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Abstract: The last few decades have provided abundant evidence for physics beyond the two standard
models of particle physics and cosmology. As is now known, the by far largest part of our universe’s
matter/energy content lies in the ‘dark’, and consists of dark energy and dark matter. Despite inten-
sive efforts on the experimental as well as the theoretical side, the origins of both are still completely
unknown. Screened scalar fields have been hypothesized as potential candidates for dark energy or
dark matter. Among these, some of the most prominent models are the chameleon, symmetron, and
environment-dependent dilaton. In this article, we present a summary containing the most recent
experimental constraints on the parameters of these three models. For this, experimental results have
been employed from the qBOUNCE collaboration, neutron interferometry, and Lunar Laser Ranging
(LLR), among others. In addition, constraints are forecast for the Casimir and Non-Newtonian force
Experiment (CANNEX). Combining these results with previous ones, this article collects the most
up-to-date constraints on the three considered screened scalar field models.

Keywords: dark energy; screened scalar fields; modified gravity; tabletop-experiments

1. Introduction
Dark energy (DE) and dark matter (DM) pose some of modern physics’ greatest open

problems. Modifications of general relativity (GR) in the form of scalar-tensor theories [1],
in which a scalar field is coupled to the gravitational metric tensor in the matter action, are
frequently employed in attempts to solve these conundrums [2,3]. While many of these
theories lead to a universal coupling between the scalar field and the trace of the energy-
momentum tensor of (Standard Model) matter and, consequently, a fifth fundamental
force of Nature, such emergent effects are already tightly constrained within our Solar
System [4–6].

Screening mechanisms offer phenomenologically appealing ways for circumventing
these constraints by rendering scalar fifth forces feeble in matter at least as dense as
our Solar System. In turn, in environments that typically correspond to comparatively
low matter densities, for example, on the edges of galaxies or galaxy clusters, screening
mechanisms allow fifth forces to potentially even exceed gravity’s strength. Consequently,
scalar fifth forces could themselves give rise to observable phenomena at such scales and,
for example, serve as potential alternatives to particle DM [7–10]. A zoo of scalar field
models with screening mechanisms have been devised in recent decades. Among those
so-called screened scalar fields, some of the most prominent ones are chameleons [11,12],
symmetrons [13–20], environment-dependent dilatons [15,18,21–25] and galileons [26–28].
In recent years, a large number of high-precision experiments and observations have been
employed to constrain the parameter spaces of several of these screened scalar field models,
see, e.g., Refs. [29–61]. In addition, the first investigations of screened scalars within
a quantum field theoretical framework have been carried out [62–66], and it has been
suggested to study spacetimes with screened scalar-tensor theories in analogue gravity
simulations [67].

In this article, we present an overview of existing experimental and observational
constraints on chameleon, symmetron and environment-dependent dilaton models. For
this, we add the most recent constraints on chameleons [53,62] and symmetrons [55,58]
to the summarized data from Ref. [30], and create plots combining constraints obtained
from gravity resonance spectroscopy (qBOUNCE), Lunar Laser Ranging (LLR) [57] and
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neutron interferometry [58] for the environment-dependent dilaton. In addition, we present
projected constraints for all three models expected to be obtained from the upcoming
Casimir and Non-Newtonian force Experiment (CANNEX) [61,68].

In addition to providing a brief review of existing constraints, this article updates
the qBOUNCE constraints from Refs. [33,35,46,49] for the symmetron and chameleon mod-
els. Previous analyses assumed an ideal vacuum density of ρV = 0, exclusively used
perturbation theory to compute the energy shifts that a screened scalar field would induce
on a neutron bouncing in a gravitational field (which is a good approximation for the
chameleon field [69] but not for the symmetron field), and neglected parameter regions
for which the symmetron field is in its symmetry-broken phase, even inside the neutron
mirror. This updated analysis employs the actual experimental residual gas density of
ρV = 2.32 × 10−7 kg/m3 in the vacuum chamber. For parameter regions where perturba-
tion theory is inaccurate, a non-perturbative numerical treatment is used. Additionally, the
symmetry-broken phase of the neutron is considered, as detailed in Ref. [50]. Analogous
to Ref. [57], assumptions necessary for the analysis as, e.g., neglecting higher order cou-
plings between scalar field and matter as well as neglecting the influence of the vacuum
chamber on the scalar field have been properly considered. In order to physically justify
these assumptions, all derived constraints have been cut off wherever this is required. As
demonstrated in Appendix A, each of these improvements corrects the previous symmetron
constraints by several orders of magnitude.

