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Abstract: We highlight the recent progress in the calculation of transport coefficients pertinent to
binary neutron star mergers. Specifically, we analyze the bulk viscosity coefficient driven by both
the DURCA and MURCA processes and electron transport coefficients in dense and hot plasma
relevant to the merger scenario. The study considers high temperatures (T > 6× 1010 K) and dense
environments (nB ∼ n0 − 3n0). Bulk viscosity exhibits resonant behavior, with peak values and peak
positions dependent on particle interaction rates and thermodynamic susceptibilities. Susceptibilities
are calculated by modeling the nuclear matter in the density functional approach. The bulk viscosity
coefficient peaks at T ∼ 1011 K, with a compression–rarefaction oscillation dissipation time scale of
20–50 ms. Electrical transports incorporate frequency-dependent dynamical screening in quantized
electron–ion scattering rates. Consequently, dynamical screening reduces the maxima of electrical
and thermal conductivities, shortening corresponding dissipation time scales. These results highlight
the crucial role of dissipation coefficients in understanding binary neutron star mergers.

Keywords: binary neutron star merger; transport coefficients; time scale; URCA process; MURCA
process; magnetized plasma

1. Introduction

The recent identification of gravitational waves by the LIGO–Virgo collaboration,
from the multi-messenger binary neutron star merger (BNSM) event GW170817, prompts
research in the field of the transport properties of dense nuclear matter under extreme
scenarios of temperatures and densities relevant to this merger scenario [1–3]. BNSMs and
collider experiments stand as the most extreme manifestations of matter in the universe,
characterized by temperatures several tens of MeVs and a density of 5–7 times the nuclear
saturation density n0 ≈ 0.16 fm−3. Furthermore, the detection of short gamma-ray bursts
(SGRBs) by the Fermi satellite GRB170817A hints at the presence of extreme magnetic
fields during these merger events [4,5], making them important sources of gravitational
radiation, electromagnetic emissions and neutrinos [6], thus offering a remarkable window
into the study of nonlinear gravitational effects and intricate microphysical processes, akin
to Einstein’s natural laboratory [7].

In BNSMs, immediately after the merger, the resulting dense object undergoes os-
cillations and dissipates energy through the emission of gravitational radiation until it
eventually collapses into a black hole. Understanding neutron star mergers mandates
expertise in General Relativistic Magneto Hydrodynamics (GRMHD) [6,8–11]. These ad-
vanced numerical simulations provide valuable insights into the post-merger object at the
extremities of matter density and temperature limits. In this high-density environment, the
significance of the dissipative effect through a specific transport coefficient is examined
by analyzing the dissipation timescales during which these transport coefficients would
influence the dynamics of the medium evolution. If this timescale aligns with the merger
timescale, which spans tens to hundreds of milliseconds, the process may be considered
relevant to mergers [12]. Recently, attempts have been made to study the significance of

Universe 2024, 10, 303. https://doi.org/10.3390/universe10070303 https://www.mdpi.com/journal/universe

https://doi.org/10.3390/universe10070303
https://doi.org/10.3390/universe10070303
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/universe
https://www.mdpi.com
https://orcid.org/0000-0001-7596-9201
https://doi.org/10.3390/universe10070303
https://www.mdpi.com/journal/universe
https://www.mdpi.com/article/10.3390/universe10070303?type=check_update&version=2


Universe 2024, 10, 303 2 of 16

dissipative mechanisms in merger simulations in various studies [12–24]. A recent study by
Alford et al. [12] explored the bulk viscosity coefficient (ζ) arising from the MURCA process
in the neutrino-transparent regime of BNSM. The authors have found that this mechanism
leads to a dissipation timescale comparable to the merger’s survival time (milliseconds).
Complementing this work, another study by Alford et al. [13] evaluated the bulk viscosity
coefficient due to the URCA process within the neutrino-trapped regime.

In [21,22,25], the authors have extended the initial analyses by Alford et al. [12] by
incorporating a more realistic appraisal of the bulk viscosity’s contribution to the pressure
within a state-of-the-art neutron star merger simulation. This enables the identification
of the specific stages and spatial regions where bulk viscosity has significant influence.
Recently, in [18], the authors presented the magnetohydrodynamic (MHD) equations
in both generic and curved spacetimes, addressing both the ideal-MHD limit and the
presence of resistivity equations. Additionally, authors in ref. [19] have studied the
impact of finite-temperature effects in numerical-relativity simulations of binary neutron
star mergers, utilizing a full Bayesian analysis with microphysical equations of state and
neutrino transport. In light of all of the studies mentioned, this review will focus on the
relevance of bulk viscous dissipation, thermal conduction, and electrical conduction in the
context of BNSM.

The bulk viscosity of these stars markedly influences the dissipation time-scale of
stellar vibrations in neutron stars and the maximum rotation rate of millisecond pulsars.
Vibrational and rotational instabilities induce density changes in vibrating stars, altering
species concentrations primarily through direct URCA (DURCA) and modified URCA
(MURCA) processes. Dissipation peaks when the rates of microscopic reactions align with
the oscillation rates of the chemical potential. Recent investigations into the bulk viscosity
in BNSM play an important role in estimation of dissipative time scales [12,25]. One of the
aims of our study is to review the estimation of bulk viscous dissipation time scales due to
the DURCA and MURCA process in high-temperature and high-density plasma, relevant
to BNS mergers [13,26,27].

