Hybrid Isentropic Twin Stars
Abstract
:1. Introduction
2. Hybrid EOS
2.1. QM EOS
2.2. Hadronic EOS
3. Results for the Hybrid EOS
4. Summary and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
1 | |
2 | This statement holds provided the dimensionless critical pressure at the onset of the phase transition is small, . Following the analysis of hybrid star classification in Ref. [4], in the interval a disconnected branch of hybrid stars as a necessary condition for mass twin stars can also occur in the region (B) below the Seidov line, where the condition (13) is not fulfilled. As we show in Figure 14, for the whole range of entropy per baryon values considered in this work , the dimensionless critical pressure follows a linear dependence and stays below . |
References
- Bauswein, A.; Blaschke, D.; Fischer, T. Effects of a strong phase transition on supernova explosions, compact stars and their mergers. arXiv 2022, arXiv:2203.17188. [Google Scholar] [CrossRef]
- Carlomagno, J.P.; Contrera, G.A.; Grunfeld, A.G.; Blaschke, D. Thermal twin stars within a hybrid equation of state based on a nonlocal chiral quark model compatible with modern astrophysical observations. Phys. Rev. D 2024, 109, 043050. [Google Scholar] [CrossRef]
- Contrera, G.A.; Blaschke, D.; Carlomagno, J.P.; Grunfeld, A.G.; Liebing, S. Quark-nuclear hybrid equation of state for neutron stars under modern observational constraints. Phys. Rev. C 2022, 105, 045808. [Google Scholar] [CrossRef]
- Alford, M.G.; Han, S.; Prakash, M. Generic conditions for stable hybrid stars. Phys. Rev. D 2013, 88, 083013. [Google Scholar] [CrossRef]
- Alford, M.G.; Han, S. Characteristics of hybrid compact stars with a sharp hadron-quark interface. Eur. Phys. J. A 2016, 52, 62. [Google Scholar] [CrossRef]
- Gerlach, U.H. Equation of State at Supranuclear Densities and the Existence of a Third Family of Superdense Stars. Phys. Rev. 1968, 172, 1325–1330. [Google Scholar] [CrossRef]
- Kampfer, B. On the possibility of stable quark and pion-condensed stars. J. Phys. A Math. Gen. 1981, 14, L471–L475. [Google Scholar] [CrossRef]
- Kämpfer, B. On stabilizing effects of relativity in cold spheric stars with a phase transition in the interior. Phys. Lett. B 1981, 101, 366–368. [Google Scholar] [CrossRef]
- Glendenning, N.K.; Kettner, C. Nonidentical neutron star twins. Astron. Astrophys. 2000, 353, L9. [Google Scholar]
- Schertler, K.; Greiner, C.; Schaffner-Bielich, J.; Thoma, M.H. Quark phases in neutron stars and a ’third family’ of compact stars as a signature for phase transitions. Nucl. Phys. A 2000, 677, 463–490. [Google Scholar] [CrossRef]
- Mishustin, I.N.; Hanauske, M.; Bhattacharyya, A.; Satarov, L.M.; Stoecker, H.; Greiner, W. Catastrophic rearrangement of a compact star due to the quark core formation. Phys. Lett. B 2003, 552, 1–8. [Google Scholar] [CrossRef]
- Blaschke, D.; Alvarez-Castillo, D.E.; Benic, S. Mass-radius constraints for compact stars and a critical endpoint. PoS 2013, CPOD2013, 063. [Google Scholar] [CrossRef]
- Benic, S.; Blaschke, D.; Alvarez-Castillo, D.E.; Fischer, T.; Typel, S. A new quark-hadron hybrid equation of state for astrophysics—I. High-mass twin compact stars. Astron. Astrophys. 2015, 577, A40. [Google Scholar] [CrossRef]
- Christian, J.E. Neutron Star Equations of State with a Phase Transition in a Relativistic Mean Field Approach at Finite Temperatures. Ph.D. Thesis, Goethe University Frankfurt, Frankfurt, Germany, 2023. [Google Scholar] [CrossRef]
- Hempel, M.; Heinimann, O.; Yudin, A.; Iosilevskiy, I.; Liebendörfer, M.; Thielemann, F.K. Hot third family of compact stars and the possibility of core-collapse supernova explosions. Phys. Rev. D 2016, 94, 103001. [Google Scholar] [CrossRef]
- Largani, N.K.; Fischer, T.; Bastian, N.U.F. Constraining the Onset Density for the QCD Phase Transition with the Neutrino Signal from Core-collapse Supernovae. Astrophys. J. 2024, 964, 143. [Google Scholar] [CrossRef]
- Fischer, T.; Bastian, N.U.F.; Wu, M.R.; Baklanov, P.; Sorokina, E.; Blinnikov, S.; Typel, S.; Klähn, T.; Blaschke, D.B. Quark deconfinement as a supernova explosion engine for massive blue supergiant stars. Nature Astron. 2018, 2, 980–986. [Google Scholar] [CrossRef]
- Seidov, Z.F. The Stability of a Star with a Phase Change in General Relativity Theory. Soviet Astron. 1971, 15, 347. [Google Scholar]
