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Abstract: QCD with the isospin chemical potential µI is a useful laboratory to delineate the mi-
crophysics in dense QCD. To study the quark–hadron continuity, we use a quark–meson model
that interpolates hadronic and quark matter physics at microscopic level. The equation of state
is dominated by mesons at low density but taken over by quarks at high density. We extend our
previous studies with two flavors to the three-flavor case to study the impact of the strangeness,
which may be brought by kaons (K+, K0) = (us̄, sd̄) and the UA(1) anomaly. In the normal phase, the
excitation energies of kaons are reduced by µI in the same way as hyperons in nuclear matter at the
finite baryon chemical potential. Once pions condense, kaon excitation energies increase as µI does.
Moreover, strange quarks become more massive through the UA(1) coupling to the condensed pions.
Hence, at zero and low temperature, the strange hadrons and quarks are highly suppressed. The
previous findings in two-flavor models, sound speed peak, negative trace anomaly, gaps insensitive
to µI , persist in our three-flavor model and remain consistent with the lattice results to µI ∼ 1 GeV. We
discuss the non-perturbative power corrections and quark saturation effects as important ingredients
to understand the crossover equations of state measured on the lattice.

Keywords: equations of state; pion condensation; quark–hadron continuity; power corrections;
quark saturation

1. Introduction

Recently there has been increasing attention paid to two-color QCD (QC2D) [1–19], or
QCD at finite isospin but zero baryon densities (isospin QCD, QCDI in short) [20–31]. In
these theories, lattice simulations are viable without the sign problem. Confronting theories
with lattice results should provide us with useful insights into QCD matter at high baryon
density (nB); see, for example, reviews [32–36].

Equations of state (EOSs) of dense matter have a one-to-one correspondence with
the mass-radius (M-R) relations of neutron stars. One of the important indications from
neutron star observations and nuclear constraints is that QCD matter is soft around nuclear
saturation density n0 ≃ 0.16 fm−3, but rapidly becomes stiff around nB = 2–4n0 [37,38].
The density for this radical stiffening is smaller than the density where baryons of the
radius 0.5–0.8 fm spatially overlap. Meanwhile nuclear many-body calculations become
problematic for nB ≳ 1.5–2n0. Observationally, rapid stiffening is supported by a small
variation (or even increase) in radii from 1.4M⊙ to 2.1M⊙ neutron stars. If EOSs stiffen only
gently as in typical hadronic EOS with many-body forces, the radii of ≃2M⊙ neutron stars
would be substantially smaller than 1.4M⊙ neutron stars by ∼1 km [39]. Such contrast in
1.4M⊙ to 2.1M⊙ radii may be also studied by gravitational waves from binary neutron star
mergers; see, for example, Refs. [40–43].

To study the interplay between hadronic and quark matter, it is crucial to understand
rapid stiffening at the microscopic level. Several theoretical studies [44–47] suggest that
such rapid stiffening around 2–4n0 is triggered by quark degrees of freedom, whether
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or not quarks are confined or deconfined. Assuming a model in which quarks remain
confined in baryons, quarks can still occupy states with a certain probability and eventually
affect baryons through the quark Pauli blocking [46,47]. Such quark constraint becomes
substantial even before baryons overlap. After quark states at low momentum are saturated
(“quark saturation” [46]), the quark Fermi sea begins to form with the diffused Fermi surface
whose thickness is ≃200–300 MeV. The quark saturation forces matter of non-relativistic
baryons to change into that of relativistic baryons or quarks, driving the rapid growth in
pressure but modest change in the energy density [46]. The quark momentum distribution
at finite density has been manifestly computed for two-dimensional QCD [48].

The quark saturation and the associated stiffening may occur also in QC2D and QCDI ,
although baryons are replaced with diquark baryons and mesons, respectively. In these
theories, the Bose–Einstein Condensation of diquarks or mesons occurs at the onset of
matter; (composite) bosons occupy the zero momentum state. At a finite chemical potential
exceeding the mass threshold, the amplitude of condensates would grow indefinitely
unless some sort of repulsive forces temper the growth of the amplitude. For theories of
elementary bosons, we do not have definite rationals why such repulsion should exist,
while, for theories of bosons made of fermions, the indefinite growth in boson amplitudes
would violate the Pauli exclusion principle. Hence, irrespective to the details of interactions,
effective repulsions among bosons must emerge.

For isospin QCD, there have been many studies; see Ref. [49] for a recent good
summary to 2019. Recently, isospin QCD has attracted renewed attention as a laboratory
to study concepts proposed for neutron star physics [50–52] or to derive some constraints
on neutron star EOS [53–56]. In Refs. [50,51], we used a two-flavor quark–meson model to
discuss the rapid stiffening and related microphysics. This model is renormalizable and
includes mesons and quarks [57,58]. At low density, the EOS is dominated by mesons while,
at high density, quarks dominate. In quark matter, region mesonic degrees of freedom as
condensates remain near the quark Fermi surface.

In this paper, after adding some supplements to our previous two-flavor studies, we
then extend the analyses to three flavors. Although a strange quark does not have isospin,
hadronic strange particles, such as kaons, η, η′, and so on, contain u,d-quarks and can
be affected by the isospin density. Indeed, the excitation energies of (K+, K0) = (us̄, sd̄)
decrease with increasing µI and would eventually condense unless other particles in the
system repel such kaons. Another effect of interest is the impact of the UA(1) anomaly
that affects the strangeness in the Dirac sea [59,60]. At finite density, the reduction in the
effective u,d quark masses softens the chiral symmetry breaking in the strange quark sector,
while the appearance of the pion condensates can enhance the strange quark mass by a
few hundred MeV. This continues until the medium screening cuts off such effects. A
similar coupling, diquark-to-chiral order parameters, has been discussed in the context of
quark–hadron crossover [61–64]. Thus, the strange particles are useful probes to diagnose
various medium effects in dense matter.

In this paper, we use a quark–meson model to discuss a quark–hadron crossover [65–70].
In Section 2, we first discuss a picture behind this model to inform readers of what physics
we try to describe. We will use the 1/Nc expansion to classify the effects caused by different
degrees of freedom [71,72]. In Section 3, we present a quark–meson model including the
strangeness and the UA(1) anomaly effects. In Section 4, we study the effective potential
and meson spectra at the tree level. In Section 5, we include quarks to change the structure
of the theory and discuss how it leads to the trend consistent with the lattice results. In
Section 6, we mention our parameter fixing through meson poles in vacuum with quark-
loop corrections. In Section 7, we examine EOS at zero temperature and its relationship
with the microphysics. Section 8 is devoted to the summary.

2. A Quark–Meson Model at Finite Density: Outline

We begin with the Nc counting of a quark–meson coupling. A diagrammatic rep-
resentation is given in Figure 1. To derive the Nc counting of hadronic parameters, we
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match the Nc counting in a color line graph and a hadronic graph. For instance, from
a mesonic correlator with the magnitude of Nc, one can conclude that a quark bilinear
operator couples to a mesonic state with the strength N1/2

c . Using this estimate and repeat-
ing the similar matching, one can deduce that the meson–meson interaction is ∼N−1/2

c
for three-meson vertices and ∼N−1

c for four-meson vertices, and so on. Similarly, for a
quark–meson coupling graph with the amplitude of ∼g2

s Nc ∼ N0
c , one can conclude that

the quark–meson coupling is N−1/2
c . While we consider only a single gluon exchange,

including more gluons introduces (g2
s Nc)n ∼ 1 so that the counting is not affected.

Figure 1. (upper) Some examples of the correspondence between quark–gluon, color line graphs,
and hadronic graphs. The coupling between quark bilinear operators and mesonic state must be
∼N1/2

c for the consistency with the color line graphs. Meson three-point vertices must be ∼N−1/2
c .

(lower) The quark–meson vertices in quark–gluon, color line, and quark–meson representations. The
quark–meson coupling must be ∼N−1/2

c to be consistent with the color line representation.

Below, we assume that this quark–meson coupling g is dominated by soft gluons for
which the quark–gluon coupling gs is large and characterizes the size of the quark–meson
coupling. The soft gluon exchanges occur indefinitely within the produced mesons. This
sort of process cannot be represented by perturbative treatments at the finite order. The
purpose of manifestly including mesonic degrees of freedom is to replace or parametrize
these processes in a book keeping manner.

