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Abstract: White dwarfs are the remnants of stars not massive enough to become supernovae. This
review explores the concept of strange dwarfs, a unique class of white dwarfs that contain cores
of strange quark matter. Strange dwarfs have different sizes, masses, and evolutionary paths with
respect to white dwarfs. They might form through the accumulation of normal matter on strange
quark stars or by the capture of strangelets. The stability of strange dwarfs has been debated, with
initial studies suggesting stability, while later analyses indicated potential instability. This review
revisits these discussions, focusing on the critical role of boundary conditions between nuclear and
quark matter in determining stability. It also offers insights into their formation, structure, and
possible detection in the universe.
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1. Introduction

White dwarfs (WDs) are astrophysical objects that originate from the remnants of
stars whose initial mass was below approximately 9 M⊙ [1]. These stars, after depleting
their reserves of nuclear fuel, enter a phase during which their cores contract because
nuclear reactions can no longer counteract gravitational forces, while their outer layers
expand. This collapse is halted only when the electrons within the star core become
degenerate, providing the necessary pressure to counteract further gravitational collapse.
Depending on the mass of the progenitor, the stellar outcome can be different. Indeed, the
nuclear fusion reactions that occur during the star’s evolution can result in the formation
of different nuclei, ultimately influencing the nature of the resulting WDs, such as helium
(He), carbon–oxygen (C-O), and oxygen–neon–magnesium (O-Ne-Mg) WDs. It is essential
to note that the maximum mass that a WD can attain, referred to as the Chandrasekhar
mass and calculated to be approximately 1.4 M⊙ [2], varies depending on the composition
of the WD. In practice, the majority of observed WDs are of the C-O type.

In work by Glendenning et al. [3,4], it was proposed that WDs could possess an inner
core composed of absolutely stable strange quark matter. This is a consequence of the
Bodmer–Witten hypothesis [5,6]. What makes this idea even more interesting is that the
presence of this stable strange quark matter core has the potential to make some of these
compact objects stable, while the corresponding configuration without the strange quark
core would be unstable.

These objects, named “strange dwarfs” (SDs), exhibit characteristics distinct from those
of conventional WDs. Specifically, they can have different radii, masses, and astrophysical
evolution. It was conjectured that SDs could form either by accumulating normal nuclear
matter on the surface of a strange quark star (SQS) or by collecting clusters of strange quark
matter, commonly referred to as “strangelets”, onto WDs.

Glendenning et al. [3] studied the radial oscillations of SDs to assess their stability,
finding that they can remain stable even if the density of the nuclear matter envelope
surpasses the maximum density observed in typical WDs.
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The question concerning the stability of SDs underwent a thorough reexamination in
the work of Alford et al. [7]. By studying the fundamental radial mode, they found those
objects to be unstable under radial oscillations.

It was suggested that the previous works by Glendenning et al. [3,4] may have inad-
vertently misinterpreted their findings by confusing the second–lowest eigenmode with
the lowest one. However, upon closer examination and analysis, it became evident that
these two research studies were built upon different underlying hypotheses [8]. Contrary
to the initial belief that the two studies were grounded on the same assumptions, it became
clear that they operated within slightly distinct theoretical frameworks, each with its own
validity. This realization effectively solved the apparent contradiction between the results
obtained by the two works. Specifically, Di Clemente et al. [8] and Di Clemente [9] focused
on the boundary conditions between the nuclear matter and the quark core. The analysis is
based on the formalism established in work by Pereira et al. [10] and Di Clemente et al. [11].
These studies provide insights into the boundary conditions that ought to be applied in
the context of rapid (and slow) conversions between nuclear matter and quark matter and
in the context of phase transitions in general. Crucially, the specific boundary conditions
employed can exert a substantial influence on the eigenvalues governing radial oscillations,
and, by extension, they can have a profound impact on the overall stability of the star. In
addition, Di Clemente et al. [8] also addressed the applicability of the stability criterion
based on the analysis of the extrema of the MR curve [12,13]. However, in this specific
case, a crucial refinement is added to this criterion, by emphasizing the need for explicit
specification regarding whether the quark content of the star remains constant or undergoes
changes during the radial oscillations.