The article is organized as follows. In Section 2, we provide the required theoretical
background on the considered screened scalar field models, while in Section 3, our way
of obtaining the constraints is described. Next, in Sections 4.1–4.3, up-to-date constraints
on the chameleon, the symmetron and the environment-dependent dilaton models are
represented, respectively. Finally, in Section 5, we draw our conclusions.

2. Theoretical Background
In this article, we only discuss screened scalar field models with canonical kinetic

terms in the Einstein frame in contrast to galileon models that require additional kinetic
terms for implementing their screening via the Vainshtein mechanism [70]. Consequently,
all considered models for a scalar ϕ can be described by the following action

S =
∫

d4x
√
−g

(
−

m2
pl

2
R +

1
2

∂µϕ ∂µϕ − V(ϕ)

)
+
∫

d4x
√
−g̃LSM(g̃µν, ψi) , (1)

where mpl is the reduced Planck mass, gµν the Einstein frame metric, g̃µν the Jordan frame
metric, V(ϕ) denotes the scalar’s self-interaction potential characterizing each individual
screened scalar field model (see Table 1) and LSM the Lagrangian describing the Standard
Model (SM) fields ψi. The conformal transformation between Jordan and Einstein frame
is given by g̃µν = A2(ϕ)gµν, where the form of the conformal factor A(ϕ) is determined
by the particular scalar field model (see Table 1). In the Einstein frame, this leads to a
universal coupling between scalar ϕ and the trace of the energy-momentum tensor Tµν. In
turn, this coupling leads to a fifth force of Nature, which, for a test particle with mass m in
the non-relativistic limit is given by

fϕ = −m∇lnA(ϕ)

= −β(ϕ)
m

mpl
∇ϕ , (2)

with the dimensionless coupling parameter

β(ϕ) := mpl
d lnA

dϕ
. (3)

If the SM fields ψi correspond to non-relativistic matter with density ρ, we can use
Tµ

µ = ρ. In this case, the scalar is subject to an effective potential

Veff(ϕ; ρ) := V(ϕ) + ρA(ϕ) , (4)
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which can be derived from Equation (1). Consequently, the equation of motion for the
scalar ϕ is given by

2ϕ = −Veff,ϕ(ϕ; ρ) . (5)

Depending on the different possible choices for V(ϕ) and A(ϕ), as given in Table 1, the
effective potential in Equation (4) gives rise to the chameleon mechanism [11,12] or the
Damour–Polyakov mechanism [15]. While the former is characteristic for chameleon
models, symmetrons are subject to the latter. Initially, the environment-dependent dilaton
was also thought to be mainly screened by the Damour–Polyakov mechanism, but in
Ref. [57], it was demonstrated that for some parts of the dilaton parameter space the
chameleon mechanism is actually dominant concerning the fifth force screening.

Table 1. The three considered scalar field models characterized by their particular forms of the
potential V(ϕ) and the conformal factor A(ϕ). Chameleon: the different chameleon models are distin-
guished by the parameter n ∈ Z+ ∪ 2Z− \ {−2}. Λ has the dimension of a mass and parameterizes
the self-interaction of the chameleon. The mass scale Mc describes the chameleon’s coupling to matter.
Symmetron: µ is a tachyonic mass and λS is a dimensionless self-coupling parameter. M is a mass
scale describing the symmetron coupling to matter. Dilaton: The environment-dependent dilaton
is characterized by a constant energy density V0, a dimensionless self-coupling parameter λ, and a
dimensionless constant A2 parameterizing the coupling to matter.

