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Abstract: In this work, we present a review of Energy-Momentum Squared Gravity (EMSG)—more
specifically, f (R, TµνTµν) gravity, where R represents the Ricci scalar and Tµν denotes the energy-
momentum tensor. The inclusion of quadratic contributions from the energy-momentum components
has intriguing cosmological implications, particularly during the Universe’s early epochs. These
effects dominate under high-energy conditions, enabling EMSG to potentially address unresolved is-
sues in General Relativity (GR), such as the initial singularity and aspects of big-bang nucleosynthesis
in certain models. The theory’s explicit non-minimal coupling between matter and geometry leads to
the non-conservation of the energy-momentum tensor, which prompts the investigation of cosmolog-
ical scenarios through the framework of irreversible thermodynamics of open systems. By employing
this formalism, we interpret the energy-balance equations within EMSG from a thermodynamic
perspective, viewing them as descriptions of irreversible matter creation processes. Since EMSG
converges to GR in a vacuum and differences emerge only in the presence of an energy-momentum
distribution, these distinctions become significant in high-curvature regions. Therefore, deviations
from GR are expected to be pronounced in the dense cores of compact objects. This review delves into
these facets of EMSG, highlighting its potential to shed light on some of the fundamental questions in
modern cosmology and gravitational theory.

Keywords: modified gravity; energy-momentum squared gravity; non-conservation of the
energy-momentum tensor; irreversible thermodynamics of open systems; cosmology; compact
objects; black holes; wormholes

1. Introduction

The discovery of late-time cosmic acceleration [1,2] has spurred extensive research
into modified theories of gravity [3–12] as an alternative to dark energy [13]. Among
these, several theories incorporate non-minimal couplings between geometry and matter
[14–18], leading to intriguing modifications in the gravitational dynamics. A distinctive
feature of these theories is the non-conservation of matter’s energy-momentum tensor. The
explicit coupling between geometry and matter results in a non-zero covariant derivative
of the energy-momentum tensor, leading to non-geodesic motion and the emergence
of an extra force. This additional force modifies the standard motion of test particles,
influencing both local and cosmological scales. Notable examples include f (R,Lm) [19],
f (R, T) [20,21], f (R, TµνTµν) [22,23], and f (R, T, RµνTµν) [24,25] theories of gravity. Here,
R and Rµν represent the Ricci scalar and tensor, respectively; Lm denotes the matter
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Lagrangian density; and T = Tµ
µ = gµνTµν is the trace of the energy-momentum tensor

(Tµν). In a cosmological context, the geometry–matter couplings introduce compelling
phenomenological effects, enabling a unified description of the different cosmological
epochs. For instance, these modified gravity models prove invaluable for describing
interactions between dark energy and dark matter, providing insights into the mechanisms
driving the late-time cosmic speed-up by modifying the gravitational field equations.
Moreover, they offer potential explanations for the observed behavior of the galactic flat
rotation curves. In this framework, the extra terms in the gravitational field equations
alter the equations of motion for test particles, introducing a supplementary gravitational
interaction that can account for the rotation curves without invoking dark matter.

A novel gravitational framework known as energy-momentum squared gravity (EMSG)
or f (R, TµνTµν) gravity [22] has garnered significant attention in the scientific community
since its introduction. The pioneering paper laid the groundwork for this theory, which
was later refined [23]. The action was originally expressed as

S =
1

2κ2

∫ √
−g f (R, TµνTµν)d4x + Sm , (1)

where κ2 = 8πG/c4 is a constant; Sm is the action of the matter Lagrangian, i.e.,
Sm =

∫ √−gLmd4x; R is the Ricci scalar; and, finally, TµνTµν is the self-contraction of the
stress energy tensor that characterizes the aforementioned theory. In [23], the action func-
tional of the theory was simplified to the specific case of f (R, TµνTµν) = R − 2Λ − ηTµνTµν,
where η is a coupling constant and Λ is the cosmological constant, which was subse-
quently dubbed EMSG. This abbreviation has since become the standard term for the
theory. However, some authors, such as the authors of [26], refer to the original form
(as seen in Equation (1)) as generalized energy-momentum squared gravity (gEMSG), to
differentiate it from other formulations, such as the power law described in the functional
form of f = f

(
R,

(
TµνTµν

)n
)

(see Ref. [27]) or the inclusion of the matter Lagrangian in
the functional (see Ref. [28]). In fact, establishing a consistent notation has been crucial for
maintaining coherence and aligning with established conventions in the literature. Thus, in
this work, in order to avoid confusion and to simplify definitions, we generically consider
the theories described by the action in Equation (1) as energy-momentum squared gravity
(EMSG).

Contrary to f (R, T) gravity, EMSG induces quadratic contributions of the energy-
momentum components to the right-hand side of the field equations. This self-contraction
of the energy-momentum tensor has particularly interesting cosmological consequences
during early epochs of the Universe due to its effects being predominant under high-
energy regimes, which then allows EMSG to address some of the open questions left
in general relativity (GR), such as the initial singularity, dense compact astrophysical
objects, or even the big bang nucleosynthesis under some particular models. In fact, an
extensive body of literature surrounding the general formulation of this theory includes
numerous papers on a plethora of topics, for instance, in a cosmological setting [26,29–35]
and compact objects [36–56], among other issues. In fact, energy-momentum squared
symmetric teleparallel gravity has also been explored to explain the cosmological dynamics
of both the early and the late Universe without resorting to the invocation of dark energy
[57]. Tight constraints have also been obtained on specific parameters of EMSG by binary
pulsar observations [58].

Indeed, these higher-order quadratic terms lead the field equations to resemble
other deeply interesting theories, such as loop quantum gravity [59] or brane-world
cosmologies [60–62]. In particular, as we will see, EMSG replaces terms such the energy
density (ρ) with ρ(1 ±O(ρ2)), where the negative contribution is associated with loop
quantum gravity [59] and the positive contribution is associated with the brane-world
cosmologies [62] while having an entirely different foundation. It is worth noting
that EMSG accomplishes all this without introducing novel forms of fluid stresses
(such as extra scalar fields or bulk viscosity) [36]. In regions of high curvature, such as
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the dense cores of neutron stars or black holes, the energy-momentum tensor becomes
significant, causing EMSG corrections to deviate from GR. These deviations manifest in the
following several key ways: (i) EMSG changes the internal structure equations of compact
objects, affecting density profiles, pressure distributions, and mass–radius relationships;
(ii) gravitational waves from compact object mergers may differ under EMSG and be
potentially detectable by observatories; (iii) EMSG could influence the formation, evolution,
and stability of black holes, neutron stars, and wormholes, as well as the end states of
stellar collapse.

The resurgence in popularity of this theory can be attributed to several key devel-
opments. Its momentum grew rapidly with the publication of [23], which demonstrated
that under a particular yet simple Lagrangian ( f = R + γTµνTµν), the early epochs of the
cosmos had a minimum length and a finite maximum energy density. This finding resolves
the primordial singularity without resorting to quantum gravity by generating a bouncing
cosmology while maintaining a consistent sequence of cosmic epochs and adequately
explaining cosmic behavior. Consequently, EMSG can be considered an emergent universe
scenario while still being a subset of the k-essence models [63]. It is worth noting that
not all EMSG solutions yield these results. However, from a theoretical perspective, it is
still a promising indication that EMSG might be an interesting theory to explore further.
Although it has been argued that a cosmological evolution that can regularly connect the
early-universe bounce to a viable de Sitter late-time universe should not generally exist
[30], this issue is addressed by the existence of a vacuum energy density in EMSG [64].

Finally, some theoretical remarks regarding EMSG are warranted. Similar to f (R, T)
gravity, EMSG does not satisfy the conservation of the energy-momentum tensor. This
implies that the paths of test particles may exhibit non-geodesic motion. However, in the
special case where TµνTµν = 0, the standard geodesic path is recovered [65]. Moreover,
EMSG may not be equivalent to f (R) gravity when the trace of the energy-momentum
tensor (T = gµνTµν) is zero. For instance, in the case of radiation, although T = 0, EMSG
still contains non-vanishing terms [31,32]. These differences are explored below.

This review paper is organized in the following manner: In Section 2, we briefly present
the formalism of EMSGin the geometric and scalar-tensor representations and consider an
extended theory of gravity with an n-th-order invariant constructed of contractions of the
energy-momentum tensor. In Section 3, we explore the thermodynamics of open systems
with the possibility of irreversible matter creation processes due to the non-conservation of
the energy-momentum tensor in EMSG. In Section 4, we briefly review the fundamentals
of cosmology in EMSG and explore some general cosmological models. In Section 5, we
explore compact objects in EMSG—in particular, the possibility of black hole solutions—
and expand on wormhole geometries. Finally, in Section 6, we summarize and conclude
this research.

Henceforth, to simplify the notation, we denote the self-contraction of the energy-
momentum tensor as the following scalar: T = TµνTµν. Although this notation is used
for brevity, there are instances where displaying the full contraction provides a deeper
understanding of the calculations. Whenever T is mentioned, it refers to this specific
contraction. Additionally, it should be noted that most of the analysis presented here is
based on the authors’ original research. However, readers have access to a substantial body
of literature for further exploration and context.