In this review, based on our previous work [8], and in part of the first author’s PhD
thesis [9], we build upon prior research by incorporating a comprehensive analysis of
the equations of state (EoSs) relevant to SDs. This involves a detailed examination of the
mass–radius relationship for these objects. Furthermore, we give an explicit mathematical
framework that yields a formula for fixing the quark content within the core of an SD.

Additionally, we have broadened our discussion to include potential astrophysical
signatures of SDs. This extension is crucial for observational astrophysics, as it may provide
insights into identifying and verifying the existence of SDs through observable phenomena.

2. Equation of State

One important consideration in assessing the stability of SDs lies in the nature of
their EoSs. Historically, when examining this aspect in previous works [3,4,7], the EoS was
formulated as follows:

ε(P) =

{
εBPS(P) if P ≤ Pt

εquark(P) if P > Pt .
(1)

In this expression, εBPS represents the Baym–Pethick–Sutherland (BPS) EoS [14], while
εquark denotes an EoS characterizing strange quark matter, which can be based on the MIT
bag model [15]. The most important parameter in this formulation is the transition pressure
Pt (corresponding to the energy density εt), which is the pressure at the boundary between
quark matter and nuclear matter.

As the EoS for nuclear matter, we use the BPS EoS, which represents the ideal “limit”
for WDs in which all elements up to Fe have been produced. This EoS displays a Chan-
drasekhar mass of approximately 1 M⊙, a value lower than the typical Chandrasekhar
mass for C-O WDs or O-Mg-Ne WDs (1.4 M⊙ and 1.2 M⊙). It has been pointed out in
work by Benvenuto and Althaus [16] that the use of the BPS EoS is not realistic for WDs.
Nevertheless, as will be explained in Section 5.1, it represents the limit in compactness for
WDs since it provides the smallest radius for a given mass.

In our work, we use a fit of the BPS EoS in order to avoid artifacts due to the numerical
differentiation of a piecewise interpolation. The form of the fit of the BPS EoS is as follows:

ε(P) = e f (ln(P)) (2)
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where the function f is as follows:

f (x) =− 1496.7952111882255 + 1109.8179718329682 x1/3 (3)

− 171.06847907037277 x4/3 + 95.47548413371702 x5/3

− 19.652076548674618 x2 + 1.4412357260222872 x7/3

− 3.995517504571193 × 10−14x8.

Note that the inclusion of decimal digits is essential for achieving adequate precision
across a broad spectrum of pressures and densities. The fit ranges in energy density from
∼7 g/cm3 to ∼4 × 1011 g/cm3 and it is visible in Figure 1. The percentage error is normally
smaller than about 7%, except for a small region at densities of about 20 g/cm3 where the
error reaches about 17%.
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Figure 1. BPS equation fit in red, tabulated points in black.

When dealing with SDs, it is important to understand that one can use any value for
εt as long as it is less than εdrip ≈ 4 × 1011 g/cm3.

Unlike regular WDs, where one typically only needs to specify the central pressure
P0 to define a star’s configuration when solving the TOV equation [17], SDs require two
parameters. As clear from Equation (1), the first parameter is the transition pressure Pt,
which represents the pressure at the interface where the quark core meets the outer nuclear
matter envelope, the second one is indeed the central pressure as in the normal case P0.

What allows the formation of SDs is the existence of the Coulomb barrier that separates
the outer nuclear matter from the inner core of quark matter. This separation occurs when
the maximum density of nuclear matter is lower than the neutron drip density εdrip. Beyond
this density, free neutrons start to appear. Importantly, since they are not subject to the
constraints of the Coulomb barrier, they can readily penetrate the core of quark matter.
Upon entering the core, they are absorbed, which leads to the deconfinement of their
constituent quarks.

Given that for SDs, the solutions of the TOV depend on two parameters, a question
arises about the suitability of choosing the pair of parameters (P0, Pt) for characterizing
these configurations. Choosing a value of Pt does not account for the fact that below the
neutron drip density, the baryonic content of the core remains constant, despite changing
the central pressure P0. The studies by Vartanyan et al. [18] and Vartanyan et al. [19] discuss
the case in which nuclear matter cannot transition into quark matter, allowing for the
definition of sequences of SDs with the same quark content in the core, which we define as
Bcore. Consequently, one can solve the TOV equation with an alternative parameter pair,
namely (P0, Bcore).