The quark self-energy with gluon loops (leftmost panel, Figure 2) are g2
s Nc ∼ N0

c
yielding the mass of ∼ΛQCD. The factor Nc amplification occurs, as there is a color
loop in the color line representations. In contrast, the self-energy with mesonic loops
is g2 ∼ g4

s Nc ∼ N−1
c and suppressed (rightmost panel, Figure 2). There is an exception,

however. When mesons form condensates, the self-energies originating from meson loops
can be amplified to N0

c . The condensate contains indefinite numbers of qq̄ pairs. In the
case of chiral condensates, condensed q̄LqR or q̄RqL pairs transform qL(qR) into qR(qL),
generating the mass self-energies. If we neglect changes in the number of q̄q pairs in the
condensate, a quark propagator with meson loops can be factorized into a product of quark
propagators with a background meson condensate. Since quark propagators with the me-
son background already contain graphs with many soft gluons, to avoid double counting,
we do not manifestly include the quark self-energy graphs with soft gluon loops. Mean-
while, graphs with hard gluons may be added separately for more complete exploration of
the phase space in the intermediate states.

The reduction in meson masses can be important even before mesons condense. Such
precursory effects are important near the phase boundaries and have been studied in the
context of color superconductivity [73–75].
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Figure 2. The mass self-energy graphs with (left) gluon and (right) meson loops. The gluon loop
graph is ∼g2

s Nc ∼ N0
c . The meson loop graph is ∼g2 ∼ g4

s Nc ∼ N−1
c , except when the meson

condenses. With meson condensates of ⟨σ⟩ ∼ fπ ∼ N1/2
c , the graphs with condensate can represent

(some part of) the gluon loop graphs in the leftmost panel.

We include “mesons” as a representative of the qq̄ propagating graph with an indefinite
numbers of soft gluon exchanges. Using meson degrees of freedom at high density might
look unnatural, but models manifestly including mesons can be dynamical reduced to pure
quark descriptions; the dissociation and structural changes of these mesons into quarks
can be described by inserting quark loops in the meson propagators. Thus, unwanted
contributions can be canceled by including quark loops [76].

At high density, quarks typically have large momenta, but the excitation energies can
be small, ∼E − µ ≪ µ (µ: chemical potential) near the Fermi surface. These soft quarks
and soft gluons may keep quark–meson couplings as strong as in vacuum unless screening
processes cut off soft gluons. For S-wave condensates, a quark with p⃗ and an antiquark
with − p⃗ make a pair in which soft gluons are exchanged. For a pion-condensed phase in
isospin QCD, these soft gluons should be largely unscreened because the condensate is a
color singlet and colored excitations are gapped. These unscreened gluon propagators are
supported by lattice simulations for two-color QCD [11,77–81].

With soft gluons being unscreened, the size of the gap is ∼ΛQCD or can be even larger.
To see this, we parametrize the soft gluon exchange forces as

Dg(q) = Θ
(
Λ − |⃗q|

) c
Λ2 , c ∼ g2

s ∼ 4παs(Λ) ∼ O(10) , (1)

where c/Λ2 is the typical strength for a soft momentum transfer |⃗q| < Λ. This model has
been used for quarkyonic chiral spirals [82–84] and QCD in a magnetic field [85–87] to
yield the gap equation local in momentum space (Figure 3). The resultant gap is ∼Λ, and
we expect the same happens for the soft gluonic part in isospin QCD.

Now, the gap equation reads

∆ ∼ c
Λ2

∫
l⃗
Θ
(
Λ2 − |⃗l − p⃗|2

) ∆√(
E(⃗l)− µI

)2
+ ∆2

. (2)

Decomposing the loop momentum as l⃗ =
(
| p⃗|+ δl∥

)
ep + l⃗⊥ with | p⃗| ≃ µI , the conservative

estimate for the range is |δl∥| ≲ Λ and |⃗l⊥| ≲ Λ. Then, one can simplify the gap equation
into (vF: Fermi velocity)
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1 ∼ c
(2π)3Λ2

∫ Λ

−Λ
dδl∥

∫
|⃗l⊥ |≲Λ

d⃗l⊥
1√(

v f δl∥ +
l⃗2
⊥

2µI

)2
+ ∆2

. (3)

If Λ ≪ µI and l⃗2
⊥/2µI ≲ Λ2/2µI ≪ ∆ hold, we can omit the l⃗2

⊥/µI term in the range of
integral to factorize the l⃗⊥ integral. The condition Λ2/2µI ≪ ∆ will be checked a posteriori.
At this stage, the equation loses the µI-dependence and so does the solution. Further
calculation reads

1 ∼ c
4π2

∫ Λ

0
dδl∥

1√(
v f δl∥)2 + ∆2

∼ c
4π2 ln

Λ
∆

. (4)

Thus, the gap is ∆ ∼ Λe−4π2/c ∼ Λe−π/αs(Λ). For a stronger coupling, the gap ∆ grows to
Λ, and the condition Λ2/2µI ≪ ∆ is satisfied.

Figure 3. The gap created by soft gluons. The self-energies caused by soft gluons are not very sensitive
to the size of the Fermi surface because quarks fluctuate only within small domain. The produced gap
is characterized by soft gluons and is supposed to be ∼ΛQCD, until hard gluon processes dominate
over soft gluon processes.

The present arguments show that, even at large µ or large quark Fermi momenta,
non-perturbative phenomena characterized by ΛQCD are still possible. This continues until
screening effects set in. When µI is sufficiently large, we should also add hard gluon contri-
butions, which can be treated within the weak coupling method; this hard contributions are
sensitive to the phase space around the Fermi surface and hence to µI . As we see later, the gap
(which is insensitive to µI) adds the power corrections, ∼+µ2

I ∆2 ∼ µ2
I Λ2

QCD, to the pressure P(µI).
These power corrections, not capable within perturbative computations, have played im-
portant roles in QCD phenomenology [88–90] and also seem essential to describe the lattice
simulation data at large density [50,51].

3. A Quark–Meson Model: Mean Field Treatments

Now, we consider a practical description of a three-flavor quark–meson model. The
Lagrangian is

L = LY + LM
kin − Vsym − VSB − Vanom . (5)

The quark with the Yukawa interaction takes the form

LY = q̄
[
i/∂ + µIτ3γ0 − g

(
σa + iγ5πa

)
λa

]
q

= q̄
[
i/∂ + µIτ3γ0

]
q − gϕa

[
q̄LλaqR

]
− gϕ∗

a
[
q̄RλaqL

]
, (6)
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where ϕa = σa + iπa. We have scalar and pseudoscalar flavor nonets. In our notation, the
isospin chemical potential is µI = µu = −µd, coupled to q̄γ0τ3q rather than the isospin
density operator q̄γ0

τ3
2 q in the conventional sense.

The mesonic Lagrangian with the isospin chemical potential is

LM
kin = ∑

a=0,3,8

1
2
|∂µϕa|2

+ (∂µ + 2iµIδ
0
µ)a+0 (∂

µ − 2iµIδ
µ
0 )a−0 + (∂µ + 2iµIδ

0
µ)π

+(∂µ − 2iµIδ
µ
0 )π

− (7)

+ (∂µ + iµIδ
0
µ)κ

+(∂µ − iµIδ
µ
0 )κ

− + (∂µ + iµIδ
0
µ)K

+(∂µ − iµIδ
µ
0 )K

−

+ (∂µ + iµIδ
0
µ)κ̄

0(∂µ − iµIδ
µ
0 )κ

0 + (∂µ + iµIδ
0
µ)K̄

0(∂µ − iµIδ
µ
0 )K

0 ,

where isotriplet (σa=1−3, πa=1−3) = (a0, π) and two isodoublets (σa=4−7, πa=4−7) = (κ, K)
couple to the isospin chemical potential. The field normalization for isospin-charged fields
are a±0 = (σ1 ± iσ2)/

√
2, and so on. Since τ3 commutes with the isospin rotation operator

around the I3-axis, the U(1)I3 symmetry is preserved at the level of the Lagrangian. This
symmetry is broken when pions condense.

The mesonic potential consists of three pieces

VM(ϕ, ϕ∗) = Vsym + VSB + Vanom , (8)

with a U(3) symmetric potential

Vsym = −
m2

M
4

tr
[
MM†]+ λ

48
tr
[(
MM†)2] , M = ϕaλa , (9)

and a symmetry-breaking term associating the current quark masses,

VSB = − c
2

tr
[
m̂†

qM+ m̂qM†] , m̂q = diag.(ml , ml , ms) , (10)

and the Kobayashi–Maskawa–’t Hooft (KMT) interaction

Vanom = − K
2
[

detM+ detM†] . (11)

which is responsible for the UA(1) breaking.
Increasing µI , the excitation energies of mesons including u or d̄ are reduced, i.e., the

excitation energies of σ+, π+, a+0 , K+, · · · decrease linearly as a function of µI . As we see
shortly, the tree level analyses show that the lightest pion condenses first, and then the
reduction in energies for the other mesons is stopped; no other mesons condense. At the
tree level, this is interpreted as the effective repulsion between condensed pions and the
other mesons. We assume this holds even after including loop corrections. Thus, we take
the mean field as

MMF =

 ⟨σ⟩ i⟨π1⟩ 0
i⟨π1⟩ ⟨σ⟩ 0

0 0 ⟨σs⟩

 , σ =

√
2
3

σ0 +

√
1
3

σ8 , σs =

√
2
3

σ0 − 2

√
1
3

σ8 . (12)

Here, we could choose π1 fields for condensed fields without loss of generality since the
Lagrangian has the U(1)I3 symmetry. The mean-field Yukawa term now takes the form
(ql = u, d)

LMF
Y = q̄l

[
i/∂ + µIτ3γ0 − Ml − iγ5λ1∆

]
ql + s̄

[
i/∂ − Ms

]
s , (13)
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where we write Ml = g⟨σl⟩, Ms = g⟨σs⟩, and ∆ = g⟨π1⟩. Substituting the mean fields into
the potentials, one finds

VMF
sym = −

m2
M

2g2 (M2
l + ∆2) +

λ

24g4

(
M2

l + ∆2)2 −
m2

M
4g2 M2

s +
λ

48g4 M4
s (14)

and (hl = 2cml , hs = 2cms)

VMF
SB = − hl

g
Ml −

hs

2g
Ms , VMF

anom = − K
g3

(
M2

l + ∆2)Ms . (15)

Below, we first examine the effective potential at the tree level which includes only the
mesonic degrees of freedom. The quark dynamics manifestly enters only after including
the quark loops. As we see later, the quark loops change the structure of theories and
impose important constraints on the meson mean fields.