2. f (R,T ) Gravity: Formalism
2.1. Action and Field Equations

In this section, we provide a brief overview of the geometric formalism of the theory.
The action (S) that describes f (R, T ) gravity is given by

S =
1

2κ2

∫
Ω

√
−g f (R, T )d4x +

∫
Ω

√
−gLm d4x, (2)
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Varying the action (2) with respect to the metric provides the following modified
gravitational field equations:

fRRµν −
1
2

gµν f −
(
∇µ∇ν − gµν□

)
fR = 2κ2Tµν − fT Θµν, (3)

where □ = ∇µ∇µ is the usual D’Alembert operator, fR ≡ ∂ f /∂R and fT ≡ ∂ f /∂T , and
the auxiliary tensor (Θµν) is defined as

Θµν ≡ δT
δgµν . (4)

Taking into account the following explicit variation:

δ
(

TαβTαβ
)
= δ

(
gαµgβνTαβTµν

)
= 2

(
Tαβ

δTαβ

δgµν
+ Tσ

µ Tνσ

)
δgµν

= 2
[

Tµβ

(
gαβ

∂Lm

∂gµν +
δgαβ

δgµν Lm − 2
∂2Lm

∂gµν∂gαβ

)
+ Tν

µ Tνσ

]
δgµν

= 2
[

Tαβ

{
−Lm

(
gµαgβν −

1
2

gµνgαβ

)
− 1

2
gαβTµν − 2

∂2Lm

∂gµν∂gαβ

}
+ Tσ

µ Tνσ

]
δgµν,

(5)

the auxiliary tensor Θµν can be written as

Θµν = −2Lm

(
Tµν −

1
2

gµνT
)
− TTµν + 2Tµ

αTαν − 4Tαβ ∂2Lm

∂gµν∂gαβ
. (6)

The energy-momentum tensor for EMSG is generically not conserved and is transpar-
ent according to the following relation:

∇µTµν = − fT gµν∇µ(TαβTαβ) + 2∇µ( fT θµν), (7)

which has implications that are further explored below.

2.2. Scalar-Tensor Representation

In addition to the familiar geometrical representation, EMSG can also be described
using the scalar-tensor representation. This approach, which has gained popularity recently,
separates the scalar and tensor parts of the variational action. It results in second-order
equations in the metric, simplifying calculations and potentially addressing issues like
Ostrogradsky instabilities [66,67]. For a detailed derivation of EMSG in this representation,
we refer the reader to [32].

Let us start by defining the action in the scalar-tensor representation as

S =
1

2κ2

∫
Ω

√
−g[ϕR + ψT − V(ϕ, ψ)]d4x +

∫
Ω

√
−gLmd4x, (8)

where ϕ and ψ are the characteristic scalar fields of this representation, which are non-
minimally coupled to the Ricci scalar (R) and the contraction of the energy-momentum
tensor (T ), respectively. Moreover, V(ϕ, ψ) represents the potential of the two scalar fields.
Varying the action (8) with respect to the metric leads to the following field equations:

ϕ

(
Rµν −

1
2

Rgµν

)
+

1
2

gµνV −
(
∇µ∇ν − gµν□

)
ϕ = 8πTµν − ψ

(
Θµν −

1
2

gµνT
)

, (9)

which are equivalent to Equation (3). Notably, we have, yet again, introduced the auxiliary
tensor (still defined by Equation (6)), with fR and fT being replaced by the scalar fields of
ϕ and ψ, respectively. Furthermore, the extra terms in Equation (9) result from the proper
definition of V.
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For particular cosmological models, in order to obtain an expression of the potential,
we vary the action with respect to both scalar fields (ϕ and ψ), which yields

Vϕ = R, (10)

Vψ = T , (11)

respectively, where Vϕ ≡ ∂V/∂ϕ and Vψ ≡ ∂V/∂ψ. Indeed, to find the analytical expression
for V(ϕ, ψ), one can integrate Equations (10) and (11). Lastly, by taking the covariant
derivative of (9), we obtain the following corresponding conservation equation:

8π∇νTµν = ∇ν(ψ Θµν)− 1
2

gµν[R∇νϕ +∇ν(ψT − V)]. (12)

2.3. Geometrical and Scalar-Tensor f (R, T (n)) Gravity

It is possible to generalize the concept of EMSG presented above to an arbitrary finite
power of the scalar (T ), i.e., T (n). This work was developed in [68] by considering an
extension of the action (2) that includes a function of the scalar curvature and the higher-
order invariant, defined as

T µ
ν
(n) ≡Tµ

α1 Tα1
α2 . . . Tαn−1

ν,

T (n) ≡T µ
µ
(n)

.
(13)

The potential physical significance of this expansion is still under investigation as re-
search continues to progress. However, for the present, it serves as a valuable mathematical
generalization. With this in mind, to derive the field equations for the model, we consider
a general function ( f (R, T (n))) that depends on the exponent n. The starting point for the
geometrical representation is now the following higher-order gravitational action:

S =
1

2κ2

∫
d4x

√
−g f

(
R, T (n)

)
+

∫
Ω

√
−gLmd4x. (14)

We assume that the matter Lagrangian (Lm) only depends on the metric tensor and
not on its derivatives. By varying Equation (14) with respect to the metric, we obtain the
following field equations:

fRRµν −
1
2

gµν f +
(

gµν□−∇µ∇ν

)
fR = κ2Tµν − fT (n)Θ

(n)
µν , (15)

where fT (n) ≡ ∂ f /∂T (n) and fR ≡ ∂ f /∂R. The auxiliary tensor of the n-th order (Θ(n)
µν ≡

δT (n)/δgµν), which can be explicitly obtained, similarly to (6), takes the following form:

Θ(n)
µν = nT (n)

µν − nLmT (n−1)
µν + n

(
1
2

gµνLm − Tµν

)
T (n−1) − 2ngαγ ∂2Lm

∂gµν∂gβγ
T β

α
(n−1), (16)

which allows us to describe the geometrical field equations for f (R, T (n)) gravity.
On the other hand, in the scalar-tensor representation, in a similar manner as above,

one can start from a generalization of Equation (8) as follows:

S =
1

2κ2

∫
Ω

√
−g[ϕR + ψT (n) − V(ϕ, ψ)]d4x +

∫
Ω

√
−gLmd4x, (17)

which yields a similar set of field equations given by

ϕ

(
Rµν −

1
2

Rgµν

)
+

1
2

gµνV −
(
∇µ∇ν − gµν□

)
ϕ = 8πTµν − ψ

(
Θ(n)

µν − 1
2

gµνT (n)
)

, (18)
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which results in the now more general conservation equation given by(
κ2 − ψ

)
∇µTµν =

(
Tµν + Θ(n)

µν

)
∇µψ + ψ∇µΘ(n)

µν − 1
2

gµν

[
R∇µ φ +∇µ

(
ψT (n) − V

)]
. (19)

Taking into account the definition of Equation (16), we have our field equations of
a scalar-tensor gravity ( f (R, T (n))). In particular, for the case of n = 2, the general 2n-th
auxiliary tensor takes the following form:

Θ(2)
µν = −2Lm

(
Tµν −

1
2

gµνT
)
− TTµν + 2Tµ

αTαν − 4Tαβ ∂2Lm

∂gµν∂gαβ
, (20)

recovering the expression for the conservation equation previously derived in Equation (9).(
κ2 − ψ

)
∇µTµν =

(
Tµν + Θ(2)

µν

)
∇µψ + ψ∇µΘ(2)

µν − 1
2

gµν

[
R∇µ φ +∇µ

(
ψT(2) − V

)]
. (21)

As mentioned in [68], one may determine the extra force that appears from this non-
conservation of the energy-momentum tensor in a manner analogous to that reported
in [14], and it was shown to be related to MOND theory and other anomalies in test particle
motions. Indeed, this fact may generically constitute a reliable test bed for these theories at
local scales and at the Galactic level.

3. Thermodynamics of Open Systems

Large-scale matter creation is of the utmost importance in cosmology, as it can provide
a description of the origin of the large-scale structure, as well as for the evolution of the
various components that constitute the cosmological fluid. Motivated by the relevance of
this topic, in this section, we summarize some of the existent literature regarding matter
creation in the cosmological context, with an emphasis on the irreversible thermodynamics
of open systems. Afterward, we apply the aforementioned framework to a spatially flat,
homogeneous, and isotropic universe and briefly discuss its consequences.