The quark baryon number, represented as Bcore, can be expressed as follows:
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Bcore(P0, Pt) =
∫ Rcore

0
4πr2 ρ(r)√

1 − 2m(r)/r
dr. (4)

Here, ρ is the baryon density within the quark core. It is important to note that these
two parameter choices are not interchangeable. If one opts to keep Pt constant while
varying P0, this leads to changes in Bcore, implying that hadrons can deconfine into quarks
because the change in the core is encoded in the fact that the central pressure is changing
by fixing the external pressure of the core Pt (transition pressure). Conversely, when Bcore
is maintained at a constant value, one necessitates an increase in Pt with higher values of
P0. Notice that Rcore depends on P0 and Bcore in the first case, and on P0 and Pt in the
second case.

In order to correctly consider an SD EoS at its equilibrium, we want to choose the
parameter pair (P0, Bcore). Bcore is a function of P0 and Pt; therefore, we need to find the
inverse relation that, given a choice of Bcore, gives back the value of Pt.

In our analysis, since the core of the system is relatively small, we can reasonably
approximate its impact on the gravitational force by using Newtonian physics in a first–
order approximation and we will later add a general relativistic correction.

For the EoS governing a small quantity of quark matter within the core, we utilize a
parametric expression, as follows:

P = (ε − εW)a. (5)

Here, the variable a serves as a multiplicative parameter that encompasses various
factors, including the bag constant. The term εW corresponds to the Witten density, de-
fined as εW = ε(P = 0). When considering the Newtonian hydrostatic equilibrium and
Equation (5), we obtain the following:

a
dε

ε2 = −4π

3
r dr. (6)

Upon integrating both sides and combining all constants into a single parameter,
denoted as K, we obtain the following equation:∫ εW

ε0

dε

ε2 = −K
∫ Rcore

0
dr r. (7)

In this equation, Rcore represents the radius of the core, and ε0 denotes the energy
density at the center of the system. The solution to both sides of this equation leads us to
the following expression:

ε0 =
εW

1 − KεWR2
core

. (8)

This equation shows how the central energy density is connected to the Witten density
εW, considering the parameter K and the core radius Rcore.

We can modify Equation (8) to replace the core radius Rcore with its baryon content,
denoted as Bcore, since R2

core ∝ B2/3
core. Additionally, considering that our core experiences

slight compression due to the surrounding nuclear matter, we can replace εW with the
effective energy density specific to the quark core, denoted as εQ

t , which is slightly greater
than εW. Indeed, the transition density at the boundary of the quark core satisfies εQ

t ≥ εW.
The new form of the equation reads as follows:

ε0(Bcore) =
εQ

t

1 − KεQ
t B2/3

core
. (9)
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Now, it is reasonable to incorporate some higher–order corrections into Equation (9)
to account for general relativistic effects:

ε0(Bcore) =
εQ

t

1 − k1εQ
t B2/3

core − k2εQ
t B4/3

core
. (10)

In this modified equation, we introduce two numerical parameters, k1 and k2, to
account for these higher–order relativistic effects. These parameters are determined numer-
ically and they depend on the quark matter EoS.

For the quark matter, we utilize the following thermodynamic potential [20–22]:

Ω(µ) = − 3
4π2 a4 µ4 +

3
4π2 (m

2
s − 4∆2

0)µ
2 + B. (11)

Here, a4 = 0.7 is a parametrization of perturbative QCD corrections, the gap parameter
∆0 = 80 MeV, the strange quark mass ms = 120 MeV, and the bag constant B = 1354 MeV4, as
in work by Bombaci et al. [23]. The specific parameter choices allow us to reach maximum
masses for an SQS of about 2.6 M⊙.

It is important to note that the parameters k1 and k2 are primarily influenced by the bag
constant, and any reasonable adjustments made to the other parameters in Equation (11)
have negligible impacts on k1 and k2.

Mass–Radius Relation

The relationship between mass and radius exhibits notable differences depending
on whether we consider the parameter pairs (P0, Pt) or (P0, Bcore). When constructing
a mass–radius (MR) diagram, it is essential to vary one parameter, typically the central
pressure (or central energy density), while keeping the other parameters constant.

If we opt to fix the transition pressure Pt, we are essentially exploring configurations
where quark matter consistently appears at the same energy density threshold. We begin
with a configuration, where P0 = Pt, denoted as point b (or b′ and b′′ depending on the
transition energy density), as illustrated in Figure 2. Then, we progress along the bottom
branch in a clockwise direction, increasing the central pressure. Point a indicates the
Chandrasekhar mass of the WD, while c is the maximum mass for SDs with εt = εdrip. The
mechanically stable configurations are the ones to the right of c.