4. Purely Hadronic Descriptions: Tree Level Analyses
4.1. Gap Equations at Tree Level

We first study the tree level potential, including only meson degrees of freedom.
Combining the potentials with the terms, including the chemical potential in LM

kin, the
effective potential at the tree level is

Ω0 = −
2µ2

I
g2 ∆2 + VMF

sym + VMF
SB + VMF

anom . (16)

The gap equations are

∂Ω0

∂Ml
=

Ml
g2

[
− m2

M +
λ

6g2

(
M2

l + ∆2)− 2K
g

Ms −
ghl
Ml

]
= 0 ,

∂Ω0

∂Ms
=

Ms

2g2

[
− m2

M +
λ

6g2 M2
s −

2K
g

M2
l

Ms
− ghs

Ms

]
= 0 , (17)

∂Ω0

∂∆
=

∆
g2

[
− 4µ2

I − m2
M +

λ

6g2

(
M2

l + ∆2)− 2K
g

Ms

]
= 0 .

We can show that ghl/Mvac
l = (mvac

π )2. We combine the first and third equations to derive
a simple relation,

∂Ω0

∂∆
=

∆
g2

[
− 4µ2

I +
ghl
Ml

]
= 0 ,

∂2Ω0

(∂∆)2 =
1
g2

[
− 4µ2

I +
ghl
Ml

+
λ

3g2 ∆2
]

. (18)

The curvature with respect to ∆ is positive for small µI so that ∆ = 0 is favored. Then,
the gap equation is the same as in the vacuum case; in this domain Ml = Mvac

l and
ghl/Mvac

l = (mvac
π )2 holds. The curvature becomes negative for mvac

π ≥ 2µI , leading
to the scaling Ml ∼ 1/µ2

I . This in turn leads to ∆2 ∼ 1/Ml ∼ µ2
I from the condition

∂Ω0/∂Ml = 0. The strange quark is affected by the isospin density only through the
anomaly term.

4.2. Meson Kinetic and Mass Matrices at Tree Level

We now quickly review the properties of mesons in a medium of condensed pions.
We first take a look at the excitation energies of charged mesons in the low-density domain.
Then, the Lagrangian has the following structure (E =

√
p⃗2 + m2):

1
2
[ϕ+, ϕ−]

[
0 (p0 + NIµI)

2 − E2

(p0 + NIµI)
2 − E2 0

][
ϕ+

ϕ−

]
, (19)
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where NI = 2 for the isotriplet and NI = 1 for the isodoublet. The spectra are found to be

ω±( p⃗) = E( p⃗)± NIµI . (in normal phase) (20)

Mesons with positive isospins have energy reduction. This continues until one of those
mesons condenses. The pions are the lightest and have the largest isospin NI = 2, so they
condense first, at µI = mvac

π /2.
Before the pion condensation, a pair of positive- and negative-charged mesons main-

tains the µI-independence of the thermodynamics. The thermodynamic potential from a
(non-interacting) meson for NIµI ≤ E( p⃗ = 0) is

Ω =
1
2

∫
p⃗

(
|E + NIµI |+ |E − NIµI |

)
→ 1

2

∫
p⃗

(
E + NIµI + E − NIµI

)
=

∫
p⃗

E , (21)

after the µI terms cancel. The resulting energy is the same zero point energy as in the
vacuum. The expression is valid until NIµI reaches the meson mass.

After the pions condense, mesons with an energy reduction in the normal phase are
now subject to effective repulsions, and hence the gap remains in the excitation energies.
In addition, condensed pions supply isospin and parity violating sources so that various
mesons mix. At the tree level, the mixing is caused through the quartic and the KMT
interaction. We read off the meson mass matrices masses by looking at the quadratic order
of the potential

Vquad
M =

∂2Ṽ0

∂ϕa∂ϕ∗
b

ϕaϕ∗
b +

1
2

∂2Ṽ0

∂ϕa∂ϕb
ϕaϕb +

1
2

∂2Ṽ0

∂ϕ∗
a ∂ϕ∗

b
ϕ∗

a ϕ∗
b + · · ·

=
∂2Ṽ0

∂ϕa∂ϕ∗
b

[
σaσb + πaπb

]
+ Re

∂2Ṽ0

∂ϕa∂ϕb

(
σaσb − πaπb

)
− Im

∂2Ṽ0

∂ϕa∂ϕb

(
σaπb + πaσb

)
(22)

where we evaluate the second derivative at the mean field values, and also use the fact that
∂2Ṽ0

∂ϕa∂ϕ∗
b

∣∣
MF is real. The mass matrices for σ and π are

m2
σaσb

= 2
[

∂2Ṽ0

∂ϕa∂ϕ∗
b
+ Re

∂2Ṽ0

∂ϕa∂ϕb

]
, m2

πaπb
= 2

[
∂2Ṽ0

∂ϕa∂ϕ∗
b
− Re

∂2Ṽ0

∂ϕa∂ϕb

]
, (23)

and the parity-breaking σ–π couplings induced by the pion condensate are

m2
σaπb

= −2Im
∂2Ṽ0

∂ϕa∂ϕb
(∝ ∆) . (24)

The pion condensate π1 ∼ ud̄ + dū induces the conversion u ↔ d and ū ↔ d̄, and also
causes the conversion between the σ and π sectors. For light flavors, all channels but
π3, σ3 ∼ uū − dd̄ mix. The exceptional π3 and σ3 are protected from the mixing because
of the G-parity [91] type symmetries as we discuss shortly. All kaons are mixed with one
another. But the isodoublets do not mix with the isoscalar nor the isovector since the
condensed π1 supply integer isospins.

To understand the decoupling of π3 and σ3 from the others, we consider the unitary
transformations induced by

PI3(θ) = Peiθ I3 , CI1(θ) = Ceiθ I1 , (25)

where P and C are parity and charge conjugation, respectively. We define C−1π+C = π−
and C−1π3C = π3 so that the G-parity is −1 for all pions. In this definition, C−1π1C = π1
and C−1π2C = −π2.
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The PI3 symmetry holds in our UI3 symmetric Lagrangian for any θ. The question
is whether this symmetry is spontaneously broken or not. The π1 condensate under this
symmetry transforms to

P−1
I3

(θ)π1PI3(θ) ∼ P−1(e−iθ ūiγ5d + eiθ d̄iγ5u
)

P = −
(
e−iθ ūiγ5d + eiθ d̄iγ5u

)
, (26)

which in general is the mixture of π1 and π2. But setting θ = π and writing PI3 ≡ PI3(π),
we conclude that P−1

I3
π1PI3 = π1. Thus, the PI3 parity is conserved in the presence of the

π1 condensates. We also note that PI3 parity is also not violated by σ and σs condensates.
Thus, PI3 can be used to classify various mesons. Under the PI3 transformation, the
isoscalar and isovectors transform as

P−1
I3

(
σ0,3,8, π1,2

)
PI3 = +

(
σ0,3,8, π1,2

)
, P−1

I3

(
σ1,2, π0,3,8

)
PI3 = −

(
σ1,2, π0,3,8

)
. (27)

Next, we consider CI1(θ). First, we note that the isospin density is invariant for CI1 ≡
CI1(π),

C−1
I1

(θ)
(
ūu − d̄d

)
CI1(θ) = −C−1(ūu − d̄d

)
C = ūu − d̄d , (28)

where we used e−iπ I1(u, d)eiπ I1 = (d, u). The Lagrangian is also invariant. The condensates
π1, σ, and σs are also invariant. Under the CI1 transformation, the isoscalar and isovectors
transform as

C−1
I1

ϕ0,1,2,8CI1 = +ϕ0,1,2,8 , C−1
I1

ϕ3CI3 = −ϕ3 . (29)

Combining these symmetries, the isoscalar and isovector sectors can be decomposed into

σ3 , π3 , (σ0, σ8; π1, π2) , (π0, π8; σ1, σ2) . (30)

Meanwhile, for the isodoublet sectors,(
σ4 , σ5 , σ6 , σ7 ; π4 , π5 , π6 , π7

)
(31)

are all mixed.