3.1. Particle Production in Cosmology

The investigation of particle production processes in expanding universes started
with the pioneering works of Erwin Schrödinger in 1939 and 1940 [69,70]. While studying
a quantum wave packet propagating in an expanding Friedmann–Lemaitre–Robertson–
Walker (FLRW) universe, Schrödinger reached a peculiar conclusion, namely that a scalar
particle could have a non-zero probability of stimulating the creation of a pair of scalar
particles spontaneously. As pointed out by Leonard Parker in Ref. [71], instead of having
scalar particles, if one considers photons, then a single one could induce the creation of a
pair of them. Indeed, Schrödinger referred to this occurrence as an “alarming” phenomenon.
Unfortunately, since quantum field theory in curved spacetime was in its early stages at the
time, some technical details regarding Schrödinger’s approach were not sufficiently robust.
Thus, the idea of exploring particle creation in expanding universes was abandoned for
a while. In addition, it is important to mention that in curved, expanding spacetime, the
question “what is matter?” is more difficult to answer because of the lack of a global time
symmetry, a problem intrinsically related to the definition of energy in gravitation.

It was only in the late 1960s that the same Leonard Parker brought this research
program back (although unaware of Schrödinger’s works at the beginning), formulating the
first successful mechanism for the production of particles by gravity [72–75]. Using the more
developed mathematical apparatus of quantum field theory in curved spacetime, Parker
demonstrated that there is a deep relationship between an expanding FLRW geometry and
particle production. By considering a quantized massive scalar field in an expanding FLRW
geometry, whose initial vacuum state (with no particles) is the Minkowski vacuum, Parker
verified that the particle number associated with the final vacuum state of such an evolution
was not zero. The physical process responsible for this peculiar result was attributed to the
expansion of the Universe itself, meaning that a massive scalar field evolving in an FLRW
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geometry can give rise to particles spontaneously. Furthermore, it is also worth mentioning
that this matter creation can be seen as the process responsible for originating the power
spectrum of the inflation field perturbations during inflation [71], demonstrating possible
imprints on physical observations.

Later, in the 1980s, Nobel Prize winner Ilya Prigogine and collaborators [76–78]
searched for an alternative framework to accommodate cosmological particle production
with the entropy evolution of the Universe. Since the semiclassical Einstein field equations
used by Parker (and subsequently by others [79–81]) are both adiabatic and reversible,
Prigogine et al. argued that these could not provide a natural explanation for the increase
in cosmological entropy accompanied by the creation of particles due to the non-reversible
nature of this process. As such, they proposed an alternative cosmology based on the
irreversible thermodynamics of open systems, in which the explanation for macroscopic
matter and entropy production relies on a reinterpretation of the matter energy-momentum
tensor that includes an irreversible matter creation term.

Although this framework was successful at the time, because it was employed in GR,
a physical interpretation of this irreversible process was missing. The main problem was,
again, the adiabatic and reversibility character of the Einstein field equations or, equiva-
lently, the covariant conservation of the energy-momentum tensor. However, in the last
two decades, the appearance of classical modified gravity theories that contain previously
discussed non-minimal geometry–matter couplings gave a new meaning to Prigogine’s
approach to cosmology. Since in all these theories, the matter energy-momentum tensor is
not conserved, this feature, in the context of the thermodynamics of open systems, allows
one to physically interpret such a non-conservation as an irreversible energy flow from
the gravitational field to the matter sector that could result in particle creation [82]. The
effects and implications of the irreversible matter creation processes on late cosmological
evolution have been studied in some of these modified gravity theories by the authors of
the present paper [32,82–84] (see [85] for a review). In addition, particle creation may also
result from the following different processes:

• Vacuum instability in the presence of both gravitational and gauge fields, possibly
resulting from the conformal trace anomaly, as shown in [86];

• The existence of quadratic curvature terms in the action of Weyl gravitational theory
and the direct interaction of the perfect fluid particles. Hence, in such models, particles
may also be created directly from the vacuum [87];

• Cosmological models such as the one presented in [88], in which there is an interaction
between dark energy and massive particle pairs that can produce both stable and
unstable particle pairs.

In summary, many different physical mechanisms exist that may generate particles.
Nonetheless, we emphasize that since in EMSG, the energy-momentum tensor is not
conserved, and the natural framework to study particle production is through the lens of
the thermodynamics of open systems [82].

3.2. Thermodynamic Interpretation of Irreversible Matter Creation

In this subsection, we introduce the basics of this formalism by considering a spatially
flat FLRW universe. Generally speaking, the application of the irreversible thermodynamics
of open systems in cosmology relies on the basic assumption that the Universe can be seen
as an effective thermodynamic open system [85]. From this premise, it follows that the bulk
of the system corresponds to the observable Universe and the boundary to the apparent
horizon (which, in a flat FLRW geometry, coincides with the Hubble radius), and the
surroundings correspond to the unobservable universe [85].

This framework consists of two main equations, namely the first and second laws of
thermodynamics.
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3.2.1. First Law of Thermodynamics: Temperature Evolution

In particular, for a homogeneous universe, the heat (dQ) is negligible, so the first law
can be expressed as

d(ρV) + pdV =
h
n

d(nV), (22)

where ρ is the energy density of the cosmological fluid, V the volume, p is the usual ther-
modynamic pressure of the fluid, h = ρ + p is the enthalpy per unit volume, and n = N/V
is the particle number density. In addition, it is assumed that p and ρ describe non-exotic
matter contents. Therefore, these must satisfy the following various energy conditions:

ρ ≥ 0, p ≥ 0, ρ + p ≥ 0, ρ + 3p ≥ 0, ρ ≥ |p|. (23)

To further develop Equation (22), one can take the time derivative and describe the
volume of the Universe in terms of the scale factor (a(t)) as V(t) = a3(t), which yields

ρ̇ + 3H(ρ + p) =
ρ + p

n
(ṅ + 3Hn), (24)

with H = ȧ/a being the Hubble function. In order to further develop the above equation, it
is convenient to introduce two quantities, namely the number current, defined as

Nµ ≡ nuµ, (25)

and the particle production rate (Γ). This quantity expresses the number of particles that
are being created in comparison with the total number of particles at a specific instant, i.e.,

Γ =
1
N

dN
dt

=
1

nV
d
dt
(nV). (26)

From Equations (25) and (26), it follows that the covariant derivative of the number
current in the flat FLRW geometry has the following form:

∇µNµ = ṅ + 3Hn ≡ nΓ, (27)

By inserting Equation (27) into Equation (24), we obtain the particle production rate in
terms of the Hubble function, pressure, and energy density.

Γ = 3H +
ρ̇

ρ + p
. (28)

Additionally, in the context of the thermodynamics of open systems, the total pressure
makes two contributions, namely the usual thermodynamic pressure (p) and the creation
pressure (pc), i.e., p̃ = p + pc. The creation pressure can be viewed as the pressure responsi-
ble for describing, in an effective way, the irreversible matter creation processes that occur
within the bulk of the open system, which, in this case, is the observable Universe. Hence,
Equation (22) can be expressed as

d(ρV) + (p + pc)dV = 0. (29)

With all the previous considerations in mind, one can find a relation between the
creation pressure and the particle production rate.

pc = −
(

ρ + p
3H

)
Γ. (30)
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With this framework established, it is feasible to obtain a cosmological temperature
evolution. To do so, we start by assuming that the energy density (ρ) and the pressure (p)
are both functions of the particle number density (n) and of the temperature (T), that is,

ρ = ρ(n,T), p = p(n,T). (31)

This allows us to express the first law as(
∂ρ

∂n

)
T

ṅ +

(
∂ρ

∂T

)
n
Ṫ+ 3(ρ + p)H = (ρ + p)Γ. (32)

From the equation above and using some useful thermodynamic relations, one can
arrive at the following equation for the temperature evolution:

Ṫ
T = c2

s (Γ − 3H), (33)

where we naturally define the speed of sound as cs =
√
(∂p/∂ρ)n (for a more in depth

derivation, we refer the reader to [85]). Then , the general solution of Equation (33) can be
expressed as

T(t) = T0 exp
{

c2
s

∫ t′

0

[
Γ
(
t′
)
− 3H

]
dt′

}
, (34)

where T0 = T(0) is the constant initial temperature.

3.2.2. Second Law of Thermodynamics: Entropy Evolution

Moreover, the second law of thermodynamics for an open system is usually stated as

dS = deS + diS ≥ 0, (35)

where deS is called the entropy flow and diS represents entropy creation. It was demon-
strated in [83] that these two entropy terms can be respectively written as

deS =
dQ
T , (36a)

diS =
s
n

d(nV). (36b)

As stated above, we are considering a homogeneous universe (dQ = 0); therefore,
the entropy flow vanishes (deS = 0). This implies that the variation of entropy is only
dependent on the entropy of creation. Taking into account these considerations, the second
law of thermodynamics is reduced to

dS =
s
n

d(nV) ≥ 0. (37)

By recalling the definition of the creation rate in Equation (28), we can rewrite Equation (37)
as

Ṡ = SΓ ≥ 0, (38)

which has the following solution:

S(t) = S0 exp
[∫ t

0
Γ
(
t′
)
dt′

]
, (39)

where S0 = S(0) is the constant initial entropy. It is important to note that the derivations
presented above are not specific to EMSG but general solutions for modified theories of
gravity working under the following assumptions:

1. Universe locally considered as an open system;
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2. Geometry being flat FLRW.

