ(3)
h/j(zh) as:

Ĥ(3)
h/j(z) =

√
2e

MC
N C

q (z)Dh/q(z)

(
M2

C
M2

C +
〈
k2
⊥
〉)2〈

k2
⊥

〉
. (59)

For kaon meson, the free parameters of the favored and disfavored Collins function
are extracted as [60]:

N k
f av = 0.41, N k

dis = 0.08. (60)

In Equations (42) and (43), the free parameter g1 and the universal parameter g2 contain
information about the evolution of TMDs and are the key parameters that determine the
evolution of TMDs from one initial energy µB to another Q. We adopt the parametrization

as gh⊥1
1 = 0.57

4 GeV2 gH⊥1
1 =

<p2
⊥>c

4z2 , with < p2
⊥ >c=

M2
c<p2

⊥>

M2
c+<p2

⊥>
to be consistent with the

parametrization from ref. [60].
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Since there is no parametrization for the Λ Collins function, we adopt the model
calculation performed in ref. [53] using the diquark spectator model as:

H⊥(q)1

(
z, k2

T

)
=

αsg′2DCF

(2π)4
e

−2k2

λ2z2(1−2))
β

z2(1− z)
1(

k2 −m2
q

)
(

H⊥(q)1(a)

(
z, k2

T

)
+ H⊥(q)1(b)

(
z, k2

T

)
+ H⊥(q)1(c)

(
z, k2

T

)
+ H⊥(q)1(d)

(
z, k2

T

))
. (61)

In Equations (42) and (43), the free parameter g1 and the universal parameter g2 contain
information about the evolution of TMDs and are the key parameters that determine the
evolution of TMDs from one initial energy µB to another Q. Here, we adopt the results
given in ref. [45] for the mean transverse momentum squared:〈

p2
⊥

〉
= 0.38 GeV2,

〈
k2
⊥

〉
= 0.19 GeV2. (62)

For the universal parameter g2 in the non-perturbative Sudakov form factor, the
specific value g2 = 0.184 is also given in ref. [45]. The kinematical region available at the
EIC is chosen as follows [22]:

0.001 < x < 0.4, 0.07 < y < 0.9, 0.2 < z < 0.8,

1 GeV2 < Q2, 5 GeV < W,
√

s = 100 GeV, PhT < 0.5 GeV. (63)

For EicC, the following kinematic region is used:

0.005 < x < 0.5, 0.07 <y < 0.9, 0.2 < z < 0.7,

1 GeV2 < Q2 < 200 GeV2, 2 GeV < W,
√

s = 16.7 GeV, PhT < 0.5 GeV, (64)

where W2 = (P + q)2 ≈ 1−x
x Q2 is the invariant mass of the virtual photon–nucleon system.

Since TMD factorization is proven to be valid to describe physical observables in the
region (PhT ≪ Q, PhT < 0.5 GeV) is chosen to guarantee the validity of TMD factorization.
Combining Equations (12), (48) and (54) and the kinematical regions of EIC and EicC, we
can calculate the cos 2ϕh asymmetry in the charged-kaon- and Λ-hyperon-produced SIDIS
process within the EIC and EicC kinematic range.

The results are shown in Figure 2: the upper, middle, and lower panels of the figure
depict the numerical results of cos 2ϕh asymmetry times 105 in the K+-, K−-, and Λ-
hyperon-produced SIDIS process in the kinematic regions of EIC and EicC, respectively.
The left, middle, and right panels denote the cos 2ϕh asymmetry as functions of x, z, and
PhT , respectively. As can be seen from Figure 2, it can be found that cos 2ϕh azimuthal
asymmetry in the charged-kaon- and Λ-hyperon-produced SIDIS process is relatively
very small compared with other asymmetries, such as Sivers asymmetry [41] and Collins
asymmetry [61] in all cases in both the EIC and EicC kinematical regions, which shows
that the convolution of the Boer–Mulders function may not be the main contribution of
the cos 2ϕh asymmetries. The magnitude of the cos 2ϕh asymmetry may potentially be
recognized as consistent with zero. However, the magnitude of the cos 2ϕh asymmetry in
the K+-produced process is larger than that of the K−-produced process. The reason is
that the constituent quarks of the K+ meson are u and s̄, and those of K− are ū and s. The
relatively larger contribution of the valence quark Boer–Mulders function leads to the result
Acos 2ϕ

UU (ℓp→ ℓ′K+X) > Acos 2ϕ
UU (ℓp→ ℓ′K−X). Another observation is that the asymmetry

at the configuration of EicC is larger than that at EIC, which may be due to the fact that
the configuration of EicC is more sensitive to the sea quark distributions. In the future,
high-energy, high-luminosity electron ion colliders can provide a unique opportunity to
extract information about the TMD distribution functions and fragmentation functions,
clarify their flavor dependence, and disentangle the different contributions.
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Figure 2. The cos 2ϕh asymmetry in the charged-kaon- and Λ-hyperon-produced SIDIS process
at the kinematic regions of EIC and EicC as functions of x (left panels), z (middle panels), and
PhT (right panels).

4. Conclusions

In this work, we applied the TMD factorization at leading-logarithmic order to study
the cos 2ϕh asymmetry in the K±-meson- and Λ-hyperon-produced SIDIS process in the
kinematical configurations of EIC and EicC. We present the formalism of SIDIS process
cos 2ϕh under TMD factorization theorem and study the TMD evolution of the unpolarized
proton distribution function and the fragmentation function as well as the Boer–Mulder
function and Collins function. We considered the TMD evolution effect of the distribution
functions and fragmentation functions that include the Sudakov form factor. The hard
scattering coefficient related to the collinear function is taken at leading order. For the
Boer–Mulders function of the proton target, the kaon Collins function, we adopted the
parametrization for which the TMD evolution effect was considered; for the Λ Collins
function, we applied the results from the diquark spectator model. We predict that the
cos 2ϕh asymmetry in the charged-kaon- and Λ-produced SIDIS process is much smaller
than other asymmetries such as the Sivers asymmetry. From this work, we show that the
convolution of the Boer–Mulders function and the Collins function in the strange-meson-
kaon- and Λ-produced SIDIS process may not be the main contribution of the cos 2ϕh
asymmetry, which shows the importance of the Cahn effect as well as the perturbative
calculation. The measurement of the cos 2ϕh asymmetry of semi-inclusive charged kaon
and Λ production in future electron ion colliders can provide useful constraints on the
different contributors to cos 2ϕh asymmetry.
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