4.2.1. The Spectra of σ3, π3, and (σ0, σ8; π1, π2)

Here, we display some analytic expressions for σ3, π3, and (σ0, σ8; π1, π2). The σ3 and
π3 decouple from the other modes, and the mass matrices are

m2
π3

= −m2
M +

λ

6g2 (M2
l + ∆2)− 2K

g
Ms = 4µ2

I ,

m2
σ3

= −m2
M +

λ

2g2 (M2
l + ∆2) +

2K
g

Ms = 4µ2
I +

λ

3g2 (M2
l + ∆2) +

4K
g

Ms , (32)

where for π3, we use the gap equation. For these neutral modes, the excitation energies
directly coincide with the mass ωπ3,σ3 = mπ3,σ3 .

Next, we look into the charged sector. The pion mass matrices are

m2
π1

= −m2
M +

λ

6g2 (M2
l + 3∆2)− 2K

g
Ms = 4µ2

I +
λ

3g2 ∆2 ,

m2
π2

= −m2
M +

λ

6g2 (M2
l + ∆2)− 2K

g
Ms = 4µ2

I , (33)

and the neutral σ sector has the mass matrices
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m2
σ0

= −m2
M +

λ

18g2

[
6M2

l + 3M2
s + 2∆2]− 4K

3g
[
2Ml + Ms

]
,

m2
σ8

= −m2
M +

λ

18g2

[
3M2

l + 6M2
s + 2∆2]+ 2K

3g
[
4Ml − Ms

]
. (34)

The mixing is induced by

m2
σ0π1

=

√
2K√
3g

∆ , m2
σ0σ8

=
λ
√

2
12g2 ∆2 − λ

√
2

36g2 δM2
s +

√
2K

3g
δMs . (35)

The coupling between the σ0,8 and π1,2 sectors is induced through the convolution of the
UA(1) anomaly and the pion condensate. Meanwhile, the mixing between σ0 and σ8 is
due to the explicit SU(3) breaking, which appears through δMs = Ms − Ml and the meson
condensates existing only in the u, d sector.

The isospin chemical potentials in the kinetic terms and mass terms together yield the
massless modes. For a simple illustration, we consider the case where K is small. In this
approximation, π1,2 and σ0,8 decouple. Now, the quadratic terms in π1,2 are[

p2
0 − m2

π1
+ 4µ2

I 4iµI p0

− 4iµI p0 p2
0 − m2

π2
+ 4µ2

I

]
=

[
p2

0 −
λ

3g2 ∆2 4iµI p0

− 4iµI p0 p2
0

]
. (36)

We use the expression of m2
π1

and m2
π2

. The determinant of the matrix becomes zero at
p0 = 0, reflecting that there is a massless mode associated with the spontaneous breakdown
of the UI3 symmetry.

4.2.2. The Spectra of (σ4−7; π4−7)

Next, we discuss the isodoublet (kaon) sector. The diagonal part is

m2
π4−7

= −m2
M +

λ

6g2 (M2
l + M2

s − Ml Ms + ∆2)− 2K
g

Ml

= 4µ2
I +

λ

6g2 Ml(Ms − Ml) +
2K
g

(Ms − Ml) , (37)

m2
σ4−7

= −m2
M +

λ

6g2 (M2
l + M2

s + Ml Ms + ∆2) +
2K
g

Ml

= 4µ2
I +

λ

6g2 Ms(Ms + Ml) +
2K
g

(Ms + Ml) ,

where we use the gap equation for the pion sector. The difference in the mass matrices
between the pion and kaon sectors comes from the effective quark mass. The mixing
matrices are

m2
σ4,σ7

= −m2
σ5,σ6

= −m2
π4,π7

= m2
π5,π6

=
λ

24g2 ∆δMs ,

m2
σ4π6

= m2
σ5π7

= m2
π4σ6

= m2
π5σ7

=
λ

24g2 ∆
(

Ml + Ms
)
− K

g
∆ . (38)

These form a 8 × 8 matrix and need numerical analyses for the determination of the spectra.
To obtain analytic insights, we consider the case where Ml , Ms ≪ µI for which the

mixing is neglected compared to the diagonal part. Combining the mass matrices with the
kinetic term, (we write m2

K = m2
4−7)[

p2
0 − m2

K + µ2
I 2iµI p0

− 2iµI p0 p2
0 − m2

K + µ2
I

]
∼

[
p2

0 − 3µ2
I 2iµI p0

− 2iµI p0 p2
0 − 3µ2

I

]
. (39)
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For kaons being the isodoublet, the energy reduction associated with the chemical potential
is weaker than in the pion, and hence the µI terms do not cancel. The excitation energies
manifestly depend on µI ,

ωK ∼ µI , 3µI . (40)

The same also holds for the scalar meson κ.

5. Quark Descriptions

Now, we include loops made of mean-field quark propagators. We keep only one loop
with the leading Nc contributions; quark loops for the vertex corrections are neglected. In
the counting of loops, the quark contributions appear as radiative “corrections” to the tree
level, but in fact the quark contributions should be regarded as leading-order contributions
at finite density [50]; indeed, as µI increases, the quark contributions dominate over
hadronic contributions and change the structure of gap equations and EOS.

5.1. The Structure of the Effective Potential

Beyond tree calculations, the parameters in the effective potential must be also reinter-
preted as bare parameters which are split into the renormalized parameters and counter
terms. First, we attach an index B to fields ϕ, q, mM, and so on, and factor out the renormal-
ized parameters and fields [50],

ϕB = Z1/2
ϕ ϕ , qB = Z1/2

q q ,

gB = Z̃gZ−1
q Z−1/2

ϕ g = Zgg ,

(m2
M)B = Z̃m2 Z−1

ϕ m2
M = Zm2 m2

M , (41)

λB = Z̃λZ−2
ϕ λ = Zλλ ,

(hl)B = Z̃hl
Z−1/2

ϕ h = Zhl
hl ,

(hs)B = Z̃hs Z−1/2
ϕ h = Zhs hs .

We also use δZi = Zi − 1 with i = ϕ, q, g, and so on. The Z̃i represents the radiative
corrections without those for the external lines. The loop corrections to the quark self-
energies and quark–meson vertices appear only through meson loops and hence

Zψ = 1 + O(1/Nc) , Z̃g = 1 + O(1/Nc) . (42)

Meanwhile, the meson self-energies and tadpole contain quark loops of O(Nc) which are
combined with g2 ∼ 1/Nc vertices to yield

Zϕ = 1 + O(g2Nc) , Z̃m2 = 1 + O(g2Nc) ,

Z̃h = 1 + O(g2Nc) , Z̃λ = 1 + O(g4Nc/λ) . (43)

and hence one must keep these corrections. It is useful to note that the relation

gBϕB = gϕ , Zg = Z−1/2
ϕ , (44)

in the large Nc limit. With the first relation, the dynamically generated quark mass and
gap are RG invariant. The second relation tells that the running of g2 can be studied by
examining the meson propagators.

The effective potential up to one-loop consists of three type of terms

Ω = Ω0 + Ωc.t. + Ωq . (45)
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The Ω0 takes the same form as in the tree level, but the parameters are to be interpreted as
renormalized ones. The Ωc.t. includes the counter terms originating from the splitting, e.g.,
λB = λ + δλ,

Ωc.t. = −δZϕ
2µ2

I
g2 ∆2 − δm2

M
2g2 (M2

l + ∆2) + δλ
24g4

(
M2

l + ∆2)2 − δhl
g Ml

− δm2
M

4g2 M2
s +

δλ
48g4 M4

s − δhs
2g Ms − δK

g3

(
M2

l + ∆2)Ms . (46)

The quark contribution is

Ωq = −2Nc

∫
p⃗

(
ξ+ + ξ− + Es

)
, (47)

where El =
√

p⃗2 + M2
l and Es =

√
p⃗2 + M2

s , and

ξ− = ξu = ξ d̄ =

√(
El − µI

)2
+ ∆2 , ξ+ = ξd = ξū =

√(
El + µI

)2
+ ∆2 . (48)

In the u, d-quark sector, quarks have the energy dispersion of the BCS type.
For small µI ≤ mπ/2 ≤ Ml , the pion condensate is absent. Then, the chemical

potential disappears from the Ωq,√(
El + µI

)2
+ ∆2 +

√(
El − µI

)2
+ ∆2 → (El + µI) + (El − µI) = 2El , (49)

reflecting the Sliver Blaze property that the isospin density nI begins to change only when
either µI ≥ Ml or ∆ ̸= 0 are satisfied. In the present case, ∆ ̸= 0 is the driving force.