In Figure 2, it becomes clear how the final point of the MR of the BPS EoS (WD),
defined as the point at which ε0 = εdrip, joins with the curve obtained by fixing εt = εdrip.
Indeed, the SD curves, constructed by choosing Pt as the transition pressure, join exactly
with the WDs’ MR at the point where, for the BPS, P0 = Pt (or ε0 = εt). When the transition
density is relatively low, the point where the curves join falls before reaching the WDs’
maximum mass on the MR diagram (point a in Figure 2). This is evident in Figure 3, where
a low energy transition density (εt = 107 g/cm3) is represented by the dashed black curve,
which has its maximum allowed mass at approximately 0.5 M⊙; this is where it joins the
WD curve, which is not shown in the figure.

On the other hand, the MR relation for SDs tends to converge with that of an SQS when
considering small radii. In particular, if the value of εt(Pt) is significantly smaller than the
neutron drip density, it implies that there is insufficient matter above the quark core (which
now constitutes the majority of the star) to exert significant compression on it. For the high
values of εt(Pt), specifically the neutron drip density, the radii of SDs are slightly smaller
compared to those of an SQS. This occurs because there is a broader range of pressure that
nuclear matter must cover in these cases. This behavior is shown in Figure 4, with detailed
representations of the maxima in Figure 5 and the low–mass region in Figure 6.
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Figure 2. Enlarged view of the MR sequence [8] around the Chandrasekhar limit. Additionally, the
WD configuration is shown for comparison.

0 (QS)

107

1010

5⨯1010

ϵdrip

10 100 1000 104
0.005

0.010

0.050

0.100

0.500

1

Radius (km)

M
(M

☉
)

Figure 3. MR diagram for EoSs with fixed transition densities, indicated in the legend in units of
g/cm3. Also shown in dashed red is the curve for a bare SQS, which does not have a transition
density to nuclear matter.
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Figure 4. Details of Figure 3. Here, the SQS branch is visible, where EoSs with constant εt are
analogous to non-bare SQSs, namely SQSs with a nuclear crust.
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When we fix εt(Pt), we implicitly let Bcore vary. Conversely, when we fix the baryon
content of the core (Bcore), it is the transition density that changes along the diagram.

When we establish a fixed value for Bcore, the corresponding configuration contains a
specific quantity of quarks in its core. If we start from a point at which εt(Pt) = 0, there is no
nuclear matter situated above the core to exert compression. In other words, it corresponds
to the extreme point on the left side of Figure 3 (red dashed curve) and satisfies Equation (8).

As we increase the central energy density (which means adding nuclear matter on top
of the quark core), we move in a counter-clockwise direction on the MR diagram. During
this progression, we intersect curves in Figure 3 that correspond to increasing values of
εt(Pt). This means that a curve representing a constant Bcore is comprised of configurations
with varying εt(Pt). The initial point on this curve has εt = 0 (or equivalently εQ

t = εW),
while the final point corresponds to εt = εdrip.
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Figure 5. Magnification of the maxima in Figure 4. The higher the transition density of the nuclear
matter, the more compact the star. Indeed, the wider the range between the constant εt and the star’s
surface, the greater the compression exerted by the surrounding nuclear matter on the strange core.

0 (QS)

107

1010

5�1010

�drip

0.5 1 5 10
10-5

10-4

0.001

0.010

0.100

Radius (km)

M
a
s
s
(M

☉
)

Figure 6. A closer look at the low–mass stars in Figure 4. It is evident that when εt is low, the
deviation from the radius of an SQS is less pronounced.

In Figure 7, we can observe specific behavior where, if the value of Bcore is too large,
the condition εt = εdrip is achieved at relatively small radii. The extreme points belong to
the curve representing the highest possible density of nuclear matter within the star, which
corresponds to the neutron drip density (the blue dashed one).
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Figure 7. MR sequences of SDs from Di Clemente et al. [8]. Configurations with constant transition
pressure Pt are represented by dashed lines. As the central pressure P0, namely Bcore, increases, these
sequences progress in a clockwise direction. The corresponding values of the transition density εt,
measured in g/cm3, are specified in the legend. Conversely, solid lines depict configurations where
the quark content of the core, Bcore, remains unchanged. In this scenario, increasing P0 (therefore,
increasing Pt) makes the curves progress anti–clockwise. In this case, the legend indicates the specific
values of Bcore.