In most of the GRMHD simulations of merged objects [6,8–11], the framework of
ideal MHD is employed. However, recent research [28] highlights the significant role
of the Hall effect in the magnetic field decay of merged objects, suggesting the need to
integrate this effect into ideal MHD simulations. In Ref. [15], the authors have reported
the effects of dynamical screening on electrical conductivity, and in Ref. [29], the effects
of dynamical screening on thermal conductivity in the context of BNSMs. Considering
these insights, we review the calculations of electrical and thermal conductivities in fully
ionized plasma by solving the Boltzmann equation. The current review employs modified
Hard-Dense-Loop (HDL) propagators in the calculation of a relativistic medium. Key to
our analysis is the quantification of transport coefficients, including Landau damping in
quantized particle interaction rates in relativistic, magnetized hot and dense plasma. The
significance of transport coefficients will be evaluated by comparing damping timescales to
the characteristic duration of the post-merger phase (approximately 10–100 ms), alongside
the timescales for thermal transport and dissipation.

The current review is organized as follows, in Section 2 we present the formalism
of Bulk viscosity in hot and dense baryonic matter. Section 3 presents the results of Bulk
viscosity. In Section 4 we present the microphysics of electrical conduction. Electrical
conduction results have been presented in Section 5.

2. Bulk Viscosity in Hot and Dense Baryonic Matter

In this section, we review the significance of bulk viscosity in the context of BNSM. It
might be recalled that bulk viscosity arises as a response to repetitive cycles of compression
and rarefaction within a system. These oscillations lead to fluctuations in the density of
conserved quantities, such as baryon number density, consequently affecting beta equi-
libration rates [24]. Thus the system’s response to changes in baryon number density is
primarily determined by weak interaction rates. Weak interaction processes equilibrate at
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rates comparable to the frequency of density oscillations in compact objects, while strong
interactions have a minimal impact [24].

This study considers the basic components of baryonic matter, specifically focusing on
neutrons (n), protons (p), electrons (e), and neutrinos (νe), across density ranges from 0.5n0
to 3n0 (where n0 is about 0.16 fm−3) and temperature ranges from 5 to 50 MeV. However,
as temperatures rise above 5 MeV, νe mean free path reduces to less than a kilometer
and, hence, neutrinos become trapped. Notably, positrons are virtually absent in these
conditions because the electron chemical potential is around 100 MeV. This significantly
reduces the weak processes involving positrons by an approximate factor of exp(−µνe /T).

Beta equilibration, in this context, occurs through DURCA and MURCA processes.
In these two processes, if there is a proton deficit, protons are generated through neutron
decay processes, as mentioned below [13,24],

n→ p + e− + ν̄e Direct Urca (1)

n + N → N + p + e + ν̄e, Modified Urca (2)

in the above equation, N represents a spectator neutron.
In DURCA and MURCA processes, if a deficit of neutrons exists, neutrons are pro-

duced through electron capture processes as written below [13,24],

e− + p→ n + νe Direct Urca (3)

N + p + e→ N + n + νe Modified Urca (4)

In the dynamic environment of a neutron star merger, due to compression and decom-
pression cycles, the baryonic matter deviates from β-equilibrium, which can be quantified
by a non-zero chemical potential as defined below:

µ∆ ≡ µn + µνe − µp − µe. (5)

In the above expression, µ∆ is non-zero due to density fluctuation, and re-equilibration
of this quantity leads to bulk viscosity. The fluctuations of the chemical potential is given by

δµ∆ =
∂µ∆

∂nB

∣∣∣∣
x
δnB +

∂µ∆

∂x

∣∣∣∣
nB

δx. (6)

Now, taking the time derivative of µ∆, we arrive at

dµ∆

dt
= Cω

∆nB
n̄B

cos(ωt) + Bn̄B
dx
dt

, (7)

where ω is the frequency of density oscillation, nB is the equilibrium baryon density,
∆nB is the deviation of baryon density, and δx is the deviation of the baryon density
fraction from the equilibrium value. B represents the “beta-off-equilibrium–proton-fraction”
susceptibility, which quantifies the relationship between the chemical potential deviating
from beta equilibrium and the corresponding variation in the proton fraction. On the other
hand, C denotes the “beta-off-equilibrium–baryon-density” susceptibility, which assesses
the variation in off-equilibrium chemical potential concerning changes in baryon density
while maintaining a fixed proton fraction,

C ≡ n̄B
∂µ∆

∂nB

∣∣∣∣
x

, B ≡ 1
n̄B

∂µ∆

∂x

∣∣∣∣
nB

. (8)

These two susceptibilities depend on the equation of state (EoS) of the system. To
quantify the amount of dissipation due to bulk viscosity in the medium, we first esti-
mate the susceptibilities of the medium. In the neutrino trapped baryonic medium, the
susceptibilities are given by [13,24]
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B =
1

n̄B

(
∂µνe

∂xn

∣∣∣
nB

+
∂µn

∂xn

∣∣∣
nB
−

∂µp

∂xn

∣∣∣
nB
− ∂µe

∂xn

∣∣∣
nB

)
, (9)

C = n̄B

(
∂µνe

∂nB

∣∣∣
xn

+
∂µn

∂nB

∣∣∣
xn
−

∂µp

∂nB

∣∣∣
xn
− ∂µe

∂nB

∣∣∣
xn

)
. (10)

In the above equation, µn, µp, µe, µνe are the chemical potentials for neutron, proton,
electron and neutrino, respectively, and xn is the neutron fraction. The net equilibration
rate for a typical process can be written as follows:

Γ(↔) ≡ Γ(→) − Γ(←) = n̄B
∂x
∂t

, (11)

where Γ(→) is the forward weak interaction rate and Γ(←) is the backward weak interaction
rate. The differential equation involving chemical fluctuation in Equation (7) can be
expressed as follows:

dA(ϕ)

dϕ
= d cos(ϕ) +

BΓ↔

ωT
. (12)

In the above equation, ϕ ≡ ωt, A(ϕ) = µ∆/T with the pre-factors given by

d ≡ C
T

δnB
n̄B

, f ≡ BΓ̃T6

ω
. (13)