The Ωq is UV divergent. This divergence is canceled by the counter terms from the
masses, couplings, and field normalization factor from the mesonic Lagrangian. We isolate
the divergences as [92]

Ωq = ΩR
l − 2Nc

∫
p⃗

[
2
√

E2
q + ∆2 +

µ2
I ∆2

(E2
q + ∆2 )3/2 + Es

]
(50)

where the twice-subtracted energy density, including only u, d-quark contributions, is

ΩR
l = −2Nc

∫
p

[
ξ+ + ξ− − 2

√
E2

q + ∆2 −
µ2

I ∆2

(E2
q + ∆2 )3/2

]
. (51)

The ΩR
l is UV finite and vanishing when µI = 0 and ∆ = 0. At a large density, the

subtracted energy scales as ΩR
l ≃ µ4

I , dominating the thermodynamic potential.
To understand the physical meaning of the subtracted potential ΩR

l at large µI , it is
instructive to consider the ∆ → 0 limit and decompose the integral into the El ≤ µI and
El ≥ µI domains. For El ≤ µI ,∫

p⃗
Θ(µI − El)

(
|El + µI |+ |El − µI | − 2El

)
= 2

∫
p⃗

Θ(µI − El)
(
µI − El

)
, (52)

and for EI ≥ µl , ∫
p⃗

Θ(El − µI)
(
|El + µI |+ |El − µI | − 2El

)
= 0 . (53)

Thus, ΩR
l at ∆ = 0 is nothing but the standard quasi-particle contributions to the thermo-

dynamic potential.
The divergent piece in Ωq is evaluated in the MS scheme,
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ΩUV
q =

2Nc

(4π)2 (M2
l + ∆2)2

[
1
ϵ
+

3
2
+ ln

Λ2

M2
l + ∆2

]
− 8Nc

(4π)2 µ2
I ∆2

[
1
ϵ
+ ln

Λ2

M2
l + ∆2

]
+

Nc

(4π)2 M4
s

[
1
ϵ
+

3
2
+ ln

Λ2

M2
s

]
, (54)

where Λ is the renormalization scale. In the MS scheme, the counter terms are used to
absorb only the 1/ϵ terms. Then, the counter terms are fixed as

δm2
M = 0 , δhl,s = 0 , δλ = − 48Ncg4

(4π)2ϵ
, δZϕ = − 4Ncg2

(4π)2ϵ
, δK = 0 . (55)

In our previous studies, we further discussed the on-mass-shell renormalization to tune
the pole positions of π and σ. We do this when we fix parameters of our model.

Putting everything together, the effective potential Ω = Ω0 + Ωc.t. + Ωq is reorganized as

Ω = Ωl + Ωs + Ωmix (56)

where the contributions from u, d-quarks are

Ωl = ΩR
l −

m2
M

2g2 (M2
l + ∆2) +

λ

24g4

(
M2

l + ∆2)2 − hl
g

Ml

+
2Nc

(4π)2 (M2
l + ∆2)2

[
3
2
− ln

M2
l + ∆2

M2
0

]
+ 2µ2

I ∆2
[
− 1

g2 +
4Nc

(4π)2 ln
M2

l + ∆2

M2
0

]
(57)

and from s-quarks

Ωs =
1
2

(
−

m2
M

2g2 M2
s +

λ

24g4 M4
s −

hs

g
Ms +

2Nc

(4π)2 M4
s

[
3
2
− ln

M2
s

M2
0

])
(58)

and the (u, d)-s quark mixing induced by the KMT interaction,

Ωmix = − K
g3

(
M2

l + ∆2)Ms . (59)

We note that, the strange quark sector shows the substantial µI dependence because of the
UA(1)-induced coupling, ∼∆2Ms; the Ms increases as ∆ does. The similar effects have been
studied in the context of color superconductivity [61–64].

The expression of Ω is the renormalization group (RG) invariant for a given field
values, provided that the renormalized masses, couplings, etc., follow the RG evolution.
We have set the renormalization scale Λ to be the vacuum light quark mass, M0 ≡ Mvac

l ,
and then the couplings, etc., should be interpreted as those evaluated at Λ = M0.

Finally, we mention that the expression is invalid for very large g2 ln
(

M2 + ∆2) [93].
As is well known, the one-loop effective potential is unbound for large field limits; there,
we need higher orders in loops.

5.2. The Structure of the Gap Equations

The quark loops have added the logarithmic terms, which change the structure of the
effective potential, especially at large µI . Let us see this assuming Ml , Ms ≪ µI . At the tree
level, the effective potential behaves as

Ωtree → −
2µ2

I
g2 ∆2 +

λ

24g4 ∆4 . (60)
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The gap equation for ∆ balances the first and second terms, so ∆tree ∼ µI inevitably follows.
Substituting back the solution ∆2

tree ∼ 24µ2
I g2/λ into the Ωtree, we find

Ωtree ∼ − 24
λ

µ4
I . (61)

The hadronic parameter λ entirely fixes the coefficient of the µ4
I term.

This trend changes after including quark contributions. We assume that the gap
equation leads to Ml,s, ∆ ≪ µI , and then check the consistency of this assumption (Figure 4).
The large µI behavior of Ω is

Ω → ΩR
l + 2µ2

I ∆2
[
− 1

g2 +
4Nc

(4π)2 ln
∆2

M2
0

]
, (62)

where the tree level terms, except µ2
I /g2 term, are suppressed compared to µ2

I and µ4
I terms.

We note that the logarithmic contribution changes the sign at M0; it becomes attractive
contributions for ∆ ≲ M0 but repulsive for ∆ ≳ M0. At large density, the latter stops the
growth of ∆ induced by the tree contribution before λ∆2 terms are activated.

It turns out that ΩR
l is well saturated by µ4

I terms and weakly depends on ∆. Then, the
gap equation is dominated by the coefficients of µ2

I term as

∂Ω
∂∆2 → 2µ2

I

[
− 1

g2 +
4Nc

(4π)2 +
4Nc

(4π)2 ln
∆2

M2
0

]
+ O(M2

0) ≃ 0 . (63)

This form with the logarithm is typical for low-dimensional systems; in the present case, the
Fermi surface plays the role for the dimensional reduction. Unlike the tree level solution, at
M0/µI → 0, the gap does not manifestly contain the µI dependence,

∆2 ≃ M2
0 e

−1+ 4π2

Ncg2 . (64)

The g dependence is a bit puzzling; the usual BCS-type calculations have the form of e−#/G

with a coupling constant G, meaning that a stronger G increases the size of the gap. In
contrast, a large g reduces the gap in our model. Our interpretation is the following: the
condensed mesons at the tree level, where quarks inside are neglected, overreact to the
increase in µI and become overpopulated as one can see from the scaling ∆tree ∼ µI . In
particular, the quark Pauli blocking is neglected. In light of this viewpoint, the explicit
inclusion of quarks with the coupling to mesons should cancel the unwanted contributions
and should temper the growth of ∆. This effect is stronger for a larger g. For a very small
g, apparently ∆ blows up, but then λ∆4 terms become dominant and the situation goes
back to the tree-level model or purely mesonic models. The philosophy here is in line with
ref. [94] that introduced ghosts to cancel double counted contributions.

Substituting back the ∆ into Ω, the thermodynamic potential at very large µI scales as

Ω ∼ ΩR
l − Nc

2π2 µ2
I ∆2 , (65)

Note that, in Ω at large µI , the mesonic parameters m2
M and λ no longer play important

roles, while the Yukawa coupling g is now hidden into the gap parameter ∆.
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Figure 4. The effective quark masses Ml , Ms and the BCS gap ∆ as functions of µI in the quark–meson
model with the set B in Table 1. The growth in the strange quark mass comes from the UA(1) anomaly
through which strange quarks couple to the pion condensate.

Table 1. The parameters in the quark–meson model (M0, Ms0 are given in GeV units). The pa-
rameters are chosen to reproduce the masses of the pseudo scalar nonet. We use the set B unless
otherwise stated.

Set M0 Ms0 g λ m2
M [ GeV2] hl [ GeV] hs [ GeV] K [ GeV]

A 0.27 0.50 3.0 38.1 −0.269 1.82 × 10−3 4.16 × 10−2 1.2
B 0.30 0.50 3.3 42.4 −0.298 1.84 × 10−3 4.19 × 10−2 1.6
C 0.33 0.50 3.6 60.0 −0.278 1.85 × 10−3 4.32 × 10−2 2.0

6. Meson Poles at One-Loop: Parameter Fixing

Now we have all expressions needed to discuss EOS, but still the parameters in
our model remain to be fixed. We use meson nonets in vacuum to fix our parameters.
Here, the meson self-energies induced by quark loops must be taken into account for the
consistency with the gap equations, Meanwhile, in this work, we do not address in-medium
self-energies to meson masses.