3. Radial Oscillations

Radial oscillations are tools that can be used to assess the stability of a star. The
equation for radial oscillations is derived by perturbing both the fluid variables and the
spacetime metrics that characterize the interior of the star.

The differential equation governing radial oscillations can be expressed as follows:

(Hξ ′)′ = −(ω2W + Q)ξ . (12)

Here, ξ(r) represents the rescaled radial Lagrangian displacement [13], while ω is the
frequency of the oscillation mode. The functions in Equation (12) are defined as follows:

H = r−2(ε + P)eλ+3ϕc2
s

Q = r−2(ε + P)eλ+3ϕ(ϕ′2 + 4r−1ϕ′ − 8πe2λP)

W = r−2(ε + P)e3λ+ϕ . (13)

Here, c2
s represents the speed of sound, while λ(r) and ϕ(r) are the metric potentials.

It is essential to note that when dealing with multiple layers or phase transitions within the
star, it becomes necessary to establish clear boundary conditions at the interfaces between
these layers [10]. One must specify whether the two components of the fluid can transition
into one another, within the timescale of the oscillation. This consideration depends on
the presence of phase transitions and their associated timescales. Therefore, we categorize
these transitions as either slow transitions or fast transitions to distinguish between their
characteristic timescale.

3.1. Slow Transition

The scenario of a slow phase transition refers to a situation in which the timescale for
the conversion is significantly longer than the timescale of the perturbation. In this scenario,
the two phases do not intermix during the oscillations, and the volume element near the
surface that separates the phases moves along with the interface, expanding and contracting.
This particular situation applies to SDs where εt < εdrip, which essentially means that the
two phases never mix. In other words, we are considering the stability of star configurations
on the MR diagram where Bcore remains constant, as it cannot increase. In a practical sense,
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each star configuration can be associated with either a curve characterized by Bcore or one
defined by Pt but only one of them is physically acceptable. Consequently, the choice of
boundary conditions for radial oscillations must align with this physical interpretation.

For the slow conversion, the interface conditions involve the continuity of the radial
displacement at the boundary rt:

[ξ]+− ≡ ξ(r+t )− ξ(r−t ) = 0 . (14)

Additionally, it requires ensuring the continuity of the Lagrangian perturbation
of pressure:

[∆P]+− =

[
−eϕ r−2 γ(r) P

∂ξ

∂r

]+
−
= 0 . (15)

Here, γ(r) represents the relativistic adiabatic index, given by γ(r) = (∂P/∂ε)(ε +
P)P−1. By solving Equation (12), ω2 > 0 approaches the zero value at the maximum mass
in the MR plane along the curve defined by the constant values of Bcore, as proposed by
the criteria of Zel’dovich [12] and Bardeen et al. [13]. The eigenfunctions exhibit continuity
with a kink at rt (as shown in Figure 8), and the same behavior is reflected in ∆P(r) [11].
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0 1 2 3 4 5
10

-22
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Figure 8. In the scenario where hadronic matter does not transition into quark matter during
the oscillation timescale, the fundamental eigenfunction of radial modes is examined. The star
under consideration in this analysis and referred to in the fast scenario figure has M≃ 0.02 M⊙,
Bcore ≃ 2.69 × 1055 and εt = εdrip. This strange dwarf is situated just beyond the minimum point on
the dashed blue curve in Figure 7. The mode in question is stable since ω2 = 0.788275 Hz2 is positive.
A closer look at the region near r = rt within the inset plot highlights a kink in the eigenfunction.
Figure borrowed from Di Clemente et al. [8].

3.2. Rapid Transition

It is possible to exchange mass between the two phases when the timescale for the
conversion is shorter than the timescale of the perturbation. The boundary between these
phases is in thermodynamic equilibrium, given the rapid conversion rates; therefore,
Equation (15) remains applicable in this scenario.