Scalar Field V(ϕ) A(ϕ)

Chameleon
Λn+4

ϕn eϕ/Mc

Symmetron −µ2

2
ϕ2 +

λS
4

ϕ4 1 +
ϕ2

2M2

Dilaton V0 e−λϕ/mpl 1 + A2
ϕ2

2m2
pl

3. Constraint Calculation
In this section, further details concerning the newly computed or re-analyzed con-

straints presented in this article are provided. Wherever necessary, numerical algorithms
have been employed to solve the scalar field equations of motion and, if applicable, the
stationary Schrödinger equation. Refs. [58,59] provide further details concerning these
algorithms. Herein, new results or re-analyses are provided for the qBOUNCE, neutron
interferometry and CANNEX laboratory experiments as well as Lunar Laser Ranging. In
the subsequent subsections, further details concerning the constraints from each of these
experiments are presented. In order to justify the neglect of any higher order couplings, the
analysis herein is restricted to

A(ϕ)− 1 ≪ 1 , (6)

which requires excluding those regions of the constraint plots that do not fulfill this as-
sumption. For qBOUNCE and CANNEX, only interaction ranges in vacuum of up to 1 mm
are considered, in which case any influence from the vacuum chamber can be neglected.
Furthermore, for CANNEX, parameters for which the field does not decay to its potential
minimum inside the upper mirror are excluded, while for neutron interferometry an inter-
action range of maximally 0.25 mm within the cylindrical walls enclosing the chambers
through which the superposed neutron beams traverse is considered. The latter is required
to ensure that the minimum value ϕM of the scalar field within the walls can be used as a
boundary condition.

3.1. qBOUNCE Constraints
The qBOUNCE experiment is a realization of gravity resonance spectroscopy [33,71–73].

It exploits the fact that ultracold neutrons, i.e., neutrons with very small kinetic energies,
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are totally reflected from most materials. In Earth’s gravity, the quantum theoretical energy
levels of a neutron are discrete and non-equidistant. This enables the realization of spec-
troscopy by inducing transitions between different energy levels. The very high precision
enables effective searches for any hypothetical fifth forces. Specifically, measurements
of the transition energies ∆E13 := E3 − E1 and ∆E14 := E4 − E1 have been carried out.
The experimentally measured values are ∆E13 = (1.9222 ± 0.0054) peV (expected value
1.9145 peV) and ∆E14 = (2.6874 ± 0.0074) peV (expected value 2.676 peV), consistent with
the transition energies expected from a Newtonian gravitational potential alone [46]. If it
exists, a hypothetical scalar field would induce an additional potential.

qBOUNCE’s experimental geometry, as realized in Ref. [46], can be approximated to
an excellent degree by an infinitely extended single mirror (see, e.g., Refs. [43,50]), and
the individual scalar field profiles computed by numerically solving the corresponding
equations of motion (5). The transition energies are computed numerically by solving the
stationary Schrödinger equation including Newtonian and scalar field effects

− 1
2mn

d2Ψn(z)
dz2 + U(z)Ψn(z) = EnΨn(z) , (7)

where mn is the mass of the neutron, and the potential is given by

U(z) = mngz + UX(z) ,

UX(z) = QXmn
(

AX(ϕ)− 1
)

, (8)

with X ∈ {C, S, D} (as abbreviations for chameleon, symmetron and dilaton, respectively)
and the screening charge QX , which quantifies the amount of screening of the neutron, see
Appendix C. Furthermore, the same relations as in Ref. [58] have been employed herein.

Previous publications [46,49,57] explored two distinct approximations for the coupling
of neutrons to screened scalar fields, both treating the neutron as a classical sphere. In the
Fermi screening approximation, the neutron’s radius is set to R = 0.5 fm, a value grounded
in QCD scattering data. Conversely, the micron screening approximation sets the neutron’s
radius at 5.9 µm derived from its wavefunction’s vertical extent. In this investigation, we
exclusively adhere to the Fermi screening approximation. Notably, due to the absence of a
well-defined micron screening approximation for neutron interferometry, such an approach
becomes incomparable to other neutron experiments. Moreover, the wave function of
neither experiment accurately conforms to a spherical model. Additionally, Fermi screening
constraints are more conservative compared to micron screening constraints, resulting in
notably weaker constraints. Consequently, the derived constraints may underestimate
the true constraints. Further theoretical advancements are thus needed to determine the
genuine coupling of neutrons to screened scalar fields.