A(ϕ) can be evaluated by solving the differential Equation (12). The fluid within the
post-merged object experiences repetitive cycles of compression and rarefaction, leading to
energy dissipation. The rate of energy dissipation per unit volume due to these oscillations
is expressed as [24]

dϵ

dt
= ζ

(
∇⃗ · v⃗

)2
(14)

where v⃗ is the local velocity of the fluid, ζ is the bulk viscosity. In the hydrodynamic
limit after averaging the energy dissipation rate per volume over one time period the bulk
viscosity can be written as

ζ = − 1
π

n̄3
B

∆nB

∫ τ

0

∂µ∆

∂nB

∫ t

0

dx
dt′

dt′ cos(ωt)dt. (15)

A detailed derivation of the bulk viscosity can be found in Ref. [24]. In the sub-thermal
limit (µ∆/T ≪ 1), by expanding the interaction rate in Equation (11) in this limit of µ∆/T
while keeping terms only up to linear in powers of the expansion parameter, one can solve
Equation (12) in order to obtain the bulk viscosity as [13,24]

ζ =
C2

B
Γ↔B

ω2 + Γ↔2B2 . (16)

The above expression demonstrates the classic resonant form, governed by two com-
ponents: the pre-factor, a ratio of susceptibilities C2/B solely dependent on the equation of
state, and the relaxation rate Γ↔, which is determined by the rate of weak interactions. In
the following sections, we present the detailed expressions of interaction rates of DURCA
and MURCA processes.

2.1. DURCA Rate

In nuclear matter, the occurrence of DURCA and MURCA processes is dependent on
specific density, as well as temperature conditions. Depending upon the equation of states,
DURCA and MURCA start to occur at different baryonic densities [12]. In the trapped
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baryonic matter, the microscopic beta-equilibration rates for the neutron decay DURCA
interaction rate (n → p + e− + ν̄e ) is defined as Γ↔1U , whereas electron capture DURCA
interaction rate (e− + p→ n + νe) is defined as Γ↔2U . The twelve dimension interaction rates
are given by [13]

Γ↔1U = Γ→1U − Γ←1U =
∫

pn ,pp ,pe ,pνe
∑ |MDURCA|2P1U(2π)4δ(4)(pp + pe + pνe − pn) (17)

Γ↔2U = Γ→2U − Γ←2U =
1
2

∫
pn ,pp ,pe ,pνe

∑ |MDURCA|2P2U(2π)4δ(pp − pνe + ke − pn), (18)

where the phase-space factors P1U and P2U are written as P1U = f (pn)[1− f (pνe)][1−
f (pνe)][1− f (pp)]− f (pe) f (pνe) f (pp)[1− f (pn)],P2U = f (pn) f (pνe)[1− f (pe)][1− f (pp)]−
f (pνe) f (pp)[1− f (pn)][1− f (pνe)], respectively. Explicitly, fi = 1/(1 + exp[(ϵi − µi)/T])
are the Fermi–Dirac distributions for the species (i = n, p, e) with the chemical potential
µi. p′, p are the four-momenta of the neutron and proton, respectively, and k and k′ refer
to the four-momenta of neutrino (antineutrino) and electron, respectively. In the above
expression, the matrix element is given by [13]

∑ |MDURCA|2 = 32G̃2(k · p′)(p · k′), (19)

where G̃2 = G2
F cos θ2

c = 1.29× 10−22 MeV−4 and gA = 1.26. For subsequent calculations,
one can conveniently write the energy conserving delta functions as δ(4)(pp − pn + q) =
δ( p⃗p − p⃗n + q⃗)δ(ϵp − ϵpn + ω), δ(4)(pe ± pνe − q) = δ( p⃗e ± p⃗νe − q⃗)δ(ϵpe ± ϵpνe − ω). The
energy delta function can be expressed as δ(ϵp± ϵν̄e/νe + ϵe− ϵn−µ∆), where, the argument
of the δ-function involves addition and subtraction of µ∆ and p0 = ϵp − µ.

Incorporating above changes, one can write the phase space factor as follows [13]:

P1U = f (p′)[1− f (pe)][1− f (pνe)][1− f (pp)]− f (pe) f (pνe) f (pp)[1− f (pn)]

= g(q)[ f (ϵp)− f (ϵp + ω̃)][1− f (ω− ϵpνe )][1− f (ϵpνe )]

− f (ω− ϵνe) f (ϵνe)[1 + g(q)][ f (ϵp + ω̃)− f (ϵp)], (20)

where ω̃ = ω− µ∆, g(q) is the Bose–Einstein distribution function. In the above expression,
p′ and k′ integrations are performed using the three delta functions δ( p⃗ − p⃗n + q⃗) and
δ( p⃗e − p⃗νe − q⃗). After performing the integrations, the interaction rate becomes [13]

Γ↔1U =
∫ dω

2π

∫ d3q
(2π)3 g(ω− µ∆)

m⋆2T
2πq

ln

∣∣∣∣∣ 1 + exp
(
− ϵmin

T
)

1 + exp
(
− ϵmin+ω−µ∆

T

) ∣∣∣∣∣
∫ p2

νe dpνe

(2π)5 [1− f (ω− ϵpνe )][1− f (ϵpνe )]

∫ 1

−1
dy′ δ

(
pνe +

√
p2

νe + q2 − 2pνe qy′ −ω′
)

, (21)

where y′ is the angel between pνe and q, ω′ = ω + µe − µνe . After changing the variables
x = (ϵν̄e + µνe)/T, y = ω/T, z = q/T, αn,p,e,νe = µn,p,e,νe /T and ϵmin = p2

min/2m⋆ − µp =

(m⋆/2q2)×
(

µ⋆
n−µ⋆

p +ω−µ∆− q2

2m⋆

)2

−µ⋆
p [13,30]. For a detailed derivation, see also [13].