The difference with respect to the slow transition case is in the interface condition
from Equation (14). Here, this condition becomes as follows:[

ξ +
γPξ ′

P′

]+
−
= 0. (16)

This modification results in an eigenfunction that exhibits a discontinuity at the
interface, distinguishing it from the behavior seen in slow transitions, as visible when
comparing Figure 9 and Figure 8.
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Figure 9. In the rapid transition scenario, we observe a fundamental eigenfunction that has a sharp
discontinuity, suggesting an instantaneous change rather than a gradual one, even though it is
extremely rapid in work by Alford et al. [7]. This mode is unstable since it is characterized by a
negative squared frequency of ω2 = −1.62785 Hz2. Figure borrowed from Di Clemente et al. [8].

The reason behind the apparent inconsistency between the findings of Glendenning
et al. [3,4] and those of Alford et al. [7] is now evident. In the work of Alford et al. [7], they
employed an EoS similar to the one discussed in Equation (1). However, they introduced a
smoothing mechanism that eliminated the sharp discontinuity between the two phases,
which notably, allowed for an instantaneous transformation from one phase to the other for
the oscillation timescale. The smoothed EoS used in [7] can be written as follows:

ε(P) = [1 − tanh((P − Pcrit)/δP)εBPS(P)]/2

+
[
1 + tanh((P − Pcrit)/δP)εquark(P)

]
/2 . (17)

Here, δP represents the transition width. This approach is analogous to the rapid
transition case discussed here as both implicitly allow for a mixed phase. In [7], the
eigenfunction exhibits a very rapid increase at the interface without a proper discontinuity.
The magnitude of this increase is entirely equivalent to the magnitude of the discontinuity
we obtain, which is illustrated in Figure 9.

In contrast, it is possible that, in work by Glendenning et al. [3,4], the eigenfunc-
tion is assumed to be continuous, corresponding to the situation described in the slow
transition scenario.

The distinction between slow and rapid transitions introduced by Thorne [24] is based
on the observation that the consistency between stability analyses, one based on the TOV
solutions and the other on radial oscillations, is linked to the use of the adiabatic index
derived from the EoS employed in the static analysis. The analyses coincide in the case of
rapid transitions. In contrast, in slow transitions, it is generally challenging to calculate
the adiabatic index, primarily due to the need to account for imbalances introduced by
perturbations in the computation of the slow adiabatic index [25,26].

In our case, the conversion between hadrons and quarks is confined to a two–dimensional
surface, rather than an extended volume. This simplifies the modification of both the
adiabatic index since it corresponds to adapting the interface conditions [10], and the EoS.
In the context of the slow transition scenario, this means to fix the quark content [18,19].
This dual modification allows the creation of a link between static and dynamic analyses in
the case of slow transitions. This relationship is shown in Figure 10. It is worth noting that
this correspondence was already established by Alford et al. [7] in the context of the rapid
transition case and we reproduced the behavior near the minimum in Figure 11.
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Figure 10. Eigenvalues of the fundamental mode for the slow scenario are depicted by a dashed
line, whereas the solid line represents the masses of SDs with a core baryonic content Bcore = 1055,
approaching the Chandrasekhar mass Mmax ≈ 0.996 M⊙. These are plotted as functions of the central
energy density, ϵ0 shifted by a constant factor ϵ0 bare, which is a pure QS sharing the same Bcore. The
point where ω2 becomes zero aligns with the maximum mass, beyond which ω2 turns negative,
indicating instability at higher densities. The figure is borrowed from Di Clemente et al. [8].
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Figure 11. Eigenvalues of the fundamental mode in the fast case (dashed) and masses of SDs having
εt = εdrip, close to the minimum (solid), plotted as functions of the difference between the central
energy density, ϵ0, and the Witten one, ϵW. The zero of ω2 coincides with the minimum mass. This
result is consistent with [7].

The results on the stability of SDs, obtained in work by Di Clemente et al. [8] and
summarized here, were later confirmed by the analysis of Goncalves et al. [27].

4. SD Collapse

The transition from ordinary matter to strange quark matter can release huge amounts of
energy and it can be associated with violent phenomena such as gamma–ray bursts [28–30]
and extremely energetic supernovae [31]. In this review, we will only discuss the possible
transition of ordinary matter in an SD to strange quark matter and we will discuss its possible
signatures. In a binary system where a WD orbits a main sequence star, mass transfer occurs
as the WD accretes material from its companion. This typical scenario culminates in a
type Ia supernova (SN) event. However, a different outcome known as accretion–induced
collapse (AIC) is theoretically possible. It is important to note that while the concept of AIC
has been explored, actual observations of such events are notably absent [32]. This absence
can be attributed to the substantial difference in timescales between the collapse process
and the nuclear reactions responsible for igniting the WD deflagration.