Scalar field parameters are constrained, which would lead to a deviation of at least
two standard deviations from the measured values, i.e.,

∆E13 ̸∈ (1.9114, 1.933) peV ,
or

∆E14 ̸∈ (2.6726, 2.7022) peV . (9)

The current constraint criterion fails to account for correlations among ∆E13, ∆E14 and
the scalar field parameters under scrutiny. Due to persisting theoretical uncertainties
in energy shift predictions, notably attributable to the screening charge approximation,
conducting a rigorous statistical analysis is presently unfeasible. However, it has been
carefully checked that this simplified constraint criterion is a very good approximation to a
more rigorous χ2-analysis (see Appendix A.2), and is hence employed at the current level
of theoretical description.

3.2. Neutron Interferometry Constraints
A neutron interferometer uses the wave nature of neutrons for performing interfer-

ometric measurements [73–75]. Specifically, the path of a single propagating neutron is
split into a superposition of two macroscopically separated beams before these paths are
recombined and the neutron is finally detected. Each beam passes through a cylindrical
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chamber, one of which, denoted “air”, is filled with air of ambient density to suppress the
field, while the other, denoted “vacuum”, actually contains helium with low pressure. In
the latter, a scalar field typically takes on a larger field value than in the other chamber
filled with air. If a scalar field indeed exists, the neutron would experience a different phase
shift in each of the paths which, in the semi-classical limit, is given by (see, e.g., Ref. [58]):

δφX;P(r) = −mn

k0

L/2∫
−L/2

UX;P(r, z) dz , (10)

with X ∈ {C, S, D}, k0 being the wave number of the neutron, r the radius from the center
at which the neutron beam propagates through the chamber, L the length of the chamber,
UX;P(r, z) = QXmn

(
AX(ϕ) − AX(ϕAir)

)
the scalar field potential in the chamber with

pressure P, and the z-integration extending over the classical flight path (CFP) inside the
corresponding chamber.

Experimentally, the following two measurement modes have been used to constrain
scalar field parameters:
1. Profile mode

In this mode, the following phase shift

∆φX;P = δφX;P(0)− δφX;P(0.015 m) , (11)

is evaluated for both chambers, with the vacuum chamber having its pressure at
10−4 mbar, which corresponds to the lowest pressure measured in the experiment.
The experiment actually measured

α := ∆φX;Vacuum − ∆φX;Air < 0 . (12)

This quantity is negative, since the potential is more suppressed close to the chamber
walls and due to |∆φX;Air| < |∆φX;Vacuum|. The experiment constrains

α < −3.55◦ , (13)

as will be further detailed in Appendix B.1.
2. Pressure mode

In this mode, the following quantity is measured instead

γ := δφX;P0(0)− δφX;P1(0) < 0 , (14)

with a vacuum pressure of P0 = 2 × 10−4 mbar and a reference pressure of
P1 = 10−2 mbar. Scalar field parameters are constrained if

γ < −5.44◦ , (15)

as is detailed in Appendix B.2.
Further details on the specific experimental setup used to obtain the constraints in the

present article can be found in Ref. [58].

3.3. Computing Observables for Lunar Laser Ranging
Lunar Laser Ranging (LLR) allows for the measurement of the Moon’s orbit with high

precision and consequently tests general relativity, as well as potential deviations from
it; for example, due to the presence of a scalar fifth force [76]. For this, the Earth–Moon
distance is measured by firing a laser beam at the retroreflectors that were installed on the
Moon’s surface during the Apollo missions and detecting the reflection back on Earth. The
propagation time of the laser pulse during its travel from Earth to Moon and back provides
the corresponding distance to high precision. For previous investigations employing LLR
in the context of symmetron and chameleon fields, see Refs. [47,77,78].
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The measured value for violations of the equivalence principle is [79]