Now, the interaction rates can be further simplified as

Γ↔1U =
m⋆2G̃2

8π5 T6
∫ ∞

−αe+ανe

dy g(y)
∫ y+αe−αν

0
dz ln

∣∣∣∣ 1 + exp(−y0)

1 + exp(−y0 − y)

∣∣∣∣
×
∫ (y+αe+αν+z)/2

(y+αe+ανe−z)/2
dx(x− ανe)(y + αe − x) f (x− y)[1− f (x)], (22)



Universe 2024, 10, 303 6 of 16

Γ↔2U =
m⋆2G̃2

8π5 T6
∫ ∞

−∞
dy g(y)

∫ ∞

|y+αe−αν |
dz ln

∣∣∣∣ 1 + exp(−y0)

1 + exp(−y0 − y))

∣∣∣∣∫ ∞

−(y+αe+ανe−z)/2
dx(x + αν)(y + αe + x) f (x)[1− f (x + y)]. (23)

In the above two equations, y0 = (q2 − ω′2 + 2ω′pνe)/2kq. The above two integrals
are now evaluated numerically to obtain the numerical results presented in the Results of
Bulk viscosity section later in this review paper.

2.2. MURCA Rate

The MURCA reactions entail both strong and weak interactions. In the neutrino
trapped baryonic matter, the interaction rates for the neutron decay n+ N → N + p+ e+ ν̄e
and the electron capture process n + N → N + p + e + ν̄e are given by Γ↔1MU and Γ↔2MU ,
respectively, and the form of these two reactions are mentioned below:

Γ↔1MU = Γ→1MU − Γ←1MU =
∫ d3 pn

(2π)3
d3 pN
(2π)3

d3 p′N
(2π)3

d3 pp
(2π)3

d3 pe
(2π)3

d3 pνe
(2π)3 ∑ |MMURCA|2P1MU

(2π)4δ4(pn + pN − p′N − pp − pe − pν̄e

)
, (24)

Γ↔2MU = Γ→2MU − Γ←2MU =
∫ d3 pn

(2π)3
d3 pN
(2π)3

d3 p′N
(2π)3

d3 pp
(2π)3

d3 pe
(2π)3

d3 pνe
(2π)3 ∑ |MMURCA|2P2MU

(2π)4δ4(pn + pp + pe − p′N − pn − pνe). (25)

In the above two equations, the phase space factors P1MU and P2MU are given by

P1MU = [ f (pn) f (pN)(1− f (pN))(1− f (pp))(1− f (pν̄e))(1− f (pe))

− f (pN) f (pp) f (pe) f (pν̄e)(1− f (pN))(1− f (pn))], (26)

P2MU = [ f (pn) f (pp) f (pe)(1− f (pN))(1− f (pp))(1− fνe)

− f (pN) f (pn) f (pν̄e)(1− f (pn))(1− f (pp))(1− f (pe))]. (27)

The squared scattering matrix element ∑ |MMURCA|2 in Equations (24) and (25) is
given by [31]

∑ |MMURCA|2 = 16G2 21
4

(
f

mπ

)4 g2
A

ϵ2
e

p4
f n

(p2
f n + m2

π)2
, (28)

where f ∼ 1 is the p-wave πN coupling constant in the one pion exchange theory of N – N
interaction, mπ is the mass of pion and ϵe is the energy of the electron.

To perform the energy integral, we use the following replacements in two delta
functions. For the neutron decay process, the delta function takes the following form [27]:

δ(pn + pN − p′N − pp − pe − pν̄e ) = δ(x1 + x2 + x3 + x4 + x5 + (−x6 + µ∆/T))/T. (29)

In the above equation, x1 = β(ϵn − µn), x2 = β(ϵN − µN), x3 = −β(ϵ′N − µN),
x4 = −β(ϵe − µe), x5 = −β(ϵp − µp), x6 = β(ϵν̄e + µe) [27]. For the electron capture
process, the delta function can be written as shown below:

δ(pN + pp + pe + pν̄e − p′N − pn) = δ(x1 + x2 + x3 + x4 + x5 + (−x6 − µ∆/T))/T, (30)

where x1 = β(ϵn − µn), x2 = β(ϵp − µp), x3 = β(ϵe − µe), x4 = −β(ϵe − µn),
x5 = −β(ϵ′N − µN), x6 = β(ϵνe − µνe).

In a concise notation, we express the interaction rate as Γ→ − Γ← = AI, where A
contains information about the angular integral, while I pertains to the energy integral. For
the neutron decay process the energy integral is written as follows:
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I1 = Const T7
∫

dxνe x2
νe

∫
Π5

i=1dxi

[(1 + exi )−1(1− fν̄e)− (1 + exi )−1 fν̄e ]δ(x1 + x2 + x3 + x4 + x5 + (−x6 + µ∆/T))/T

= I10 − I2(ν)− I3(ν), (31)

where Const = p f nmn p f NmN p f nmn p f pmp p2
f e. In the above equation, the contribution

arising from terms containing antineutrino distribution functions (I2(ν) and I3(ν)) are
suppressed. Here, we have used xνe = Eνe /T. The five dimensional integral for the
neutron, proton, electron and spectator neutrons are evaluated following [27,32]:∫

Π5
i=1dxi(1 + exi )−1

δ(x1 + x2 + x3 + x4 + x5 + (−x6 + µ∆/T)) + δ(x1 + x2 + x3 + x4 + x5 + (−x6 − µ∆/T))

=

[
1

1 + e(−x6+µ∆/T)
1
4!
((−x6 + µ∆/T)4 + 10π2(−x6 + µ∆/T)2 + 9π4)

+
1

1 + e(x6+µ∆/T)
1
4!
((x6 + µ∆/T)4 + 10π2(x6 + µ∆/T)2 + 9π4)

]
. (32)

The above integrations have been performed by employing the following method [32]:∫
Π5

i=1dxi(1 + exi )−1δ(xi + y) =
1

e−y4!