- Iosilevskiy, I. Entropic and enthalpic phase transitions in high energy density nuclear matter. Compact Stars in the QCD Phase Diagram IV, Blaschke, D., Fischer, T., Eds.; Unpublished work (code eConf C140926 (2015)). 2015. [Google Scholar]
- Yudin, A.V.; Razinkova, T.L.; Nadyozhin, D.K. Model equation of state to investigate the structure and evolution of superdense stars with a phase transition. Astron. Lett. 2013, 39, 161–170. [Google Scholar] [CrossRef]
- Jakobus, P.; Mueller, B.; Heger, A.; Motornenko, A.; Steinheimer, J.; Stoecker, H. The role of the hadron-quark phase transition in core-collapse supernovae. Mon. Not. R. Astron. Soc. 2022, 516, 2554–2574. [Google Scholar] [CrossRef]
- Blaschke, D.B.; Sandin, F.; Skokov, V.V.; Typel, S. Accessibility of Color Superconducting Quark Matter Phases in Heavy-ion Collisions. Acta Phys. Polon. Supp. 2010, 3, 741–746. [Google Scholar]
- Ivanytskyi, O.; Blaschke, D. A new class of hybrid EoS with multiple critical endpoints for simulations of supernovae, neutron stars and their mergers. Eur. Phys. J. A 2022, 58, 152. [Google Scholar] [CrossRef]
- Fischer, T.; Blaschke, D.; Hempel, M.; Klähn, T.; Łastowiecki, R.; Liebendörfer, M.; Martínez-Pinedo, G.; Pagliara, G.; Sagert, I.; Sandin, F.; et al. Core collapse supernovae in the QCD phase diagram. Phys. Atom. Nucl. 2012, 75, 613–620. [Google Scholar] [CrossRef]
- Typel, S.; Röpke, G.; Klähn, T.; Blaschke, D.; Wolter, H.H. Composition and thermodynamics of nuclear matter with light clusters. Phys. Rev. 2010, C81, 015803. [Google Scholar] [CrossRef]
- Baym, G.; Pethick, C.; Sutherland, P. The Ground state of matter at high densities: Equation of state and stellar models. Astrophys. J. 1971, 170, 299–317. [Google Scholar] [CrossRef]
- Glendenning, N.K. First order phase transitions with more than one conserved charge: Consequences for neutron stars. Phys. Rev. D 1992, 46, 1274–1287. [Google Scholar] [CrossRef]
- Verbunt, F.; Phinney, E.S. Tidal circularization and the eccentricity of binaries containing giant stars. Astron. Astrophys. 1995, 296, 709. [Google Scholar]
- Phinney, E.S. Pulsars as Probes of Newtonian Dynamical Systems. Philos. Trans. R. Soc. Lond. Ser. A 1992, 341, 39–75. [Google Scholar] [CrossRef]
- Jiang, L.; Li, X.D.; Dey, J.; Dey, M. A Strange Star Scenario for the Formation of Eccentric Millisecond Pulsar/Helium White Dwarf Binaries. Astrophys. J. 2015, 807, 41. [Google Scholar] [CrossRef]
- Tauris, T.M.; van den Heuvel, P.J. Physics of Binary Star Evolution—From Stars to X-ray Binaries and Gravitational Wave Sources. arXiv 2023, arXiv:2305.09388. [Google Scholar] [CrossRef]
- Chanlaridis, S.; Ohse, D.; Aspradakis, N.; Antoniadis, J.; Blaschke, D.; Alvarez-Castillo, D.E.; Danchev, V.; Langer, N. Isolated and eccentric millisecond pulsars from strong phase transitions in neutron star binaries. 2024; in preparation. [Google Scholar]
- Schaeffer, R.; Zdunik, J.L.; Haensel, P. Phase transitions in stellar cores. I—Equilibrium configurations. Astron. Astrophys. 1983, 126, 121–145. [Google Scholar]
- Lindblom, L. Phase transitions and the mass radius curves of relativistic stars. Phys. Rev. D 1998, 58, 024008. [Google Scholar] [CrossRef]
Character | |||||||||
---|---|---|---|---|---|---|---|---|---|
2.0 | 12.41 | 1.114 | 1.0582 | 1.0582 | 0.0000 | 38.36 | 38.87 | 0.51 | enthalpic |
2.5 | 12.61 | 1.311 | 1.2490 | 1.2487 | 0.0003 | 46.33 | 45.57 | −0.76 | entropic |
3.0 | 13.06 | 1.557 | 1.4878 | 1.4853 | 0.0025 | 53.16 | 50.84 | −2.32 | entropic |
3.5 | 13.58 | 1.849 | 1.7726 | 1.7621 | 0.0105 | 58.89 | 55.01 | −3.88 | entropic |
4.0 | 14.29 | 2.190 | 2.1078 | 2.0756 | 0.0322 | 63.74 | 58.28 | −5.46 | entropic |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carlomagno, J.P.; Contrera, G.A.; Grunfeld, A.G.; Blaschke, D. Hybrid Isentropic Twin Stars. Universe 2024, 10, 336. https://doi.org/10.3390/universe10090336
Carlomagno JP, Contrera GA, Grunfeld AG, Blaschke D. Hybrid Isentropic Twin Stars. Universe. 2024; 10(9):336. https://doi.org/10.3390/universe10090336
Chicago/Turabian StyleCarlomagno, Juan Pablo, Gustavo A. Contrera, Ana Gabriela Grunfeld, and David Blaschke. 2024. "Hybrid Isentropic Twin Stars" Universe 10, no. 9: 336. https://doi.org/10.3390/universe10090336
APA StyleCarlomagno, J. P., Contrera, G. A., Grunfeld, A. G., & Blaschke, D. (2024). Hybrid Isentropic Twin Stars. Universe, 10(9), 336. https://doi.org/10.3390/universe10090336