Furthermore it is noteworthy that for theories where the energy-momentum tensor is
conserved, the particle production rate also vanishes.

4. Cosmology of f (R,T ) Gravity

In this section, we briefly review the fundamentals of the cosmology of f (R, T ) gravity.
We introduce the generalized Friedmann equations and discuss some of their implications.
We examine the behavior of an important observational quantity, the deceleration parameter,
in detail. Additionally, we cover the de Sitter evolutionary phases and explore some general
cosmological models.

4.1. The Generalized Friedmann Equations

The first step in investigating the cosmological implications of f (R, T ) gravity is to
consider the dynamical evolution within the flat, homogeneous, and isotropic Friedmann–
Lemaître–Robertson–Walker metric given by

ds2 = −dt2 + a2(t)
[
dr2 + r2

(
dθ2 + sin2 θdφ2

)]
, (40)

written in spherical coordinates as (t, r, θ, φ), where a(t) is the scale factor, the homogeneity
of cosmological spacetime requires that the scalar fields ϕ ≡ ϕ(t) and ψ ≡ ψ(t), and all
thermodynamic quantities describing the matter content of the Universe depend only on
the time coordinate (t). Additionally, we introduce the Hubble parameter (H ≡ ȧ/a, where
(̇ ≡ d/dt) denotes the derivative with respect to time).

We assume that the matter content of the Universe consists of an isotropic perfect fluid,
with the energy-momentum tensor given by

Tµν = (ρ + p)uµuν + pgµν, (41)

where ρ(t) is the energy density of the Universe and p(t) is the isotropic pressure. More-
over, uµ is the velocity four-vector of the fluid, satisfying the normalization condition of
uµuµ = −1.

The matter energy-momentum tensor (41) can be obtained from two different forms of
the matter Lagrangian after variation with respect to the tensor component metric [89,90].
First, we note that the variation of the Lagrangian of a perfect fluid must be constrained
by the requirements of the conservation of the rates of the entropy (s) and of particle
production. The baryon number flux vector density is defined according to nµ = nuµ√−g,
where the baryon number density n is given by

n =

√
1
g

nµnνgµν. (42)

We require that the variation of the thermodynamic variables satisfies the constraints
of δs = 0 and δnµ = 0 [89,90]. For the variation of the particle flux (nuµ), we obtain the
following relationship:

∇µ(nuµ) =
1√−g

∂

∂xµ nµ =
1√−g

∂µnµ. (43)

Now, we take the variation of the gradient of δnµ, and we take into account the relation
of ∂µδ = δ∂µ. Thus, we obtain

δ
(
∂µnµ

)
=

√
−g

[
δ
(
∇µ(nuµ)

)
+

1
2
∇µ(nuµ)gαβδgαβ

]
= 0 (44)

This relation guarantees that the rate of particle production in the fluid is preserved
under the variation (δ). This is a weaker demand than imposing the condition that the
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number density be conserved (∇µ(nuµ) = 0) from the beginning. A similar relation for the
entropy (δ

(
nµ∂µs

)
= 0) can also be easily obtained [89,90].

Now, we consider the assumption that the fluid matter Lagrangian is Lm = −ρ. We
also assume that the fluid obeys an equation of state (ρ = ρ(n, s)). From the thermodynamic
equality ((∂ρ/∂n)s = w, where w is the specific enthalpy w = (ρ + p)n), we obtain the
relation of δρ = wδn [89,90].

With the above choice of the Lagrangian, the matter action is

Sm = −
∫

ρ
√
−gd4x. (45)

For the variation of the action (45), we first obtain

δSm = −
∫ [

δρ
√
−g + ρδ

√
−g

]
d4x. (46)

By taking the variation of Equation (42), we find

δn =
n
2
(−g)uµuν

(
δgµν

g
−

gµν

g2 δg
)
= −n

2
(uµuν + gµν)δgµν. (47)

Hence, Equation (46) becomes

δSm = −1
2

∫
[wn(uµuν + gµν)− ρgµν]

√
−gd4x (48)

=
1
2

∫
[(ρ + p)uµuν + pgµν]d4x.

This immediately yields the relation expressed by (41) for the matter energy-momentum
tensor.

The same expression for the matter energy-momentum tensor is obtained by assuming
that Lm = p. We now express the equation of state in the form of p = p(w′, s), where
w′ = (ρ + p)/ρ0, with ρ0 being the rest mass density. In this case, we have the following
thermodynamic relation [89,90]:

dp = ρ0dw′ − ρ0Tds. (49)

Generally, the four-velocity of the fluid can be represented as [89,90]

uµ =
1

w′ (∂νϕ + α∂νβ + θ∂νs)gµν, (50)

where ϕ, α, β, θ, and s are the velocity potentials (scalar fields), which, together with w′ and
gµν, comprise the dynamical variable of the fluid to be varied freely. Varying with respect
to the metric and using the normalization condition of uµ, we obtain

δw′ = − 1
2w′ (∂νϕ + α∂νβ + θ∂νs)

(
∂µϕ + α∂µβ + θ∂µs

)
δgµν. (51)

By taking into account that δgµν = −gµαgνβgαβ, we obtain

δw′ =
w′

2
uµuνδgµν. (52)

By adopting the action expressed as

Sm =
∫

p
√
−gd4x, (53)
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for the fluid and by assuming that the fluid is isothermal (T = cons tan t) and that δs = 0,
the variation of Equation (53) yields

δSm =
1
2

∫ (
ρ0w′uµuν + pgµν

)√
−gδgµνd4x, (54)

a relation from which we immediately reobtain Equation (41).
In the following, for the matter Lagrangian, we adopt the expression of Lm = p (see

Ref. [91]), which, for the auxiliary tensor, yields Θµν the following expression:

Θµν = −
(

ρ2 + 4ρp + 3p2
)

uµuν. (55)

To investigate the cosmological implications of the EMSG theory, we adopt the comov-
ing reference frame, with uµ = (1, 0, 0, 0). Then, we obtain the system of two generalized
Friedmann equations in f (R, T ) gravity given by

3H2 =
1
ϕ

[
κ2ρ +

1
2

V +
1
2

ψ
(

ρ2 + 8ρp + 3p2
)
− 3Hϕ̇

]
= κ2

eff ρ + ρeff, (56a)

2Ḣ =
1
ϕ

[
−κ2(ρ + p)− ψ

(
ρ2 + 4ρp + 3p2

)
+ Hϕ̇ − ϕ̈

]
= −κ2

eff (ρ + p)− (ρeff + peff), (56b)

where κ2
eff = κ2/ϕ, and we denote

ρeff =
1
ϕ

[
1
2

V +
1
2

ψ
(

ρ2 + 8ρp + 3p2
)
− 3Hϕ̇

]
, (57)

and

peff =
1
ϕ

[
−1

2
V +

1
2

ψ
(

ρ2 + 8ρp + 3p2
)
− 3Hϕ̇ + ϕ̈

]
, (58)

where ρeff and peff represent the effective scalar-tensor contributions to the cosmological
evolution equations resulting from the coupling between matter and geometry via the
square of the matter energy-momentum tensor. Moreover, the gravitational coupling con-
stant becomes time-dependent, indicating the time variation of the gravitational constant
in this model. The equations of motion for the scalar fields of ϕ and ψ are given by

Vϕ = R = 6
(

Ḣ + 2H2
)

, (59a)

Vψ = T = ρ2 + 3p2. (59b)

4.1.1. The Energy Balance Equation

From Equations (56a) and (56b), one can obtain the generalized energy-conservation
equation in the following form:

d
dt

(
κ2

eff a3ρ
)
+ p

d
dt

(
κ2

eff a3
)
+

d
dt

(
a3ρeff

)
+ peff

d
dt

a3 = 0. (60)

Explicitly, we obtain

ρ̇ + 3H(ρ + p) = − 1
κ2

eff
(ρ + p)

d
dt

κ2
eff −

1
κ2

eff
[ρ̇eff + 3H(ρeff + peff)] (61)

= (ρ + p)Γ, (62)

which yields the following expression for the particle creation rate:

Γ = − 1
κ2

eff

d
dt

κ2
eff −

1
(ρ + p)κ2

eff
[ρ̇eff + 3H(ρeff + peff)]. (63)
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4.1.2. The Deceleration Parameter

An important cosmological parameter, the deceleration parameter, is defined as

q =
d
dt

1
H

− 1 = − Ḣ
H2 − 1. (64)

With the use of the gravitational field equations, the deceleration parameter is obtained
in the following form:

q =
3
2

κ2
eff(ρ + p) + (ρeff + peff)

κ2
effρ + ρeff

− 1, (65)

or explicitly,

q =
3
2

κ2(ρ + p) + ψ(T + 4ρp)− Hϕ̇ + ϕ̈

κ2ρ + 1
2 V + 1

2 ψ(T + 8ρp)− 3Hϕ̇
− 1. (66)

Thus, the condition for accelerating expansion (q < 0) yields

κ2
eff

(ρ

3
+ p

)
< −

(ρeff
3

+ peff

)
. (67)

Explicitly, we obtain the condition for the accelerated expansion as

κ2
eff

(ρ

3
+ p

)
<

V
3
− 2

3
ψ(T − 2ρp) + Hϕ̇ − ϕ̈. (68)

For a dust Universe, the late time-accelerated phase occurs for

κ2
effρ <

V
3
− 2ψρ2 + 3Hϕ̇ − 3ϕ̈. (69)

4.1.3. Dark Matter and Dark Energy

The EMSG theory generates, in its two scalar field representations, an effective energy
and an effective pressure of an essentially geometric nature, as expressed by Equations (57)
and (58), respectively. These effective geometric quantities can be interpreted as describing
both dark matter and dark energy at the same time. The presence of an effective gravitational
constant (κ2/ϕ) could already have some important implications for the behavior of massive
particles gravitating around galaxies—behavior usually explained by assuming the presence
of dark matter. However, an effective gravitational constant appearing in Newton’s law
(Fgrav = −Ge f f (r)mM/r2) can already provide some insights into the dark matter problem,
since, for the rotational velocity, the modified Newtonian–Keplerian law (v2/r = Ge f f M/r2)
yields v ≈

√
GM/ϕr, which could explain the flatness of the rotation curves once ϕ∼1/r.