(
y4 + 10π2y2 + 9π4

)
. (33)

For the other MURCA process N + p + e ↔ N + n + νe, the energy integral in the
interaction rate (Γ↔2 ) is written as [27]

I2 = Const T7
∫

dxνe x2
νe

∫
Π5

i=1dxi[
(1 + exj)

−1
(1− fνe)− (1 + exj)

−1 fνe

]
δ(x1 + x2 + x3 + x4 + x5 + (−x6 − µ∆/T))/T

= I20 − I4(ν)− I5(ν). (34)

The final expression for MURCA equilibration rate thus becomes [27]

Γ↔ = Γ↔1 + Γ↔2 = Γ̃T7
∫

dxνe x2
νe

1
1 + e(−x6+µ∆/T)

1
4!

[(
µ∆
T
− x6)

4 + 10π2
(µ∆

T
− x6

)2
+ 9π4

)]
+

1
1 + e(−xνe+µνe /T)

1
1 + e(−x6−µ∆/T)

1
4!

[(µ∆
T

+ x6)
4 + 10π2(

µ∆
T

+ x6)
2 + 9π4

)]
− 1

1 + e(xνe−µνe /T)
1

1 + e(−x6−
µ∆
T )

1
4!

[(µ∆
T

+ x6)
4 + 10π2(

µ∆
T

+ x6)
2 + 9π4

)]
, (35)

where Γ̃ = 4.68× 10−19.0(xpnB/n0)
1/3MeV−4 (xp is the proton fraction).

3. Results
Bulk Viscosity

In this section, we quantify the dissipation arising from bulk viscous effects. Our
medium comprises nuclear matter constituents such as neutrons, protons, electrons, and
electron neutrinos. Following a neutron star merger, the temperature surpasses the trapped
neutrino temperature, thus necessitating consideration of non-zero neutrino chemical po-
tentials. These chemical potentials for constituent particles are obtained from the equation
of state like NL3 [33]. NL3 features density-independent meson-nucleon couplings and
nonlinear parametrization. Analytical expressions for chemical potentials in the medium
are given by [13,24,27]
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µ⋆
n =

√
m2

n + (3π2xnnB)2/3 + gωω0 −
1
2

gρρ3
0,

µ⋆
p =

√
m2

p + (3π2xnnB)2/3 + gωω0 +
1
2

gρρ3
0

µ⋆
e = (3π2xpnB)

1/3,

µ⋆
νe = (3π2 x̄νe nB)

1/3, (36)

where xp, xn and xνe are the protons, neutrons and neutrinos fractions, respectively. mn
and mp are the mass of neutrons and protons, respectively. gω and gρ are the couplings of
the ω and ρ mesonic fields. The bulk viscosity can be derived from susceptibilities B and C,
obtained through the chemical potentials defined above Equation (10) [13,27].

In Figure 1, the temperature and density variations in ζ driven by the DURCA process
have been presented in the left and right panel, respectively [13]. In the left panel of the
figure, the solid red line corresponds to nB = n0, the green dashed line corresponds to
nB = 2n0, and the blue dashed dotted line corresponds to nB = 3n0. The bulk viscosity,
which is a function of the temperature at a fixed oscillation frequency ω, follows the
standard resonant form, thus exhibiting a maximum when the beta relaxation rate matches
with ω as 8.48 kHz, corresponding to the oscillation frequency of the quadrupole r-mode
of a neutron star [24]. The temperature dependence of ζ mainly arises from the Γ↔, via
the relation Γ↔ ∝ T2. Hence, increasing temperature leads to a higher relaxation rate from
phase space expansion. This results in a bulk viscosity that decreases quadratically with
temperature following ζ ∝ T−2.
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Figure 1. (Left panel): variation in ζ with temperature for DURCA process. (Right panel): variation
in ζ with density for DURCA processes [13].

The right panel of Figure 1 illustrates the density dependence of the bulk viscosity
across various temperature values. In Figure 1, we present the curves for three different
temperatures, where the solid black curve corresponds to T = 5.8× 1010 K, and the red
dashed curve corresponds to T = 17.4× 1010 K and T = 23.2× 1010 K. Since the beta
relaxation rate is nearly independent upon the baryon density, the density dependence of
the bulk viscosity mirrors that of the susceptibilities and, thus, increases with density [13].
The prefactor C2/B in Equation (16) gradually increases with density (please see Figure 6
of Ref. [13]). Consequently, ζ also increases with density, following the same pattern.

In Figure 2, we present plots showing the variation in ζ with temperature, considering
the MURCA interaction rate both in neutrino transparent and neutrino trapped matter.
The black, red, and green curves represent the bulk viscosity of baryonic matter without
trapped neutrinos. The resonant curve for the zeta particle interaction rate emerges when
the interaction rate aligns with ω. Specifically, the black solid curve corresponds to nB = n0,
the red dashed curve to nB = 2n0, and the green dashed-dotted curve to nB = 3n0. The
blue, orange, and dark green curves represent the bulk viscosity of baryonic matter with
trapped neutrinos. The blue dotted curve corresponds to nB = n0, the orange double
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dot-dashed curve to nB = 2n0, and the dark green double dashed-dotted curve to nB = 3n0.
From these curves, it can be seen that the maximum bulk viscosity occurs at a temperature
of 4.84× 1010 K, with a value of 1.14× 1027 g cm−1 s−1 for nB = n0 when the neutrino
chemical potential is zero. With a non-zero νe, the maximum bulk viscosity shifts to
10.21× 1010 K, with a value of ∼ 1028 g cm−1 s−1. The calculation employs two equations
of state (EoS): a free-hadron EoS for the neutrino-transparent matter, and NL3 EoS for the
neutrino-trapped matter. The position of the peak changes with the inclusion of neutrinos,
shifting the peak position by a factor of 2.10 compared to the neutrino transparent scenario.
This is because the inclusion of neutrinos alters the interaction rate, and the peak position
of the curve primarily depends on the particle interaction rate.
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Figure 2. Temperature variation of bulk viscosity for various densities in neutrino-transparent and
trapped neutrino matter for the MURCA process.