δem ≃
aϕ♁ − aϕ$

aG
= (−3 ± 5)× 10−14 , (16)

where aϕ♁ and aϕ$ refer to the scalar field induced accelerations of the Earth and Moon
towards the Sun, whereas aG is the regular Newtonian acceleration towards the Sun. For
the constraint plots in this article, parameters are constrained, for which the scalar field
contribution leads to at least a 2σ-deviation of the measured value corresponding to

δem ̸∈ (−1.3 × 10−13, 7 × 10−14) . (17)

The perihelion precession of the Moon has been computed, e.g., in Ref. [80], and leads to
parameter constraints given by [5]∣∣∣∣ δΩ

Ω

∣∣∣∣ ≃ R2

GM♁

∣∣∣∣δ f (R) +
R
2

δ f ′(R)
∣∣∣∣ ≤ 1.6 × 10−11 , (18)

where R is the maximum Earth–Moon separation and use has been made of

δem ≃ −
(Q♁ −Q$)

aG

dA(ϕ)

dr

∣∣∣∣
r=1 AU

,

δ f (r) ≃ Q$
dA(ϕ)

dr
. (19)

3.4. Computing the Pressure in the CANNEX Experiment
Among the high-precision experiments is the Casimir and Non-Newtonian force

Experiment (CANNEX), which has successfully completed its proof-of-principle phase
and will soon commence operation [61,68]. It is the first experiment designed to measure
the Casimir force employing two plane parallel plates. Due to this special geometry,
interfacial as well as gravity-like forces are maximized leading to increased sensitivity. This
experiment allows to probe a wide range of dark sector forces, Casimir forces in and out of
thermal equilibrium as well as gravity.

CANNEX measures the pressure

P(d) =
ρM

ρM − ρV

(
Veff(ϕV , ρV)− Veff(ϕ0(d), ρV)

)
, (20)

where ρM and ρV are the densities of the plates and of the surrounding vacuum, d is the
distance between both plates and ϕ0(d) is the value of the scalar field in the middle between
both plates, as well as the pressure gradient

∂dP(d) ≃ P(d + δ)− P(d − δ)

2δ
. (21)

The latter approximation holds for small enough δ. The sensitivity of these measurements
at one standard deviation (1σ) have already been analyzed in detail as function of d in
Ref. [68]. Herein, parameter constraints are derived for

|P(d)| > 2σ(d) , or |∂dP(d)| > 2σ(d) . (22)

For the derivation of prospective constraints, it has been used that the plate separation
and vacuum density can be varied between 3 µm < d < 30 µm and
5.3 × 10−12 kg/m3 < ρV < 2.6 kg/m3, respectively. More details about this experiment
can be found in Ref. [57].

4. Results
This section provides succinct discussions of the obtained constraints for the chameleon,

symmetron and dilaton model.
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4.1. Chameleon Constraints
In Figure 1, all currently available chameleon constraints on the parameters n and Mc

for Λ being set to the DE scale of 2.4 meV are shown, as well as those on the parameters Λ
and Mc for the case n = 1.

Figure 1. Constraints on the parameter space of chameleon models based on the review [30] and
including results from quantum Casimir pressure [62], levitated force sensor measurements [53], atom
interferometry [81], and, for qBOUNCE and CANNEX (the last only prospective), the analysis made in
this article. (a) Here, the parameter Λ has been fixed to the DE scale of 2.4 meV. The blue area shows
the combined prospective constraints of pressure and pressure gradient measurements on chameleon
interactions resulting from CANNEX. qBOUNCE and neutron interferometry can set no constraints.
This figure was adapted from Ref. [61]. (b) The blue area shows the prospective CANNEX constraints
for the chameleon model with n = 1, which are expected to fully overlap with already existing
constraints. Constraints from qBOUNCE are depicted in the small dark red area that overlaps with
atomic measurements and CANNEX. The strong discrepancy of the computed qBOUNCE constraints
in this work and previous constraints obtained in Refs. [33,35] is further elucidated in Appendix C.