6.1. Meson Poles

As we have constructed the effective potential at one loop, we need to upgrade the
tree-level expressions of meson masses. This is essential to reproduce the masses of the
Goldstone bosons which arise at the minima of the effective potential at a given order of
approximation. The analyses go as in the Nambu–Jona–Lasinio model [95].

An inverse of the meson propagator with loops takes the form

−p2 + m2 = −p2 + m2
tree + Σq(m2) + Σc.t.(m2) , (66)

where Σq comes from quark loops, while Σc.t. from the counter terms. In the case of pions,
we have

−p2 + m2
π =

(
− m2

M +
λ

2g2 M2
0 − 2

K
g

Ms

)
+ Σq

π(m2
π)− p2δZϕ +

δλ

2g2 M2
0 . (67)

We obtained the counter terms from the tree-level bare parameters.
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It is convenient to define

Σq
f g(p2) = ig2

∫
l
trc,D

[
S f (l)iγ5Sg(p + l)iγ5

]
=

2g2Nc

(4π)2ϵ

[
M2

f + M2
g +

[
(M f − Mg)

2 − p2 ]]
+

2g2Nc

(4π)2

[
M2

f + M2
g + M2

f ln
Λ2

M2
f
+ M2

g ln
Λ2

M2
g
+

[
(M f − Mg)

2 − p2 ]B f g(p2)

]
, (68)

with a function including the Feynman parameter,

B f g(p2) ≡
∫ 1

0
dx ln

Λ2

(1 − x)M2
f + xM2

g − p2x(1 − x)
. (69)

This logarithm in the integral can be negative for p2 > (M f + Mg)2 and p2 < (M f − Mg)2.
(Actually, the latter regime does not occur for 0 ≤ x ≤ 1.) In such a case, the imaginary part
appears as ln(−y − iϵ) → ln |y| − iπ. The imaginary part describes the decay of mesons
into constituent quarks, but this is supposed to be an artifact of not taking account the
quark confinement. Realistically, a meson decays into mesons, and the width is typically
smaller than the mass, except for some scalar mesons. For simplicity, in this work, we
estimate a meson mass as the location where the real part becomes zero. Also, we discuss
the mixing between the flavor singlet and octet using the real part only.

Remember that we chose Λ = M0 for the effective potential, so we do the same in the
following. For the pseudoscalar channels,

Σq
π = 2Σq

ll , Σq
K = 2Σq

ls ,

Σq
00 =

2
Nf

(
2Σq

ll + Σq
ss
)

, Σq
88 =

2
Nf

(
Σq

ll + 2Σq
ss
)

, Σq
08 =

2
√

2
Nf

(
Σq

ll − Σq
ss
)

, (70)

Moreover, to obtain similar expressions for the scalar channel, we can simply replace
(M f − Mg)2 with (M f + Mg)2.

Let us see some examples. For pions

Σq
π(p2) =

4g2Nc

(4π)2ϵ

(
2M2

0 − p2 )+ 4g2Nc

(4π)2

(
2M2

0 − p2 Bll(m2
π)

)
. (71)

Combining this expression with the counter term Σc.t.
π , the UV divergence proportional

to M2
0 is canceled by the previously determined δλ. The divergence coupled to p2 can be

canceled by choosing

δZϕ = − 4g2Nc

(4π)2ϵ
. (72)

Below, we write Σ = Σq + Σc.t. for the renormalized self-energy. The pole condition for
pions is m2

π =
(
mtree

π

)2
+ Σπ(m2

π) with

Σπ(m2
π) =

4g2Nc

(4π)2

(
2M2

0 − m2
π Bll(m2

π)

)
. (73)

For kaons, the above chosen counter terms cancel the divergence in the kaon self-
energy, leaving the condition m2

K =
(
mtree

K
)2

+ ΣK(m2
K) with

ΣK(m2
K) =

4g2Nc

(4π)2

(
M2

0 + M2
s0 + M2

s0 ln
M2

0
M2

s0
+

[
(M0 − Ms0)

2 − m2
K
]
Bls(m2

K)

)
. (74)
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We do the same for 00, 88, and 08 channels, which are to be diagonalized to yield the η
and η′ spectra. The η and η′ masses are found by searching p2 satisfying

det

[
− p2 + (mtree

00 )2 + Σ00(p2) (mtree
08 )2 + Σ08(p2)

(mtree
80 )2 + Σ80(p2) − p2 + (mtree

88 )2 + Σ88(p2)

]
= 0 . (75)

The mixing is induced by the flavor breaking associated with Ml − Ms. It is worth men-
tioning that the mixing angle depends on the energy, not a constant [95].

6.2. Parameter Fixing

We have (g, m2
M, λ, K, hl , hs, M0, Ms0) for our parameters. We treat M0 and Ms0 as our

input parameters, and set

M0 = 0.3 GeV , Ms0 = 0.5 GeV . (76)

Next, we fix hl and hs so that the minima of the effective potential in vacuum are found at
Ml = M0 and Ms = Ms0,

∂Ω
∂Ml

∣∣∣∣
Ml=M0, Ms=Ms0

=
∂Ω

∂Ms

∣∣∣∣
Ml=M0, Ms=Ms0

= 0 . (77)

The leftover parameters are (g, m2
M, λ, K). We have four meson spectra (mπ , mK, mη , mη′) ≃

(0.14, 0.50, 0.55, 0.96) GeV, so the four parameters can be fixed. Here, we use the pseudo-
scalar mesons for the parameter fixing instead of using σ mesons since the nature of σ
mesons is more uncertain than the pseudo-scalar mesons. The results are summarized
in Tables 1 and 2. The σ and η′ masses are sensitive to the value of K; mσ is reduced,
while mη′ is enhanced by the anomaly. Here, we include the spectra of scalar mesons just
because we can compute them. As is well known, however, scalar mesons are not well
described by simple valence quark states and indeed the agreement between our model
and experimental results is not good especially for a0 mesons which, together with the
isosinglet f0(980), are often regarded as KK̄ molecules.

Table 2. The masses of the pseudo scalar and scalar nonets with the experimental masses indicated in
the parenthesis (experimentally, the σ and κ have the width of ∼500 MeV).

Set mπ(138) mK(496) mη(548) mη′(958) mσ(500∗) ma0(980) mκ(700∗)

A 0.14 0.50 0.52 0.97 0.51 0.67 0.75
B 0.14 0.50 0.54 0.97 0.54 0.73 0.80
C 0.14 0.50 0.55 0.95 0.64 0.81 0.88

7. Equations of State at Zero Temperature

We examine equations of state. Substituting the solutions of gap equations into Ω, the
thermodynamic potential is P = −Ω. The isospin density is

nI ≡
ñI
2

=
1
2

∂P
∂µI

. (78)

As we mentioned before, we define µI(= µu = −µd) in an unconventional way to simplify
the notation. For physical interpretation, we should use nI , rather than ñI , which is directly
derivable from the derivative of P. The energy density is ε = µI ñI − P.
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At low density, the condensate is driven by pions with I3 = 1; as far as isospin density
is saturated by those pions, one can interpret the isospin density as the pion density nI ≃ nπ .
A good measure to estimate the density where pions overlap is

noverlap
π ≡

(
4πr3

π

3

)−1

≃ 0.83 fm−3 ≃ 5.2n0 , (79)

where we introduced n0 = 0.16 fm−3 as a unit frequently used in nuclear physics. The
estimate utilizes the root-mean-square radius of a pion, rπ ≃ 0.66 fm, in vacuum [96–99].
The size of a pion is comparable to that of a nucleon; the nucleon charge root-mean-square
radius is ≃0.84 fm, while its mass radius based on the gravitational form factor [100] is
≃0.55 fm [101], or the “valence quark core radius” is ≃0.5 fm [102]. The relation between
µI and nI is shown in Figure 5. The overlap density noverlap

π is reached at a low chemical
potential µI ≃ 0.256 GeV.