The effective energy density (ρDM) and pressure (pDM) of dark matter can be inferred from
Equations (57) and (58) by assuming that in the case of pressureless matter with p = 0,
ρDM = pDM = (ψ/2ϕ)ρ2. Hence, in this model, there is a close relationship between
(effective) dark matter and ordinary matter. Interestingly enough, in this model, dark matter
satisfies the stiff (causal) equation of state, with ρ = p.

From a cosmological point of view, ρeff and peff can be interpreted as globally de-
scribing both dark components of the Universe, and in our analysis we do not make
an explicit distinction between dark matter and dark energy, treating the dark compo-
nents of the Universe as a single physical entity. However, by considering the above
interpretation of dark matter, we may assume that the dark energy term is described by
time-dependent energy density and pressure expressed as ρDE = (V/2 − 3Hϕ̇)/ϕ and
pDE = (−V/2 − 3Hϕ̇ + ϕ̈)/ϕ, respectively. The equation of state of the dark energy de-
pends on the explicit choice of V and on the dynamical evolution of the two scalar fields.
Then, a necessary condition for the late accelerated expansion of the Universe is that the
parameter of the dark energy equation of state (w = pDE/ρDE) must be negative, i.e., w < 0.
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4.2. de Sitter Expansion

The fact that the Universe experiences an accelerated expansion, which may end in
a de Sitter-type phase of the Universe, is an important result of observational cosmology.
Hence, viable theoretical cosmological models must have an explicitly exponentially ex-
panding solution. We now consider the de Sitter-type expansion of the Universe with
H = H0 = constant in f (R, T ) gravity. The theory admits exponential expansion for both
vacuum and dust universes.

4.2.1. Self-Interacting Potential and Constant-Density de Sitter Expansion

We first consider the self-interacting potential during de Sitter evolution in the constant-
density dust case, which is obtained in the de Sitter phase with H = H0 = constant, p = 0,
and ρ = ρ0 = constant. Then, by integrating (59a) and (59b), we immediately find

V(ϕ, ψ) = 12H2
0 ϕ + ρ2

0ψ + Λ0, (70)

where Λ0 is the resulting constant of integration. For this specific form of the potential, the
energy balance equation becomes

κ2[ρ̇ + 3H(ρ + p)] + (ρ + p)(ρ + 3p)(ψ̇ + 3Hψ) + ψ[ρ̇(ρ + 4p) + ṗ(4ρ + 3p)] = 0. (71)

The matter creation rate for the constant-density de Sitter phase is given by

Γ = − 1
κ2

[
(ψ̇ + 3Hψ)(ρ + 3p) + ψ

ρ̇(ρ + 4p) + ṗ(4ρ + 3p)
(ρ + p)

]
. (72)

The creation pressure can be obtained as

pc =
ρ + p
3Hκ2

[
(ψ̇ + 3Hψ)(ρ + 3p) + ψ

ρ̇(ρ + 4p) + ṗ(4ρ + 3p)
(ρ + p)

]
. (73)

4.2.2. The Vacuum de Sitter Solution

For the vacuum case, with ρ = p = 0, for the de Sitter expansion, the potential (V)
becomes V(ϕ, ψ) = 12H2

0 ϕ. The evolution equation of the scalar field (ϕ) that follows from
Equation (56b) is

H0ϕ̇ − ϕ̈ = 0, (74)

with the general solution of

ϕ(t) = C1
eH0t

H0
+ C2, (75)

where C1 and C2 are arbitrary constants of integration. For this solution, Equation (56a)
gives 3C2H2

0 = 0, a condition that is satisfied by C2 = 0. Hence, the exact vacuum de Sitter
solution corresponds to an exponentially increasing ϕ = C1eH0t/H0 in the presence of an
arbitrary field (ψ). The particle creation rate (Γ) is zero (Γ ≡ 0) for the vacuum Universe,
and the energy balance equation (Equation (71)) is identically satisfied. It is important to
note that in the present model, matter creation takes place only if matter already exists.

4.2.3. de Sitter Solution with Constant Matter Density

We now assume that the Universe consists of pressureless dust, with p = 0, and
that the matter density is constant (ρ = ρ0). From Equation (71), we obtain the following
differential equation for ψ:

ψ̇(t) + 3H0ψ +
3κ2H0

ρ0
= 0, (76)
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with the general solution of

ψ(t) = e−3H0t
[

ψ0 +
κ2

ρ0

(
1 − e3H0t

)]
, (77)

where ψ0 = ψ(0). From Equation (56a), it follows that the differential equation that
describes the scalar field (ϕ) is given by

ϕ̇(t)− H0ϕ − 1
6H0

[
ψ
(

ρ2
0 − ρ0

)
+ 2κ2ρ0 + Λ0

]
= 0, (78)

with the general solution of

ϕ(t) =
1

12H2
0

{
e−3H0t

[
− 2e3H0tΛ0 − ρ

(
k2 + ρψ0

)
+e4H0t

(
2Λ0 + κ2ρ + 12H2

0 ϕ0 + ρ2ψ0

)]}
, (79)

where ϕ0 = ϕ(0). The creation pressure and the creation rate can now be obtained as

Γ = 3H0, pc = −ρ0. (80)

4.2.4. de Sitter Solution with Arbitrary Matter Density

For a de Sitter Universe with time-varying, non-zero matter density, the generalized
Friedmann equations (Equations (56a) and (56b)) take the following form:

3H2
0 ϕ = κ2ρ +

1
2

V +
1
2

ψρ2 − 3H0ϕ̇, (81)

and
−κ2ρ − ψρ2 + H0ϕ̇ − ϕ̈ = 0, (82)

The solutions of the generalized Friedmann equations, as well as the cosmological
dynamics, depend on the form of the potential (V). In the following, we assume that V can
be represented as

V(ϕ, ψ) = 12H2
0 ϕ − α2

ψ
. (83)

Then from Equation (59b), we first obtain Vψ = α2/ψ2 = ρ2, ψ = α/ρ, and ψ̇ =
−αρ̇/ρ2.

Equation (71) takes the following form:

ρ̇
(

κ2 + ψρ
)
+ ρ2(ψ̇ + 3H0ψ) + 3κ2H0ρ = 0, (84)

and
ρ̇ + 3H0

(
1 +

α

κ2

)
ρ = 0. (85)

Hence, the matter density is obtained as

ρ(t) = ρ0e−3H0

(
1+ α

κ2

)
t, (86)

where ρ0 = ρ(0). From Equation (82), for ϕ, we obtain the following equation:

ϕ̈ − H0ϕ̇ +
(

κ2 + α
)

ρ0e−3H0

(
1+ α

κ2

)
t
= 0, (87)
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the general solution of which is expressed as

ϕ(t) =
c1eH0t

H0
+ c2 −

κ4ρ0e−
3H0t(α+κ2)

κ2

3H2
0(3α + 4k2)

, (88)

where c1 and c2 are arbitrary constants of integration. The first Friedmann Equation (56a)
yields 3H2

0 c2 = 0, or c2 = 0. Thus, this solution satisfies all cosmological evolution
equations.

In the present model, the particle creation rate, given by

Γ = − 1
κ2 [(ψ̇ + 3Hψ)ρ + ψρ̇], (89)

becomes
Γ = −3α

κ2 H0. (90)

Thus, for the de Sitter-type solution corresponding to the potential in Equation (83), the
thermodynamics of open systems require a negative particle creation rate, corresponding
to a decrease in the density of ordinary matter.