For this, the analytically exact solutions from Ref. [40] are used to compute the prospective
CANNEX constraints, while the one-mirror solution for qBOUNCE is computed numerically.

Our analysis shows that qBOUNCE has set ‘weak’ constraints for n = 1, but no con-
straints for Λ = 2.4 meV and small positive n. The large discrepancy to previous chameleon
constraints published in Refs. [33,35] are primarily rooted in a different definition of the
screening charge, further elaborated on in Appendix C. For CANNEX, our analysis predicts
constraints both for n = 1 as well as for other small values of n if Λ = 2.4 meV. However,
constraints on parts of the parameter space that were not previously constrained by other
experiments can only be obtained in the latter case. Neutron interferometry is currently
not capable of producing new constraints for the cases considered in Figure 1. A static
chameleon field always fulfills the inequality

ϕM ≤ ϕ(x) ≤ ϕV . (23)

The quantity

δmax φC := QC
m2

nL
k0Mc

max{(|ϕV − ϕAir|), (|ϕM − ϕAir|)} , (24)

where L = 9.4 cm, can be computed analytically and used to bound the largest expected
phase shift. It should be noted that ∣∣α∣∣ ≤ 4δmax φC , (25)
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as well as

|γ| ≤ 2δmax φC . (26)

Over all unconstrained parts of the parameter space, one has

4δmax φC ≪ 1◦ . (27)

Consequently, no new constraints can be obtained from neutron interferometry. Obtained
constraints would be many orders of magnitude ‘weaker’ than existing constraints, render-
ing a more detailed analysis for this experiment futile in the case of chameleons.

4.2. Symmetron Constraints
All existing constraints on the symmetron model derived from tabletop experiments

are depicted in Figure 2. Notably, astrophysical experiments are unable to impose con-
straints on the µ values discussed in this article. For the re-analysis of the qBOUNCE con-
straints originally presented in Refs. [46,49], the analytically exact solutions of Refs. [43,50]
are employed. However, for the prospective CANNEX constraints, the two mirror solution
is computed by solving the differential equation numerically. The constraints are based on
the most recent analysis of CANNEX in Ref. [61]. Constraints from neutron interferometry
are based on Ref. [58]. In Appendix A.1, we delineate how the newly computed symmetron
constraints compare to those previously derived in Ref. [46], elucidating the impact of each
innovation on the resulting constraints.

Figure 2. Constraints on the parameter space of the symmetron model for different values of the
tachyonic mass µ are depicted based on the review [30], containing Eöt-Wash results [82] and the atom
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interferometry analysis from Ref. [81]; investigations of hydrogen, muonium and the electron
(g-2) [55]; and our new analysis for qBOUNCE, neutron interferometry and CANNEX (the last only
prospective). (a) Most table-top experiments are sensitive to the µ values displayed here since the
symmetron range is close to 1 mm. (b) CANNEX is expected to lead to dominant constraints, since the
range is approximately 1 µm, which is close to the plate separation. Eöt-Wash and atom interferometry
are currently not able to set constraints for these values of µ. (c) Only some quantum experiments can
still set constraints for these interaction ranges. (d) For these values of µ, the screening of nucleons is
strong enough that they reach their limit for probing symmetrons, which affects the qBOUNCE and
hydrogen constraints. In contrast, Ref. [55] argues that muonium is always unscreened, due to its
composition of effectively point-like particles, and can hence still set substantial constraints.

4.3. Dilaton Constraints
All existing constraints on the environment-dependent dilaton model were originally

obtained in Refs. [57,58], and are based on experimental results from qBOUNCE, LLR,
and neutron interferometry. Prospective constraints for CANNEX were also presented in
Ref. [57]. A combined summary of these constraints can be found in Figure 3.