In Figure 3, the variation in ζ with temperature is plotted for different densities using
NL3 EoS. Specifically, the solid red curve, green dashed curve, and blue dashed-dotted
curve correspond to nB = n0, nB = 2n0, and nB = 3n0, respectively. It is observed that the
height of the maxima changes with the density. This is due to the fact that the height of
the peak depends upon the density dependent factors like the susceptibilities (B, C) of the
medium. The temperature and density of the hadronic medium are chosen to ensure that
the degeneracy condition µi ≪ T (i = n, p, e, νe) is maintained. Insights into the density
dependence of ζ are presented in the right panel of Figure 3. Examination of ζ suggests
that the interaction rate demonstrates minimal density dependence, whereas the plots
mirrors the combined characteristics of both B and C. For both temperature-dependent
and density-dependent plots, we have considered the frequency of density oscillation as
8.48 kHz. The dissipation time scale is calculated using τζ = KnBt2

dns/(36π2ζmax) [12].
τζ ∼ 50 ms considering K as the nuclear compressibility (∼ 250 MeV), tdns ∼ 1 ms, and
ζmax as the maxima of the bulk viscosity.
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Figure 3. (Left panel): variation in ζ with temperature for MURCA process. (Right panel): variation
in ζ with density for MURCA processes [27].
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4. Electrical Conduction

This section presents transport theory formulation for the electrical (σ) and thermal con-
ductivity (κ) coefficients in magnetized electron–ion plasmas. In compact objects, intense
magnetic fields cause the electron motion to become quantized within the QED plasma.
Under these conditions, both thermal and electrical conductivities exhibit anisotropy, and
the conductivity tensor is represented as follows [34]:

σ/κ =

(σ⊥/κ⊥ −σH/κH 0
σH/κH σ⊥/κ⊥ 0

0 0 σ∥/κ∥

)
. (37)

In the above expression, σ∥/κ∥ is the parallel component and σ⊥/κ⊥ is the perpen-
dicular component of electrical/thermal conductivity in presence of external magnetic
field along the z direction. σH/κH is defined as the Hall coefficient. Next, we calculate the
expressions of the quantized σ∥/κ∥ in the electron–ion plasma.

σ and κ are related to the electric current (j) and thermal current (q) via hydrodynamic
constitutive relations j = σE (where E is the electric field), q = −κ∇T. From kinetic theory,
the current density (j) and thermal currents (q) are given by

j =
emωB

4π2

∞

∑
n=0

∑
s=±

∫ ∞

mc2
Φn,pz ,sdϵp,

q =
mωB

4π2

∞

∑
n=0

∑
s=±

∫ ∞

mc2
(ϵp − µ)Φn,pz ,sdϵp, (38)

where m, e are the mass and charge of an electron, respectively. ωB = eB/m, n being the
number of the quantized electronic level in presence of magnetic field, pz is the z component
of electron’s momentum, ϵp is the energy of electron, and s is the spin. Φn,pz ,s contains the
information of the off-equilibrium distribution function arising because of the presence of
an electromagnetic field in the plasma. By solving the Boltzmann equation in the presence
of a magnetic field, one can calculate Φn,pz ,s. Because of presence of a magnetic field along
the z direction in plasma, the symmetry of the system is broken. The transport equation for
electrons present in the plasma follows from the Boltzmann equation in magnetic field and
is given by [34]

∂ fnpzs

∂t
+ vz

∂ fnpzs

∂z
− ṗ.

∂ fnpzs

∂pz
= C[ f ]. (39)

In the above equation, fn,pz ,s describes the population of electrons which are defined
by the quantum state n, s, pz. The right hand side of the equation represents the collisional
integral involving the particle interaction rates,

C[ f ] =
∂ fn,pz ,s

∂t

∣∣∣∣∣
coll

= ∑
f

I f i
(

fn,pz ,s→n′ ,p′z ,s′
)
. (40)

The collision integral consists of the interaction of electrons and ions and the form of
the integral is given below:

I f i =
1

2ϵp

∫ d3 p′

(2π)32ϵp′

∫ d3k
(2π)32ϵk

∫ d3k′

(2π)32ϵk′

[
fn,pz ,sgk(1− fn′ ,p′z ,s′)− fn′ ,p′z ,s′gk′(1− fn,pz ,s)

]
(2π)4δ4(p + k− p′ − k′

)
|M f i|2 (41)

where M f i is the electron–ion scattering matrix and gk is distribution function of ions.
Now,M f i can be written as [35]

M f i = −∆L J0 J′0 + ∆T Jt J′t = −ML +MT , (42)
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where Jµ and J′µ are the components of currents given by Jµ = −e∗ū(p′)γµu(p) and
J′µ = Ze∗vµ

k = Ze∗(1, k⃗/M). Also, e⋆ =
√

4πe, and vk is the velocity of the ion having
momentum k. In the above equation, ∆T and ∆L are transverse and longitudinal HDL
effective photon propagators, respectively, given explicitly by

∆L =
1

q2 − 3m2
D

[
1− y2 − y(1−y2)

2 ln
(

y+1
y−1

)] , ∆T =
1

q2 − 3m2
D

[
y2

2 + y(1−y2)
2 ln

(
y+1
y−1

)] . (43)

In the above expression, q represents the exchanged four-momentum, with y = q0/q,
and mD denotes the Debye mass. The final form of magnetically modified interaction rate
is mentioned below [15,29]:

I f i =
ni
2 ∑

n′ ,p′z ,s′

∫
du
(

Φn,pz ,s −Φn′ ,p′z ,s′
) 1

3(ξ + m2
D

3 )(ξ + m2
D)
−

v2
k

6ξ(ξ +
m2

D
3 )