The presence of the strange quark matter core in SDs becomes important when the
object faces significant perturbations, like in the early stages of a type Ia supernova (SN)
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event. Specifically, if the quark matter core is sufficiently large, it can potentially cause the
object to collapse rather than undergo the usual deflagration process (see the illustration in
Figure 12). The difficulties of achieving an AIC arise from the fact that nuclear reactions
occur when the star is near the Chandrasekhar limit. This phase, characterized by marginal
mechanical stability (ω2 ≃ 0), leads to the star’s disruption before AIC can take place [33].

Figure 12. Illustration of the AIC mechanism for a system consisting of an SD and a main sequence star.

The mechanical instability of SDs is strictly related to the rapid conversion of hadrons
into quarks. This process is a crucial mechanism that allows the star to undergo a collapse
by becoming mechanically unstable.

As long as εt ≪ εdrip, the object remains mechanically stable. However, the system
becomes unstable if a fluctuation causes the density to exceed εdrip in a small region
near the core or if free neutrons are produced and fall into the quark core. In this analysis,
temperature can play an important role. From Haensel et al. [34] and Hempel and Schaffner-
Bielich [35], one can notice that at temperatures exceeding about 0.5 MeV, a significant
fraction of free neutrons appears, already at densities of the order of 109 g/cm3. To assess
this instability, we calculate the fundamental eigenvalue of a star at the Chandrasekhar
limit, assuming Bcore remains constant. While for a slow transition, ω2 = 0, in the case of a
rapid transition, for the same point in the MR diagram, ω2 becomes significantly negative.
It is important to remark that each point at constant Bcore corresponds to a point at constant
εt; therefore, one can go from a situation in which the transition is physically slow to a
situation in which the star’s internal boundary is in a rapid transition regime and the
baryon content of the core is not constant anymore. In any case, it is illogical to apply a slow
transition scenario when εt remains constant or to employ a fast transition scenario when
Bcore is held constant because Bcore cannot increase in that case (and, therefore, the transition
must not occur). However, exceptions may arise when the star is in close proximity to
the Chandrasekhar mass. In such situations, perturbations could potentially drive a small
region of the star, located near the strange core, to exceed the neutron drip density or
generate some free neutrons. This, in turn, could trigger the phase transition, going from
having a constant Bcore to a situation in which Bcore increases because of the neutron flux.

Figure 13 displays the e–folding time, defined as 2π/|ω|. When Bcore ≳ 1046, the
e–folding, which is the typical collapse timescale, falls below 1 second, implying that the
collapse can be more rapid than the full development of a deflagration, which is of the
order of several seconds [36]. It can be argued that the amount of quark matter that triggers
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the collapse depends on the EoS. Therefore, we calculated the e–folding time for the set
of parameters for the quark EoS presented in work by Bombaci et al. [23]. The results
remained consistent with our previous findings. In the same figure, the maximum density
reached by the nuclear matter component at the boundary (εt) is also shown. From the
behavior of εt, it is possible to determine when the static structure of a 1 M⊙ SD remains
similar to the one of a WD. When Bcore ≳ 1052, the structure of the star changes, and the
boundary density εt deviates from ∼109 g/cm3, which is the typical central density of a
WD at the Chandrasekhar mass. This suggests that the presence of the quark core does not
influence the static properties of the star unless the value of Bcore is large enough to exert a
noticeable gravitational pull.
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Figure 13. The characteristics of stars at their maximum mass are analyzed in relation to their quark
content. The solid black curve represents how the timescale of mechanical instability varies with Bcore.
Meanwhile, the dashed red line illustrates the density at which the transition occurs, highlighting the
relationship between the core’s baryonic content and the WD’s structural stability. Figure borrowed
from Di Clemente et al. [8].