Figure 3. Re-computed combined constraints from Refs. [57,58] on the parameters of the environment-
dependent dilaton are presented. The interaction range of the dilaton with log10(V0/MeV4) = 1
is plotted for two different vacuum densities, the 1 µm and 1 AU contours correspond to
ρV = 2.32 × 10−7 kg/m3 (qBOUNCE) and ρV = 1.67 × 10−20 kg/m3 (interplanetary medium), respec-
tively. (a) The constraint areas shift towards lower values of λ as V0 increases without altering their
shape. This phenomenon occurs because the fifth force effectively relies on the product of V0 and λ

rather than their individual values in this regime. (b) The constraint areas exhibit systematic shifts
and cuts, as illustrated by the indicated arrows. This figure has been adapted from Ref. [57].

5. Conclusions
In this article, the most recent experimental constraints on the parameter spaces of

some of the most popular screened scalar field models are summarized, i.e., the chameleon,
symmetron and environment-dependent dilaton. Among others, experimental results from
the qBOUNCE collaboration, neutron interferometry, and LLR have been employed. In
addition, future constraints for CANNEX are predicted. The results herein collect the most
up-to-date constraints on the considered screened scalar field models. Furthermore, several
improvements to previously obtained constraints have been made. In some cases, this led
to deviations by several orders of magnitude compared to previously obtained results.
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Appendix A. Additional Information on qBOUNCEqBOUNCEqBOUNCE Constraints
In this section, a detailed analysis concerning all improvements in deriving symmetron

constraints with respect to earlier investigations is provided, as well as confirmations that a
χ2-data analysis at the current level of theoretical description can safely be neglected.

Appendix A.1. Comparison of Previous and New qBOUNCE Analysis
Figure A1 demonstrates a substantial deviation between the previous analyses from

Ref. [49] and the new enhanced analyses provided herein. Each enhancement, such as con-
sidering the real finite vacuum density, parameter regions for which the symmetron is in its
symmetry-broken phase inside the mirror and employing non-perturbative methodologies
for energy computation, rectifies the analysis significantly.

Figure A1. Comparison between qBOUNCE constraints obtained in Jenke et al., 2021 Ref. [49] and the
constraints computed herein. (a) The symmetron parameter µ has been set to 0.1 eV. Left of line A, no
symmetron solutions exist, since the symmetron is in its symmetric phase inside the vacuum as well
as mirror regions. Right of line B, the symmetron is in its symmetry-broken phase inside the mirror.
(b) Here, µ has been set to 1 keV, a value for which no constraints have been obtained in Jenke et al.,
2021 Ref. [49].

It is worth noting that according to perturbation theory, qBOUNCE struggles to effec-
tively constrain the symmetron field for µ-values exceeding 10 eV. However, a numeri-
cal solution of the Schrödinger equation reveals significant constraints achievable up to
µ = 0.1 MeV. This notable discrepancy arises because in perturbation theory energy shifts
are calculated by employing the unperturbed wave function, which extends approximately
100 µm, according to

δEpq =
∫ ∞

−∞
dz UX(z)

(∣∣∣Ψ(0)
p (z)

∣∣∣2 − ∣∣∣Ψ(0)
q (z)

∣∣∣2). (A1)

At µ = 10 eV, the vacuum interaction range of the symmetron field is approximately 0.1 µm.
Consequently, the field quickly reaches its vacuum expectation value (VEV), causing the
unperturbed wave function to perceive an almost constant potential shift, aside from the
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region 0.1 µm immediately above the mirror, which contributes only minimally to the
integral. This results approximately in

δEpq ≃ UVEV
X

∫ ∞

−∞
dz
(∣∣∣Ψ(0)

p (z)
∣∣∣2 − ∣∣∣Ψ(0)

q (z)
∣∣∣2)

= 0 , (A2)

where UVEV
X is the value of UX(z) corresponding to the VEV. However, strong scalar fields

at such short ranges distort the neutron wave functions, resulting in significantly different
energy shifts for various energy states, which would be readily observable in experiments.
The numerical solution of the Schrödinger equation provided herein accounts for that and
hence allows to extend previous constraints.

Thus, each improvement in the present analysis significantly changes existing con-
straints. In contrast, a full statistical data analysis to obtain constraints can safely be
neglected at the current level of theoretical description, as will be demonstrated in the
following section.