4.3. Matter and Radiation Domination Phases

When the Universe was about 47,000 years old, it entered into the matter-dominated
phase, in which the energy density of matter largely exceeded the energy densities of
radiation and dark energy (cosmological constant). The matter-dominated phase lasted
until the Universe was about 9.8 billion years old [92]. During this phase, the standard
Big Bang cosmological scenario predicts that the scale factor of the Universe evolved as
t ∝ t2/3, while the deceleration parameter took a constant value of q = 1/2. The matter
density varied during this period as ρ(t) ∝ 1/a3(t) = 1/t2. In the following, we investigate
the conditions under which a similar matter-dominated era could exist in the energy-
momentum squared gravity theory, assuming a more general form for the scale factor than
that of standard general relativity (a = tn, n > 0).

4.3.1. Models with a Quadratic Additive Potential

We consider a case in which during the matter-dominated phase, the potential (V(ϕ, ψ))
has the following quadratic form:

V(ϕ, ψ) =
α

2
ϕ2 +

β

2
ψ2, (91)

where α and β are constants. Then, from Equation (59a), we obtain

αϕ =
6n(2 − n)

t2 , (92)

while Equation (59b) yields
βψ = ρ2. (93)

With these choices for V, ϕ, and ψ, the generalized Friedmann equations of the EMSG
theory take the following forms:

27βn2(2n − 1) + αβκ2t4ρ(t) + αt4ρ4(t) = 0 (94)

and
36βn(n − 1) + αβκ2t4ρ(t) + αt4ρ4(t) = 0. (95)
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For n, the required equivalence of Equations (94) and (95) yields the following
algebraic equation:

−54βn3 + 99βn2 − 36βn = 0, (96)

which fixes n as
n = 0, n =

1
2

, n =
4
3

. (97)

The matter density can be obtained by solving any of the algebraic equations
(Equation (94) or (95)).

For n = 1/2, the density takes a constant value, i.e., ρ(t) = ρ0 = (−β)1/3. For n = 4/3,
the density can be obtained as a solution of the following algebraic equation:

αt4ρ4(t) + κ2αβt4ρ(t) + 80β = 0, n =
4
3

. (98)

In the first order of approximation, we neglect the term containing the fourth power
of the density, obtaining

κ2ρ(t) ≈ −80
α

1
t4 , n =

4
3

. (99)

In order to assure the physical viability of the density, the ratio of 1/α must be negative,
i.e., 1/α < 0.

Hence, we have obtained two distinct solutions of the EMSG theory in the matter-
dominated phase of cosmological evolution in the presence of an additive quadratic po-
tential (V). In the first solution, a(t) = t1/2, H(t) = 1/2t, ρ(t) = constant, and q = 1.
The density of the Universe is constant, and the expansion is decelerating. The constancy
of density is maintained by the particle creation rate, given by Γ = 3H = 3/2t, which
decreases over time. But, even so, it can maintain the constancy of the matter density. In
the second solution, a = t4/3, H(t) = 4/37, ρ(t) ∝ 1/t4, and q = −1/4. In this model,
the Universe is already accelerating in the matter-dominated phase but with a relatively
low value of the deceleration parameter. By taking the derivative of the density equation
(Equation (98)), we obtain

ρ̇

ρ
=

320β

αρ(ρ3 + κ2β)
, (100)

a relation that allows for the expression of the particle creation rate as

Γ = 3H +
320β

αρ(ρ3 + κ2β)
, n =

4
3

. (101)

In the approximation of ρ ∝ t−4, the particle creation rate is Γ = 3H + ρ̇/ρ ≈ 0.
However, when using the exact solution of the algebraic density equation, the particle
creation rate is non-zero, indicating the presence of matter creation during an accelerating
expansionary phase.

4.3.2. Radiation-Dominated Models

In the very early stages of cosmological evolution, most of the total energy density
was in the form of radiation, which was the major constituent of the Universe. With
the expansion of the Universe and the cooling down of radiation, matter became the
dominant component. Although we are presently in a phase dominated by dark energy, an
understanding of the roles of radiation and matter is fundamental for the description of the
evolution of the early Universe.

We now consider the effects of the EMSG theory on radiation-dominated cosmological
models. The generalized Friedmann equations in the presence of radiation with energy
density (ρr) and the equation of state (pr = ρr/3) take the following forms:

3H2 =
1
ϕ

[
κ2ρr +

1
2

V + 2ψρ2
r − 3Hϕ̇

]
(102)
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and

2Ḣ =
1
ϕ

[
−κ2 4

3
ρr −

8
3

ψρ2
r + Hϕ̇ − ϕ̈

]
. (103)

For the potential (V), we assume a simple, multiplicative form so that

V(ϕ, ψ) = αϕψ, (104)

where α is a constant. Hence, we immediately obtain

Vϕ = αψ = 6
(

Ḣ + 2H2
)

, αϕ = ρ2
r . (105)

Then, the generalized Friedmann equations of the EMSG theory become

15Ḣ − 6Hρ̇

ρ
+ 27H2 +

ακ2

ρ
= 0, (106)

18Ḣ +
−6Hρ̇ + 4ακ2 + 6ρ̈

3ρ
+ 32H2 +

2ρ̇2

ρ2 = 0. (107)

We again look for solutions of the above generalized Friedmann equations with a(t) =
tn, where n is a constant. With this choice of the scale factor, Equations (106) and (107) take
the following forms

−αk2t2 − 27n2ρ + 15nρ + 6ntρ̇ = 0, (108)

and
ρ̈

ρ
+

ρ̇2

ρ2 − nρ̇

tρ
+

2αk2

3ρ
+

n(16n − 9)
t2 = 0, (109)

respectively. From Equation (108), we obtain ρ̇ as

ρ̇ =
ακ2t
6n

+
(9n − 5)ρ

2t
. (110)

By taking the time derivative of the above equation and substituting the result into
Equation (109), we obtain the following for the time variation of the density the first-order
differential equation:

ρ̇ =
3nρ

{
8αk2(1 − 3n)t2 − 3n[n(127n − 134) + 35]ρ

}
− α2k4t4

18n2(9n − 5)tρ
. (111)

Equation (111) cannot be generally solved for arbitrary values of n. However, some
simple particular solutions can be obtained for some particular values of n. Thus, for
n = 1/3, we obtain the following expression for the variation of matter density in the
radiation-dominated phase of EMSG theory cosmology:

ρ(t) =

√
c1t20/9 +

9
32

α2k4t4, (112)

where c1 is an arbitrary constant of integration. ρ(t) has the property of ρ(0) = 0. The
density of the Universe is increasing during the expansionary phase, and a large amount of
radiation is produced. This qualitative behavior is similar to that considered in the warm
inflationary scenario [93–98], which represents an interesting and successful alternative to
standard inflation and reheating. In warm inflation, not only the dynamics of the scalar field
but also the creation and effects of radiation during the process of accelerated expansion
are considered. Radiation is produced via the decay of the scalar field as a result of a
dissipative process. A similar result can be obtained in the framework of the EMSG theory.
The non-conservation of the matter energy-momentum tensor, which is associated with
particle creation, allows for the production of photons during the early expansion of the
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Universe. Hence, radiation creation could take place as triggered by the presence of the
two essentially geometric scalar fields (ϕ and ψ), and the interplay between these two fields
and gravity may be responsible for the creation of the matter content of the early Universe.
It is also important to note that in the present model, matter creation takes place during
a decelerating phase of evolution, with q = 2. Of course, other values of n could lead to
power law accelerating models, which may also explain other observational features of the
early Universe.

4.4. General Cosmological Models

We now investigate cosmological models with the Hubble function (H), an arbi-
trary function of time whose behavior must be obtained from the generalized Friedmann
equations. We also require that H tend towards a constant value in the final stages of
cosmological evolution, that is, that the Universe end in a de Sitter-type phase.

4.4.1. The Dimensionless Representation

A significant simplification of the mathematical formalism can be obtained by intro-
ducing a set of the dimensionless variables (h, τ, r, U, Ψ), defined as

H = H0h, τ = H0t, ρ =
3H2

0
κ2 r, V = 3H2

0U, ψ =
κ4

9H2
0

Ψ. (113)

Then, the system of differential equations describing cosmological evolution in f (R, T )
gravity takes the following form:

h2 =
1
ϕ

(
r +

1
2

U +
1
6

Ψr2 − h
dϕ

dτ

)
, (114)

dh
dτ

=
1
ϕ

(
−3

2
r − 1

2
Ψr2 +

1
2

h
dϕ

dτ
− 1

2
d2ϕ

dτ2

)
, (115)(

1 +
1
3

rΨ
)

dr
dτ

+ 3hr +
1
3

r2
(

dΨ
dτ

+ 3hΨ
)
= 0. (116)

The system of Equations (114)–(116) contains two independent dynamical equations
but four unknown functions (h, r, ϕ, Ψ). To close the system, one must first specify the
potential (U); then, using Equations (59a) and (59b), one can obtain two relations for ϕ and
ψ, given by

Uϕ = 2
(

dh
dτ

+ 2h2
)

, UΨ =
1
3

r2. (117)

The potential can now be represented as

Uϕ =
2
ϕ

(
1
2

r − 1
6

Ψr2 − 3
2

h
dϕ

dτ
− 1

2
d2ϕ

dτ2

)
. (118)