F . (44)

where ξ = m2
D/2mωB and

F =
4πσ0

m2 ∑
n′ ,p′z ,s′

[1 + ss′ +
m2

ϵ2
p
(1− ss′)[1 + ss′ − 1

2
ss′

ϵ2
p −m2 (η

′pn′ − pz)
2]

[F2
n′ ,n(u) + F2

n′−1,n−1(u)]]−
ss′uωBm
ϵ2

p −m2 [F2
n′−1,n(u) + F2

n′ ,n−1(u)]

− spz + s′η′p′n√
ϵ2

p −m2
[F2

n′ ,n(u)− F2
n′−1,n−1(u)]. (45)

The energy states are denoted by quantum numbers ϵ, pz, n, s. s = ±1 is the helicity,

and n enumerates the Landau levels. η′ = ±, Fn′ ,n(u) = exp−u/2u
n−n′

2

√
n′ !
n! Ln−n′

n′ and

u = 1
2mωB

(q2
x + q2

y). The functions Ln−n′
n′ (u) are Laguerre polynomials, and Fn′ ,n(u) are

normalized to
∫ ∞

0 F2
n′ ,ndu = 1.

To determine the transport coefficients, it is beneficial to introduce a dimensionless
scattering rate and a dimensionless alteration to the distribution function,

I f i

nivzσ0
= a,

eE
σ0ni

∂ f0

∂ϵp
Ψ = Φ, (46)

where σ0 = πZ2e4/ω2
B, ni is the number density of ions, and vz is the z component of the

particle velocity. The final result can be expressed in the form [15,29](
σ
κ

)
=

( δ0
θ

∫ ∞
1 Ψ f0(1− f0)dE

π2T
3e2

[
δ0
θ

∫ ∞
1

(ϵp−µ)

T2

2
Ψ f0(1− f0)dE − δ0

Tθ

∫ ∞
1 (ϵp−µ)Ψ f0(1− f0)dE∫ ∞

1 Ψ f0(1− f0)dE

]). (47)

where E = ϵp/m, Ψ = (E2− 1)/2Q2, δ0 is a constant and is given by δ0 = m4b2/8π3Z2e2ni,
θ = T/m and b = B/Bc, Bc is the critical field given by 4.413× 1013 G.

5. Results
Electrical and Thermal Conductivity

In this section, we present the plots for the quantized longitudinal electronic trans-
port coefficients in dense and hot magnetized QED plasma, pertinent to BNS merger
simulations. The analysis accounts for electron–ion scattering through screened electro-
magnetic interaction in plasma. Plots illustrating the variation in transport coefficients
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with density, temperature, and magnetic field are presented for Fe. The plotted scales
adhere to conditions of relativistic electrons at densities ρ > 106 g cm−3, and temperatures
T > 5.93× 109 K. The specified density and temperature, combined with a magnetic field
of approximately 1017 G, meet the criteria for the zeroth Landau level population, as dic-
tated by the equation

√
(E2 − 1)/2b ≪ 1. These constraints validate the high magnetic

field and low-density regime of BNS mergers as the physical domain for our calculations.
In Figure 4, we present the plots for the variation in σ and κ obtained by numerically

evaluating Equation (47) with ρ for two temperatures and a fixed magnetic field. Since the
electrons need to be relativistic, the density and temperatures are chosen as ρ≫ 1011 g cm−3

and T ∼ 1010 K, respectively. The parameters influencing the population of the zeroth
Landau level include: Tce ≈ 1.343× 108 B12 K, ρB = 7.045× 103 A

Z (B12)
3/2 g cm−3, and

B12 = B/1012, and ωce is the cyclotron frequency for electrons. B is strongly quantizing
if ρ < ρB and T ≪ Tce, to ensure the population of the zeroth Landau level. The weak
degeneracy condition (|ϵp − µ| ∼ T) of the electron distribution function causes the feature
of the differentiated Fermi function at T ≪ µ. The hump in the curve at temperatures
T = 4× 1010 K and T = 6× 1010 K arise due to satisfying the weak degeneracy condition
of the electron distribution function. Both the curves resemble the shape of a differentiated
Fermi function. It is observed from the plots that, with increasing temperature, electrons
become non-degenerate leading to broadening of the hump.
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Figure 4. The comparison of σ (left) and κ (right) with ρ for element Fe. The two solid lines correspond
to two different temperatures.

Next, Figure 5 shows the results of σ and κ with T for three different densities at a
fixed magnetic field. The variation in σ follows the temperature dependence through the
relation σ = (a + b× Tc)−1, whereas at low temperatures, the effect of Tc is found to be
small, leading to constant σ. However, at high temperatures, σ ∝ T−c and decreases with
the temperature.
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Figure 5. The comparison of σ (left) and κ (right) with T for element Fe. The three solid lines
correspond to three different densities.
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In Figure 6, we plot the variation in σ and κ with the magnetic field. The choice of
densities are same as in Figure 5. We note that, on increasing the magnetic field, σ and κ
increase with the B, followed by a gradual saturation. The onset of saturation coincides
with the point where the weak degeneracy condition is met, (ϵp− µ) ∼ T. This temperature
remains constant for all three curves shown in the figure. The location of the saturation
regime shifts because µ depends on both the density and the magnetic field strength. An
increase in density leads to a higher chemical potential, while an increase in the magnetic
field has the opposite effect, lowering the chemical potential. As a consequence, saturation
starts at a lower B for lower densities and at a higher B for higher densities.
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Figure 6. The comparison of σ (left) and κ (right) with B for element Fe. The three solid lines
correspond to three different densities.