Appendix A.2. Constraint Criteria for qBOUNCE

In Ref. [46], constraints on the symmetron model from qBOUNCE have been established
through a comprehensive χ2-data analysis, considering correlations between ∆E13, ∆E14 as
well as each symmetron parameter µ, λS and M. However, this analysis is based on different
theoretical assumptions, including a vacuum density of ρV = 0, exclusive utilization of
perturbation theory for computing energy shifts, neglecting the symmetry-broken phase of
the symmetron inside the neutron mirror, and employing different cutoff criteria. Here, we
replicated this earlier investigation under the previously made assumptions but employed
the constraint criterion outlined in Equation (9) instead of a full χ2-data analysis. This
allows to assess the error incurred by forgoing a comprehensive statistical examination. As
demonstrated in Figure A2, this error is negligible in a log-log plot, validating our adoption
of a simpler constraint criterion.

Figure A2. The shaded regions illustrate parameter constraints (employing the Fermi screening
approximation) derived in Cronenberg et al., 2018 Ref. [46] for various fixed values of M. Dotted
lines mark the boundary of the constraint regions computed with the simplified constraint criterion
outlined in Equation (9). The constraints depicted in this plot were computed using previously made
theoretical assumptions, as is detailed in Appendices A.1 and A.2. Updated constraints using the
most recent theoretical assumptions are depicted in Figure 2.
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Appendix B. Constraint Criteria for Neutron Interferometry
In this section, further details on the constraint criteria for neutron interferometry

are provided.

Appendix B.1. Profile Mode
The experimentally measured value is α = (0.56 ± 2.50)◦. To establish a 95% confi-

dence level, we assume that the error follows a normal distribution and acknowledge that
α < 0. Accordingly, we model the normal distribution with a mean of 0.56◦ and a standard
deviation of 2.50◦. Given the predicted negativity of α, our objective is to determine x such
that the probability of measuring α within the interval (−∞, x) is only 5%, allowing us to
exclude α-values in this interval with a 95% CL. Hence, x is obtained by solving

1
2.50◦

√
2π

∫ x

−∞
e−

1
2

(
s−0.56◦

2.50◦
)2

ds = 0.05 , (A3)

which yields x ≃ −3.55◦, allowing us to constrain scalar field parameters for which

α < −3.55◦ . (A4)

Appendix B.2. Pressure Mode
The experimentally measured result is γ = (0.37 ± 3.53)◦. Taking into account that

γ < 0 and assuming that the error is normally distributed, y is computed such that

1
3.53◦

√
2π

∫ y

−∞
e−

1
2

(
s−0.37◦

3.53◦
)2

ds = 0.05 , (A5)

providing the result y ≃ −5.44◦. Hence, we constrain scalar field parameters for which

γ < −5.44◦ . (A6)

Appendix C. Screening Charge
In this work, we adopt the following definition of the screening charge for the dilaton

and chameleon field, as derived in Refs. [25,58]

Q :=
3

µ2
MR2

1 − 1
µM R tanh(µMR)

1 + µV
µM

tanh(µMR)
, (A7)

where µM represents the chameleon or dilaton mass, respectively, within a neutron, µV
denotes the corresponding mass within the surrounding vacuum and R is the radius of the
sphere. This definition ensures that

Q →
{

0 , for “screened” bodies with µMR → ∞ ,
1 , for “unscreened” bodies with µMR → 0 .

(A8)

In contrast, Ref. [35] calculated the qBOUNCE chameleon constraints using an alternative
definition of the screening charge, sometimes treating the neutron as a test particle even
when µMR ≫ 1, leading to significantly larger constraints. Ref. [33], on the other hand,
has neglected neutron screening altogether. This disparity underscores the imperative for
further theoretical advancements to transcend heuristic approximations and accurately
determine the true coupling of neutrons to the individual scalar field. The analysis of
the symmetron field herein uses the screening charge derived in Refs. [43,50], which
has already been employed in the original analyses in Refs. [46,49]. For some further
background information concerning the methodology of screening charges, see, e.g., the
Appendix of Ref. [43].
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