4.4.2. The Redshift Representation

A comparison with the observational data of cosmological models can be performed
in the easiest way by considering the evolution of the models and adopting redshift (z) as
an independent variable. Redshift is defined as

1 + z =
1
a

, (119)

yielding d
dτ = −(1 + z)h d

dz .
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After introducing the new variable (dϕ/dτ = θ), the cosmological evolution equations
in the two scalar field representations of f (R, T ) gravity can be formulated in a redshift
space as a first-order dynamical system given by

−(1 + z)h
dϕ

dz
= θ, (120)

−(1 + z)h
dh
dz

=
1
ϕ

[
−3

2
r − 1

2
Ψr2 +

1
2

hθ +
1
2
(1 + z)h

dθ

dz

]
, (121)

−(1 + z)
(

1 +
1
3

rΨ
)

h
dr
dz

+ 3hr +
1
3

r2
[
−(1 + z)h

dΨ
dz

+ 3hΨ
]
= 0, (122)

(1 + z)h
dθ

dz
= ϕUϕ − r +

1
3

Ψr2 + 3hθ, (123)

(1 + z)h
dh
dz

= 2h2 − 1
2

Uϕ, (124)

UΨ =
1
3

r2. (125)

The system of Equations (120)–(125) must be solved together with the initial conditions
of h(0) = 1, r(0) = r0, ϕ(0) = ϕ0, and θ(0) = θ0. No dynamical evolution equation for
ψ exists, but the evolution of h is described by two equivalent equations. Thus, one
can consider only one of Equations (121) and (124) when solving the cosmological field
equations.

To describe the accelerating/decelerating phases of the evolution of the Universe, we
use the deceleration parameter (q), which takes the following form in the redshift space:

q =
d

dτ

1
h
− 1 = (1 + z)

1
h

dh
dz

− 1. (126)

The negative sign of q indicates an accelerated evolution of the Universe, whereas a
positive sign describes the decelerating stages of evolution.

The particle creation rate is obtained from the following relation:

Γ = H0

[
3h − (1 + z)

1
r

dr
dz

]
= H0Σ, (127)

while the creation pressure is given by

Pc =
pcκ2

H2
0

= − r
h

Σ. (128)

4.4.3. Specific Cosmological Models: A Qualitative Discussion

In the following, we briefly discuss, , the general properties of two distinct cosmologi-
cal models corresponding to two independent functional forms of the potential (U) from a
qualitative point of view.

Additive power law potential: U(ϕ, Ψ) = 2αϕn+1 + 1
3 βΨm+1. The first case corre-

sponds to a potential (U(ϕ, ψ)) with an additive algebraic structure of the following form:

U(ϕ, Ψ) = 2αϕn+1 +
1
3

βΨm+1, (129)

where α, β, n, and m are constants. The system of differential equations describing cosmo-
logical evolution must be solved with initial conditions or h(0) = 1, r(0) = r0, ϕ(0) = ϕ0,
and θ(0) = θ0. In this model, cosmological evolution depends on the model parameters, as
well as on the initial conditions for the scalar field (ϕ) and its derivative. The variations of
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the dimensionless Hubble function (h(z)) and of the deceleration parameter of this model
are represented in Figure 1.

For n ≈ 1, m = 2, β = 1, and α in the range of α ∈ (0.38, 0.42), this model provides a
very good description of the observational data for the Hubble function up to a redshift
(z ≈ 1) [32]. However, at higher redshifts (z > 1), important differences appear with respect
to the observational data and the ΛCDM predictions, at least for the considered range of
model parameters. At redshifts greater than z = 1, the Hubble function increases faster as
compared to the ΛCDM model. The evolution of the deceleration parameters of the two
models also shows important differences.
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z
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(
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)

Figure 1. The evolution of the dimensionless Hubble function (h(z)) (left panel) and of the decelera-
tion parameter (q(z)) (right panel) as a function of the redshift (z) in the EMSG cosmological model
with U(ϕ, Ψ) = 2αϕn+1 + 1

3 βΨm+1 for n = 0.975, m = 2, β = 1, r(0) = 0.30, and different values of α

(α = 0.368, solid curve; α = 0.370, dotted curve; α = 0.372, short dashed curve; α = 0.374, dashed
curve; α = 0.376, long dashed curve). Predictions of the standard ΛCDM model are represented by
the solid red curve, while the observational data are shown with their error bars.

At redshifts of z > 1.5, the deceleration parameter in f (R, T ) gravity takes higher
values close to q ≈ 1. The transition to the accelerated expansion phase occurs at redshifts
of z < 0.5. On the other hand, the present-day value of the deceleration parameter is
dependent on the model parameters.

Additive–multiplicative potential: U(ϕ, ψ) = αϕ + (1/3)βΨ + (γ/3)ϕnΨm+1. As a
second cosmological model, one can consider the model corresponding to potential (U)
with a non-additive structure, given by

U(ϕ, ψ) = αϕ +
1
3

βΨ +
γ

3
ϕnΨm+1, (130)

where α, β, γ, n, and m are constants. The variations of the dimensionless Hubble function
(h(z)) and of the deceleration parameter for this model are represented in Figure 2.

For n = 10−8, m = 1.05, β = 0.02, γ = 0.04, and α ∈ (3.50, 3.6), the model provides
a good description of the observational data and of the Hubble function up to a redshift
of z ≈ 2 [32]. Differences in the behavior of the deceleration parameter appear at both
low and high redshifts. The model also predicts a lower matter density as compared to
ΛCDM [32].



Universe 2024, 10, 339 22 of 40

0.0 0.5 1.0 1.5 2.0 2.5

1

2

3

4

z

h
(
z
)

0.0 0.5 1.0 1.5 2.0 2.5

-0.5

0.0

0.5

1.0

z

q
(
z
)

Figure 2. The evolution of the dimensionless Hubble function (h(z)) (left panel) and of the decel-
eration parameter (q(z)) (right panel) as a function of the redshift (z) in the EMSG cosmological
model with U(ϕ, Ψ) = U(ϕ, ψ) = αϕ + 1

3 βΨ + γ
3 ϕnΨm+1 for n = 10−8, m = 1.05, β = 0.02, γ = 0.04,

r(0) = 0.30, and different values of α (α = 0.352, solid curve; α = 0.354, dotted curve; α = 0.356, short
dashed curve; α = 0.358, dashed curve; α = 0.360, long dashed curve). Predictions of the standard
ΛCDM model are represented by the red solid curve, while the observational data are shown with
their error bars. The initial conditions used to integrate the generalized Friedmann equations are
ϕ(0) = 0.10, and θ(0) = −0.01.

4.5. Summary and Discussion

Our preliminary results on the cosmology of f (R, T ) gravity point towards the pos-
sibility that the considered theory and the cosmological models that can be built using it
can provide qualitative and quantitative descriptions of the observational data once the
optimal values of the model parameters have been obtained either by a trial-and-error
method or by systematic fitting of the observational data. The models we discussed above
can provide both a qualitative and quantitative descriptions of the observational Hubble
data for a limited range of redshifts, and they can also reproduce the predictions of the
ΛCDM model.

An interesting issue related to f (R, T ) gravity and to the cosmological models based
upon it is the possibility of at least alleviating, if not solving, the Hubble tension. One can
see from the first Friedmann equation (Equation (56a)) that the present-day value of the
Hubble function is fully determined by the present-day values of the energy density of
matter, potential, and the two scalar fields. These quantities satisfy the constraint of the
(closure relation).

H2
0

ϕ̇(0)
ϕ(0)

H0 = κ2 ρ(0)
3ϕ(0)

+
1
6

V(0)
ϕ(0)

+
1
6

ψ(0)
ϕ(0)

ρ2(0). (131)

By appropriately fixing the initial values of the matter energy density, the potential
(V), the ϕ and ψ fields, and their derivatives, the present-day value of the Hubble function
can be obtained in concordance with supernova data.

Moreover, the function H(z) can generally be represented as

H(z) = H0Φ(z), (132)

where

Φ(z) =

√
r(z) + U(z)/2 + Ψ(z)r2(z)

1 − (1 + z) d
dz ln ϕ(z)

. (133)

If the ΛCDM model is correct for all redshifts, then H(0) = H0Φ(0), Φ(0) = 1, and
H0 can be determined from the value obtained from supernova observations (H0 = Hsup

0 =
H(0)/Φ(0)). But if the ΛCDM model is not correct for all z, then Φ(0) may be different from
one or have values of the order of one that minimally deviate from the ΛCDM value. On
the other hand, as estimated from the early Universe, Φ(z) yields a different value for H0.
Let us assume that at a redshift of zr, the function Φ(z) takes a value of Φ(zr) = 0.92. Then,
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the present-day value of the Hubble function is H0 = H(zr)/Φ(zr) = HPlanck
0 . Therefore,

we have
HPlanck

0

Hsup
0

=
H(zr)

H(0)
× Φ(0)

Φ(zr)
= ζ. (134)

For ζ = 0.92, HPlanck
0 = ζ × Hsup

0 = 0.92 = 67.16 km/s/Mpc [32]. Numerical values
of this order of magnitude for ζ can be obtained in the f

(
R, TµνTµν

)
gravity theory for

appropriate initial conditions of the two scalar fields. Of course, the form of the potential
(U) must also be known. As an additional constraint on the theoretical models, one can
also use the condition of the existence of small deviations only from the ΛCDM model, a
condition that must be valid, especially in the period of formation of galaxies and stars,
that is, during the reionization phase, and the cosmic dawn era, corresponding to z < 11.