A useful quantity characterizing the rapid stiffening is the sound speed. A matter
is called stiff (soft), i.e., P is large (small) at a given ε, and its variation is reflected in c2

s .
Writing the susceptibility as χ̃ = ∂2P/∂µ2

I , the sound speed is given by

c2
s =

dP
dε

∣∣∣∣
s=0

=
ñIdµI
µIdñI

=
ñI

µI χ̃I
. (80)

The result of the quark–meson model is shown in Figure 6. The c2
s grows quickly just after

the onset of the pion condensation, makes a peak before nI reaching noverlap
π , and slowly

relaxes to the conformal limit 1/3. The result is compared with the lattice results of Brandt
et al. [22] which have more focus on low density and those of Abbott et al. [21], which
study the global structure for a wider range of µI . The results are consistent. Later, we
delineate the behavior of c2

s at low and high densities from the microphysics viewpoint.
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0
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I
/2
n
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Abbott 48× 96

Abbott 64× 128

setB (mπ = 0.14GeV)

setB (mπ = 0.17GeV)

noverlap
π /n0

Brandt +

Figure 5. The isospin density nI/n0(= ñI/2n0) as a function of µI . The results of the quark–meson
model for mπ = 0.14 GeV and mπ = 0.17 GeV are compared with the lattice data by Brandt et al. [22]
and Abbott et al. [21], respectively. The overlap density noverlap

π ≃ 5.2n0 which is achieved at
µI ≃ 0.256 GeV is shown as a guide. The red and blue dotted curves are from the leader order
ChPT for mπ = 0.14 and 0.17 GeV, respectively.
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Recently, the trace anomaly of EOS has attracted attention [70,103–105]. It is one of
hot topics for forthcoming electron ion collider experiments which will explore the nucleon
structure in great detail. The trace anomaly normalized by 3ε [103],

∆tr ≡
⟨Tµ

µ ⟩
3ε

=
1
3
− P

ε
(81)

is a useful measure for the deviation from the conformal limit. The result is shown in
Figure 7. In the non-relativistic limit, P ≪ ε, the ∆tr = 1/3. In the conformal limit, ∆tr = 0.
When ∆tr < 0, there should be strong correlation effects. Below, we discuss the power
corrections as candidates to drive ∆tr to the negative value.

As a guide for the low-density behaviors, it is useful to quote the results from the
chiral perturbation theory (ChPT),

P = 2 f 2
πµ2

I

(
1 − m2

π

2µI

)4

, (82)

which leads to

nI =
ñI
2

= 2 f 2
πµI

[
1 −

(
mπ

2µI

)4]
, c2

s =
(2µI)

4 − m4
π

(2µI)4 + 3m4
π

. (83)

At large density, the sound speed asymptotically approaches c2
s = 1. Here, the scaling

ε ∼ n2
I holds; the system is as if it is dominated by repulsive two-body forces.
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0.9
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setB (mπ = 0.17GeV)

Abbott 48× 96

64× 128

Brandt +

Figure 6. The sound speed as a function of µI . The results of the quark–meson model for
mπ = 0.14 GeV and mπ = 0.17 GeV are compared with the lattice data by Brandt et al. [22] and
Abbott et al. [21], respectively. The conformal value c2

s = 1/3 and the ChPT results (dotted curves)
are also shown as guides.
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Figure 7. The trace anomaly ∆tr for the same setup as Figure 6. The conformal limit is ∆tr = 0.

7.1. High-Density Regime: Conformal Behaviors

Let us first consider the high-density regime in our model and the effective degrees of
freedom. In the conformal limit with no mass scale other than µI , the dimensional analyses
lead to

∂(P/µ4
I )

∂µI
= 0 → P =

ε

3
. (84)

This relation is approximately satisfied in the high-density limit, where the kinetic energy
dominates over mass and interaction energies. (Strictly speaking, there are self-energies
that do not necessarily die out at high energy; in QCD, the asymptotic freedom guarantees
the self-energies become weaker at high energy.)

The conformal limit by itself does not tell which degrees of freedom are relevant.
Indeed, supposing P ≃ aµ4

I , the conformal limit is obtained for whatever value of a; we
have to specify a to tell which degrees of freedom dominate. As we saw, the tree-level
pressure includes only mesonic degrees of freedom, and the one-loop pressure (dominated
by quark degrees of freedom) scales as

Ptree ∼ 24
λ

µ4
I , P1−loop ∼

Neff
f Nc

12π2 µ4
I , (85)

where µI = µu = −µd and we should substitute Neff
f = 2. In order for the former

to reproduce the latter, we need λ ≃ 474, which is unacceptably large. For Ptree, the
∆tree ∼ µI g/

√
λ plays an essential role for the conformal scaling, and its magnitude is

determined by details of interactions. In stark contrast, the conformal scaling of P1−loop is
determined by the number of quark degrees of freedom and is robust to the interactions.

7.2. High-Density Regime: Perturbative and Power Corrections

Next, we consider corrections to the conformal limit. The most frequently and rigor-
ously discussed is the perturbative corrections at the weak coupling regime. The perturba-
tive corrections modify the coefficient of µ4

I term by adding series of αs(Λ̄), where Λ̄ is the
renormalization scale to be set to the natural scale for a given problem. At large density,
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Λ̄ ∼ µI is the natural choice. The intrinsic scale of QCD, ΛQCD ≃ 200–300 MeV, appearing
only through αs, shows up in the form of ∼ln(µI/ΛQCD). To the one-loop β-function,

∂αs(µI)

∂ ln µI
= − 11Nc − 2Nf

24π
α2

s , Nf = 3 . (86)

This reduces P, nI , and c2
s from the conformal value. At asymptotic density, the c2

s ap-
proaches the conformal limit from below.

In addition, in QCD, there are power corrections in powers of ΛQCD/µI . This sort of
term cannot be expressed by powers of series of αs,

Λ1−loop
QCD ≃ µIe−2π/β0αs(µI) , β0 = 11 − 2Nf/3 . (87)

and hence is non-perturbative. For the momentum transfer of ∼ΛQCD, quarks are supposed
to strongly interact.

Actually, whether such soft interactions are important or not depends on the presence
of the color screening. If the screening is strong in the infrared, soft interactions are cut off.
In the case of the pion-condensed phase, the condensate is a color-singlet and produces a
gap for a quark–hole excitation. This suppresses the Debye and Meissner screening. Hence
the electric and magnetic color interactions can be as strong as in the vacuum until the
phase space factor ∼4πµ2

I overwhelms the suppression factor by the gap.
Adding the power corrections can change the qualitative behavior of c2

s [50,106–110].
In particular, the power corrections adding positive contributions to the pressure favors
the trend opposite to those from perturbative corrections, and hence can be thought of
a clear indicator for non-perturbative physics in the high-density domain. For a simple
parametrization [50]

P = a
(
µ4

I + c2∆2µ2
I
)
− B , (88)

with a, c2 > 0 being dimensionless constants and B included for normalization, we find

ñI = 2a
(
2µ3

I + c2∆2µI
)

, χ̃I = 2a
(
6µ2

I + c2∆2) , (89)

with which

c2
s =

2µ2
I + c2∆2

6µ2
I + c2∆2

=
1
3
+

2
3

c2∆2

6µ2
I + c2∆2

, (90)

varying between 1/3 and 1. In our quark–meson model a = Nc/6π2, c2 ≃ 3, and
∆ ≃ 0.25–0.3 GeV [50]. The power corrections of O(10%) to the pressure occurs when

3(∆/µI)
2 ∼ 0.1 → µI ∼ 1.6 GeV × ∆

0.3 GeV
, (91)

where the corrections increase c2
s as 0.333 → 0.344 for ∆ ≃ 0.3 GeV. The non-perturbative

effects would survive at a relatively high density of µI ∼ 1 GeV. These analyses, al-
though still crude, indicate that the convergence of αs expansion at high density, which
seems to be universal, may not be sufficient to judge the relevance/irrelevance of the
non-perturbative physics.

The lattice results for EOS by Abbott et al. [21] to µI ∼ 1.7 GeV (µI defined in our
work is a half of theirs) show qualitative deviation from perturbative QCD predictions.
One of the plausible sources is the power corrections from the ∼µ2

I ∆2 terms, where ∆
is non-analytic in the strong coupling constant gs. This indicates that non-perturbative
physics can survive to a very high density, even where αs(µI) is reasonably small [50].
Recently, ref. [21] used the deviation between the perturbative EOS and lattice results to
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estimate the size of the BCS gap in the weak coupling region µI ∈ [0.750, 1.625] GeV [20].
The expression used for the EOS is [52]

δP = P(∆)− P(∆ = 0) =
Nc

2π2 µ2
I ∆2

(
1 +

gs

6

)
. (92)

The lattice results show that ∆ increases toward the low-density region. Meanwhile, the
gap estimated by the weak coupling method is

∆ = b̃µI exp
[
− π2 + 4

16

]
exp

[
− 3π2

2gs

]
, b̃ = 512π4g−5

s , (93)

which is sensitive to the choice of the running gs(Λ̄). The estimates with Λ̄ = µI and 2µI
cover the range consistent with those estimated from the lattice results and Equation (92).
On the other hand, the µI dependence looks the opposite; the gap of Equation (93) decreases
toward the low-density region. We conjecture that the physics of soft gluons and quarks
enhances the gap and cures the discrepancy.