An essential query regarding SDs pertains concerns how they accumulate the strange
quark matter in their cores. The most straightforward explanation lies in the idea that WDs
gradually accumulate strangelets over their lifespan. This idea is linked to the possibility
that dark matter is made, at least in part, of strangelets [6]. In a few papers, it has been
shown that this scenario is compatible with the most recent data from cosmology and astro-
physics [37–40]. In work by Di Clemente et al. [41], we have shown that an astrophysical
path leading to the formation of subsolar compact stars in electron-capture supernovae can
be based on the hypothesis of dark matter made of strangelets. The existence of subsolar-
mass compact objects has been suggested in work by Doroshenko et al. [42] and it cannot
be explained by solely considering standard equations of state [43].

Another mechanism to produce subsolar-mass compact objects is based on AIC. If
AIC takes place in an SD instead of a WD, an SQS is produced instead of an NS. Since this
phenomenon is very energetic and the collapsed object is more bound than NSs, the final
object can be a subsolar-mass km-sized compact star [8,44].

5. Other Signatures

A novel approach to distinguish SDs from WDs (by utilizing gravitational-wave
observations, specifically by measuring the tidal deformability) was suggested in work by
Perot et al. [45].

When comparing SDs to WDs, a notable feature is the significant reduction in the tidal
deformability coefficient, which can reach up to 50% for an SD with a mass of 0.6 M⊙. This
difference in tidal parameters could be measured by upcoming space-based gravitational-
wave detectors such as the laser interferometer space antenna (LISA).
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In work by Perot et al. [45], the authors do not employ the BPS EoS to describe the
WD structure. Instead, they utilize a more refined EoS that accounts for the precise atomic
species and their correct balance within the WDs. Additionally, pycnonuclear reactions
are taken into account, which usually have their onset at a density of 1010 g/cm3 for the
carbon layer, so at a density of interest for SDs. Nevertheless, their analysis indicates that
the impact of these reactions is minimal on the SD structure.

Perot and Chamel [46] on the other hand, focused on the effect of having a crystalline
color superconductor [47] as the phase for the strange quark matter core. The effect of the
large rigidity of the elastic core on the tidal deformability should be relevant (which has
a shear modulus that is 2–3 times larger than the one of the hadronic envelope) but it is
totally canceled because of the presence of the surrounding hadronic layers. Nevertheless,
the reduction in tidal deformability, compared to that of a white dwarf, remains significant
due to the presence of the strange matter core.

5.1. Possible SD Observations

It is worth noting that in a study by Kurban et al. [48], seven potential SD candidates
were identified. These candidates exhibit a mass range spanning from approximately
0.02 to 0.12 M⊙ and have relatively consistent radii, falling within the approximate range
of 9000 to 15,000 km. To illustrate the incompatibility with WDs models of those candidates,
the paper presents MR relationships for WDs using EoSs of pure magnesium (Mg) and
helium (He) stars, in addition to the BPS EoS. By employing an EoS for SDs similar to that
in work by Alford et al. [7], it is shown how these objects, due to their compactness, can be
good SD candidates. Moreover, this claim is supported by the fact that the BPS EoS serves
as an upper limit for compactness in WDs.

To identify potential SD candidates, the authors analyzed WDs listed in the Montreal
White Dwarf Database1. They employed analyses based on spectroscopic data and Gaia
observations [49]. The data points with their error bars corresponding to the objects
identified as SD candidates are visible in Figure 14.
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Figure 14. MR relation for constant Bcore SDs with data from the Kurban et al. [48] analysis.

Recent and more precise measurements of the masses and radii of these WDs by the
satellite GAIA [50] indicate that some of these objects could be compatible with a normal
WD scenario.

6. Conclusions

The existence of strange dwarfs is an intriguing possibility in astrophysics since it is
strictly connected to cosmology and, in particular, to the possibility that dark matter is
composed of nuggets of strangelets [6,40]. One of the most profound astrophysical con-
sequences of the existence of strange dwarfs involves the potential formation of subsolar
SQSs [8]. This formation process could occur through an accretion-induced collapse mecha-
nism. However, the feasibility and specific mechanisms at the basis of this process require
further investigation, potentially through detailed studies and simulations in the future.
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Abbreviations
The following abbreviations are used in this manuscript:

NS neutron star

SQS strange quark star

WD white dwarf

SD strange dwarf

MR mass-radius

EoS equation of state

TOV Tolman–Oppenheimer–Volkoff

BPS Baym–Pethick–Sutherland

SN supernova

AIC accretion-induced collapse

Note
1 http://www.montrealwhitedwarfdatabase.org/tables-and-charts.html (accessed on 1 October 2023).
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