The magnetic field decay timescale due to Ohmic dissipation is defined by the expres-
sion τσ = 4πσλ2

B/c2, where λB the magnetic field scale height [28,36]. λB is determined
by comparing with electron mean free path λm f p. The kinetic theory definition of λm f p

is given by λm f p = Amnσ3T/(Ze2cρ) ∼ 108 cm (mn atomic mass unit, c velocity of light).
The hydrodynamic condition is maintained if λm f p ≥ λB [28]. We consider a typical value
of λB ≈ 10−4 cm following the above constraint to obtain τσ ≈ 2 ms. This duration falls
within the typical survival time of a neutron star merger. In a non-relativistic plasma,
considering only the static Debye screened propagator, the electrical conductivity becomes
σ ∼ 1027 s−1 [29]. With this conductivity and λB ≈ 10−4 cm, this results in τσ ≈ 600 ms.
Our analysis highlights the significant reduction in timescale when dynamical screening
is included, compared to the scenario of electron–ion interactions mediated by longitudi-
nal plasmons.

The thermal conduction timescale is given by τκ = cv∆z2/6κ, where cv represents
the specific heat and ∆z denotes the region hotter than its surroundings by a temperature
difference ∆T. The contribution of degenerate relativistic electrons to the specific heat is

expressed as cv = 5.4× 1019
(

ne
n0

)2/3
T9 erg cm−3 K−1, where ne is the electron number den-

sity, n0 is the nuclear saturation density, and T9 = T/109. For ne = 5.15 × 1034cm−3,
T = 6 × 1010 K, and ∆z ∼ 10−1 cm, the thermal equilibration timescale is approxi-
mately ∼2 ms, which aligns with the timescale of the merged object [29]. However, for
∆z ∼1 km, the timescale is noted to be much greater than the survival time period of the
merged compact star [12].

6. Discussion

In this article, we have reviewed the relevance of different transport coefficients like
ζ, σ and κ in BNSM. During simulations of BNSM, densities can escalate to several times
the nuclear saturation density, while temperatures can escalate dramatically, reaching up
to 1012 K. Under such extreme conditions, neutrinos become trapped within the baryonic
matter. Notably, at around T ∼ 5.8× 1010 K, the neutrino mean free path falls below the
radius of the star, resulting in a non-zero chemical potential for neutrinos. For our analysis,
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we focus on a neutrino-trapped baryonic medium of up to approximately T ∼ 6× 1011 K
and a density of around ∼3n0.

The bulk viscosity study is structured around two primary objectives: initially, es-
tablishing the underlying medium using a neutrino-trapped nuclear equation of state;
subsequently, we calculate the bulk viscosity by assessing the interaction rate of neutrino-
trapped DURCA and MURCA processes. In this study, we concentrate on determining
the bulk viscosity of baryonic media with neutrinos trapped through the DURCA and
MURCA processes. While the DURCA process has a faster interaction rate, making it a
more significant contributor to the overall bulk viscosity, its activity is limited. DURCA
is restricted by specific conditions on the Fermi momentum of involved particles, and
only functions above a certain density threshold. Conversely, the MURCA process is not
hindered by such limitations. Both URCA and MURCA reaction rates are dependent on
the density, temperature and µ∆.

In neutrino-trapped baryonic matter, the temperature dependence of the bulk viscosity
driven by DURCA process mainly arises from the temperature dependence of the beta
relaxation rate; consequently, in the neutrino-trapped regime, the bulk viscosity decreases
as ζ ∝ T−2. Thus, in neutrino-trapped matter, the DURCA driven bulk viscosity is thou-
sand times smaller than that of neutrino-transparent matter, making the corresponding
dissipation times likely too long to affect a merger.

The MURCA-driven bulk viscosity displays a resonant behavior as a function of tem-
perature at a fixed oscillation frequency. In the neutrino-transparent matter, the maximum
of ζ occurs at a lower temperature. Both the height and position of the peak change in the
presence of trapped neutrinos. Changes in the EoS and the interaction rates influence both
the height and the position of the resonant curve, shifting the peak to higher temperatures
around Tζmax ∼ 1011 K. The density dependence of ζ is primarily dictated by the suscepti-
bilities, which are dependent on the underlying EoS. Specifically, B exhibits a weak density
dependence, while C shows a strong density dependence. Consequently, the behavior of
bulk viscosity with density variation closely reflects that of C. The time scale during which
dissipation remains effective is found out to vary between τζ ∼ 18–50 ms with the variation
in density from nB ∼ n0− 3n0. The values of Tζmax and τζ suggest that the neutrino-trapped
MURCA process could be a potential mechanism for bulk viscous dissipation in BNSM.
This is because the maximum temperature reached in a BNSM is of the order of T ∼ 1011 K,
and the survival time of the merged object is within hundreds of milliseconds.

In this study, alongside ζ, we have also reviewed the quantized longitudinal electronic
transport coefficients within a dynamically screened, hot, and dense magnetized quantum
electrodynamics plasma, relevant to BNSM simulations. Our calculations account for
the scattering of electrons with ions through screened electromagnetic forces in electron–
ion plasma.

To compute both electrical and thermal conductivities, we have assumed that particles
are slightly out of equilibrium, enabling us to numerically solve the Boltzmann equation.
The electron–ion scattering amplitude was calculated by taking into consideration the
screened electromagnetic interaction of magnetically modified spinors. The off-equilibrium
distribution function was derived by solving the Boltzmann kinetic equation using the
relaxation time approximation.

In relativistic BNSM plasmas, we found that considering the frequency dependence
HDL propagator has a significant impact. It increases the rate of collisions between particles
within the plasma. This, in turn, reduces σ and κ. As a result, the timescales associated
with these transport coefficients, τσ and τκ , become shorter compared to non-relativistic
plasma with static screening model.

In summary, our calculations signify a crucial advancement in integrating the detailed
microphysical phenomena in plasma with GRMHD simulations. Furthermore, the transport
theory framework outlined here can be expanded to encompass relativistic, magnetized
QCD matter with necessary adjustments, including the incorporation of the QCD coupling
constant, strong interaction diagrams, and accurate vertex corrections.
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