The power corrections also play important roles in the trace anomaly. In the parametriza-
tion Equation (88), the energy density is

ε = a
(
3µ4

I + c2∆2µ2
I
)
+ B , (94)

so that

⟨Tµ
µ ⟩ = ε − 3P = −2ac2∆2µ2

I + 4B . (95)

Remarkably, the power corrections yield negative contributions. Meanwhile, the nor-
malization (bag) constant measures the energy difference between the conformal and
non-perturbative vacuum and should be ∼Λ4

QCD and positive. Perturbative corrections
not written here also give positive contributions [50]. Hence, the negative trace anomaly
can be regarded as a good indicator for the importance of the non-perturbative physics in
dense matter.

7.3. Quark Saturation

Finally, we try to characterize EOS through quarks inside of pions. At sufficiently
low density, quarks should show up only as constituents of pions. Pion condensation
generates BCS gaps for quarks with which quark contributions can become finite even for
µI(= µu = −µd) < Ml ; see the structure of Equation (49). In the pion-condensed phase,
the occupation probability of u, d̄ quark states can be written as

fQ(p; nI) ≡ fu,d̄(p; nI) =
1
2

(
1 − El − µI√

(El − µI)2 + ∆2

)
, (96)

which becomes Θ(µI − El) for ∆ → 0. The behavior of fQ(p) as a function of p for various
nI is shown in Figure 8 for the parameter set B.

As quarks are bound to a compact object, the quark momentum distribution is broad
in momentum. In particular, the occupation probability at p = 0 is substantially smaller
than 1. As the density increases, the magnitude of fQ becomes larger. If we neglect the
interactions and the structural changes of pions, we would find the scaling

f id
Q (p; nI) ≡ nI

∂ fQ(p; nI)

∂nI

∣∣∣∣
nI=0

, (97)

where pions condense into the zero momentum state; each pion gives the same quark
contribution and hence simply scale as ∼nI . Obviously, extrapolating this expression
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would violate the Pauli exclusion principle for quarks, fQ(p) ≤ 1 for any p. We define the
“(pseudo-)quark-saturation” density nid

I as

1 = f id
Q (p = 0; nid

I ) , (98)

and use nid
I as the characteristic measure, where either pion interactions or quark saturation

constraints become important.
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Figure 8. The occupation probability fu,d̄(p) as a function of p for the parameter set B in Table 1.
Red curves represent curves for n0 increments, n0, 2n0, · · · while blue curves represent those for 5n0

increments. To 5n0, we also show thin light blue curves for 0.2n0 increments. The figure covers up to
nI = 20n0.

Figure 9 shows fQ(p = 0; nI) as a measure of the quark saturation. We also show the
f id
Q with dashed lines to examine nid

I . To examine how nid
I depends on the compactness,

we vary M0 to change the binding energy of a pion, 2M0 − mπ , while maintaining the
spectra of pseudo-scalar nonets within a reasonable range. Concretely, we compare the set
A-C in Table 1. With a larger M0, the nid

I is larger, as the pion is spatially more compact
and has a broader quark momentum distribution. For M0 = (0.27, 0.30, 0.33) GeV, we
find nid

I ≃ (2.2, 2.4, 2.6)n0, respectively. These densities are substantially smaller than the

noverlap
π ≃ 5.2n0.

In principle, by specifying fQ and gaps (Ml , ∆ , Ms) at a given µI , one can reconstruct
the corresponding EOS as

P(µI) =
∫ µI

0
dµ′nI(µ

′) =
∫ µI

0
dµ′

∫
p
∑

f

[
fQ(p; µ′)− fQ̄(p; µ′)

]
, (99)

and hence, the evolution of fQ (and fQ̄ for antiparticles) contains sufficient information to
study the EOS.

Shown in Figure 10 are the behaviors of Ml and ∆ at several densities and M0. For a
greater M0, the gap ∆ is naturally larger. As guides, we display nid

I using several vertical
lines. The general tendency is that, beyond nid

I , the gap becomes insensitive to µI , reflecting
that the gap equations are dominated by soft gluon and soft quark contributions. The
parameter set A-C leads to the gap of ∼0.23–0.28 GeV around µI ∼ 1 GeV. Hard gluon
contributions, which are omitted in this work, should further enhance the size of the gap
and introduce the stronger µI dependence, as it is sensitive to the phase space around the
Fermi surface.
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Figure 9. The occupation probability at zero momentum, fu,d̄(p = 0) at various nI/n0. With
the parameter sets A–C, we vary M0(= Mvac

u,d ) to change the “binding energies” for quarks
to form pions; a larger M0 has the stronger binding ∼2M0 − mπ and leads to a more spa-
tially compact state. The dashed curves are a linear extrapolation of the low-density behavior
f id
u,d̄(nI) ≡ nI∂ fu,d̄(p = 0)/∂nI

∣∣
nI=0, which characterizes the fu,d̄ for non-interacting pions. We also

show noverlap
π as a guide.

Finally, in Figure 11 we examine the sound speed for varying M0. For smaller M0,
the rising of c2

s occurs at a lower density. This is natural, as pions are less compact ob-
jects. Increasing M0 delays the rising of c2

s . The structure of a hadron, its valence core
size, and quantum fluctuations around it [111] have direct relevance to the stiffening of
matter. The relation between the baryon structure and nuclear matter has been discussed
in refs. [112–115].
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Figure 10. Behaviors of Ml (dashed lines) and ∆ (solid lines) for the same parameter set as Figure 9.
The vertical lines with various colors represent the nid

I defined in Equation (98) for the set A, B, and C.
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Figure 11. The sound speed as a function of nI/n0 for the same parameter set as Figure 9. When
pions are more spatially compact (2M0 −mπ is larger), the repulsion among pions or quark saturation
effects set in at larger densities.

8. Summary

In this paper, we study the EOS of isospin QCD and its relationship to the microphysics.
We used a quark–meson model that interpolates the hadronic and quark sector at micro-
scopic level. While it is difficult for such model studies to avoid model dependence to some
degree, instead they can clarify the microphysics which is manifestly taken into account by
studies based on the interpolation of ChPT and perturbative computations supplemented
by astrophysical constraints. Among several effective models such as Nambu–Jona–Lasinio-
type models, the quark–meson model is more useful, as it is renormalizable so that it can
be used to cover from low to high densities, at least formally. Although the model does not
cover the aspects of QCD caused by hard gluons, it captures some aspects of the physics
caused by soft gluons in a parametrized manner.

One of the important issues in dense QCD is how non-perturbative effects relevant
in hadron physics die out. Recent lattice results for EOS [21] to µI ∼ 1.7 GeV (µI defined
in our work is a half of theirs) indicate the importance of the power corrections from the
∼µ2

I ∆2 terms with ∆ being non-analytic in the QCD coupling constant gs, even at high
density, where αs(µI) is reasonably small [50]. Concerning the size of the gap, there are
several questions to be answered. The first question is at which density the evaluation of
the gap is closed within the weak coupling regime; in the weak coupling estimates, we
assume that hard momentum transfer processes dominate the gap equation because of
the large phase space. This mechanism is sensitive to the density, and at low density, soft
gluons should become important. How the transition between these two regimes occurs
is directly related to the reliability of various estimates. The second question is to what
extent the extrapolation from isospin QCD to QCD at finite baryon density can be valid.
The mechanism for the emergence of the BCS gap is the diquark condensates in the color
superconductivity. The typical estimate for the gap, mostly based on the weak coupling
picture, is ∆ ≲ 100 MeV; the coefficient of 1/gs in the weak coupling expression of gap is
larger than in the isospin QCD so that the gap is smaller. Analyses predicting a greater gap
are mostly based on effective models constrained by hadron physics. It is important to fill
the gap between the two regimes.

The quarks in pions seem important before reaching the overlap density for pions,
noverlap

π ≃ 5.2n0, which is inferred from the size of a pion in vacuum. Even if we neglect
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the structural change of pions such as swelling or dissociation, we cannot go much beyond
∼0.5noverlap

π ≃ 2.6n0 neglecting constraints from the quark Pauli blocking. The sound
speed peak is also found around ∼0.5noverlap

π . If the quark exchange interactions (or meson
exchange) among pions effectively increase the size of pions, quark states at low momenta
become saturated more quickly, inducing the Pauli blocking effects even earlier. The quark
Pauli blocking near hadronic matter should also give insights on many-body forces among
hadrons. In the context of neutron star EOS, it is typical to utilize two- and three-body
repulsion to satisfy the two-solar mass constraints. But in such descriptions, there always
remains a question of how to handle the convergence of many-body forces. We need an
organizing principle. We guess that the quark saturation effects do the job.

Analyses in this paper left several important problems. In the methodology, we should
improve the one-loop results. Another important topic is the meson spectra at finite density,
including quark loops. We have computed the meson spectra in vacuum for the parameter
fixing but have not performed analyses at finite density. The latter is necessary to answer
to interesting questions such as how mesons dissociate and change the structure. How
mesons or quarks in medium contribute to the entropy is also important to understand the
color confinement at finite density, a question originally posed in the quarkyonic matter
hypothesis [116]. The analyses toward this issue are in progress.
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