The behavior of the cosmological models of f (R, T ) gravity theory is strongly influ-
enced by the choice of the potential (V) of the two scalar fields. This choice is relatively
arbitrary; however, the form of the potential can be determined by comparison of the theo-
retical predictions with observational data. Constraints on the potential may be found from
other astrophysical and cosmological observations, including the study of gravitational
waves, black holes, gravitational lensing, or structure formation.

f (R, T ) gravity provides an interesting approach to gravitational force, and it certainly
has the potential to explain the yet-unknown physical aspects of cosmology. In this brief
presentation, we have outlined the basic theoretical concepts and mathematical tools
necessary to further develop the theory.

5. Compact Objects in f (R,T ) Gravity

It is interesting to note that EMSG reduces to GR in vacuum, where differences only
arise in the presence of an energy-momentum distribution. These effects become significant
in regions of high curvature. Thus, deviations from GR are expected within compact objects.
In this context, f (R, T ) gravity has been studied in [36,99–101], including black holes
in [23,37,102,103] and wormholes in [44,65,104–106]. More specifically, the deviations from
the predictions of GR due to EMSG are expected to become pronounced in the high-density
cores of neutron stars [36]. Here, the hydrostatic equilibrium equations in EMSG were
derived and solved numerically to obtain the neutron star mass–radius relations for several
realistic equations of state. The existing observational measurements of the masses and
radii of neutron stars were then used to constrain the free parameter that characterizes the
coupling between matter and spacetime in EMSG.

In the following sections, we outline several strategies to obtain black hole solutions
and briefly review specific wormhole geometries obtained by several of the authors.

5.1. Black Holes in EMSG Coupled with Electrodynamics

In this section, we present the formalism of EMSG coupled with electrodynamics and
consider a strategy to obtain black hole solutions.

Consider and action (2) expressed in the following form:

S =
1

2κ2

∫
Ω

√
−g f (R, T )d4x +

∫
Ω

√
−gL(em)

m d4x, (135)

where L(em)
m is the Maxwell Lagrangian given by

L(em)
m = −1

4
FµνFµν = −1

4
F , (136)

where F = FµνFµν, and the electromagnetic tensor is defined as Fµν = ∂µ Aν − ∂ν Aµ. In the
case of linear electrodynamics (Maxwell), the energy-momentum tensor is given by

T(em)
µν = FµσFν

σ − 1
4

gµνF . (137)
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To obtain the gravitational field equation in the presence of the electromagnetic field.
we vary Equation (135) with respect to the gµν metric, which yields

fRRab −
1
2

gab f − (∇a∇b − gab□) fR = 2κ2T(em)
ab − fT Θ(em)

ab , (138)

where Θ(em)
µν is given by

Θ(em)
µν =

1
16π2

[
4F β

γ FγαFαµFβν − Fρ
µFρνF

]
. (139)

Finally incorporating both Equations (137) and (139) into Equation (138) yields the
following:

fRRab −
1
2

gab f − (∇a∇b − gab□) fR =

2κ2
(

FµσFν
σ − 1

4
gµνF

)
− 1

16π2 fT
[
4F β

γ FγαFαµFβν − Fρ
µFρνF

]
,

(140)

which are the gravitational field equations assuming that the only matter in the Universe is
described by T(em)

µν . Specific solutions for f (R, T ) were obtained in [37,40–42,54], and we
refer the reader to these articles for more details.

In principle, one can also consider baryonic matter contributions (L(B)
m ) to the matter

total Lagrangian density so that Lm = L(B)
m + L(em)

m , and the gravitational field equations
generalize to

fRRab −
1
2

gab f − (∇a∇b − gab□) fR = 2κ2
{

T(B)
ab + FµσFν

σ − 1
4

gµνF
}

− fT

{
Θ(B)

ab +
1

16π2

[
4F β

γ FγαFαµFβν − Fρ
µFρνF

]}
.

(141)

However, we do not explore this topic further at this stage, as it is still a work in
progress, and developments are ongoing. We look forward to sharing more detailed
insights once the work has reached a more finalized stage.

As one may expect, the standard Maxwell equations for EMSG are also different.
It is more useful to use the Euler–Lagrange equations applied to the vector potential
(Aµ) given by

∇µ

[
∂L

∂
(
∇µ Aν

)]− ∂L
∂Aν

= 0, (142)

which yield

∇µ

[
∂

∂
(
∇µ Aν

){ 1
2κ2

√
−g f (R, T ) +

√
−gL(em)

m

}]
= 0,

∇µ

[
∂

∂
(
∇µ Aν

){ f (R, T ) + 2κ2L(em)
m

}]
= 0.

(143)

Using Equation (136), these take the following form:

∇µ

[
∂ f

∂
(
∇µ Aν

)]− κ2

2
∇µ

[
∂F

∂
(
∇µ Aν

)] = 0,

∇µ

[
fT

{
1

2π2

(
Fγ

νFµρFγ
ρ −

1
4

FµνF
)}]

− 2κ2∇µFµν = 0,

(144)
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which yield the modified Maxwell equations for EMSG as follows:

∇µFµν =
1

4κ2π2 ∇µ

[
fT

(
Fγ

νFµρFγ
ρ −

1
4

FµνF
)]

. (145)

One may also generalize the action (135) to EMSG coupled with nonlinear electro-
dynamics (NLED), where the Maxwell Lagrangian (L(em)

m ) is substituted with an NLED
Lagrangian density (L(N)

m (F )). Varying the action (135) with respect to the vector potential,
one obtains the following equation of motion: ∇µ(LF Fµν) =

√−g ∂µ(
√−gLF Fµν) = 0,

where we denote LF = ∂L(N)
m (F )/∂F . Now, we can explore novel black hole solutions

(including regular black holes and black bounces) with static and spherical symmetry by
coupling EMSG with NLED, as carried out extensively in the recent literature [107–113].
This is work in progress and will shortly be submitted for publication.

5.2. Wormhole Geometries

In this section, we focus on wormholes, which are structures that connect two dif-
ferent spacetime manifolds or two distinct regions within the same spacetime mani-
fold. Wormholes have been extensively studied within the framework of general rel-
ativity (GR) [114–119]. A crucial requirement for a wormhole to be traversable is the
flaring-out condition [114], which, when applied through the Einstein field equations,
leads to the violation of the null energy condition (NEC) and, consequently, all other en-
ergy conditions [116,120,121]. Matter that violates the NEC is referred to as exotic matter,
and it lacks physical relevance due to the scarcity of experimental evidence supporting
its existence.

One way to avoid the use of exotic matter to sustain wormhole geometries is to consider
these objects within the context of modified theories of gravity [44,65,105,122–133]. In these
theories, the additional curvature components of the gravitational sector preserve the geom-
etry of the wormhole throat, making it traversable while keeping the matter components
non-exotic. This outcome can be achieved in various modifications of GR, from f (R) gravity
and its extensions [134–140] to couplings between curvature and matter [141,142], theories
with additional fundamental fields [143,144], Einstein–Cartan gravity [145], Gauss–Bonnet
gravity [146–148], and brane-world scenarios [149,150]. Regarding wormhole physics in the
context of f (R,T ) gravity, specific solutions were initially found using a Noether symme-
try approach; however, these lacked physical relevance, as they violated the NEC [44,65].
More recently, physically relevant traversable wormhole spacetimes that satisfy all energy
conditions have been found [105], and these are the solutions presented in this section.

5.2.1. Metric and Field Equations

We start by considering a static and spherically symmetric traversable wormhole
metric, which can be written in spherical coordinates (t, r, θ, φ) as

ds2 = −eζ(r)dt2 +

[
1 − b(r)

r

]−1

dr2 + r2dΩ2, (146)

where ζ(r) is the redshift function, b(r) is the shape function, and dΩ2 = dθ2 + sin2 θdφ2 is
the solid-angle surface element. The necessary conditions to ensure the traversability of the
wormhole are the finiteness of the redshift function throughout the entire spacetime, i.e.,
|ζ(r)| < ∞, to avoid event horizons, therefore allowing an observer to cross the wormhole’s
interior without being trapped, and the flaring-out condition at the wormhole throat
(r = r0)1, which is given by the following boundary conditions:

b(r0) = r0, b′(r0) < 1. (147)
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Given these requirements, we consider the following two broad families of solutions
for the functions of ζ(r) and b(r):

ζ(r) = ζ0

( r0

r

)α
, b(r) = r0

( r0

r

)β
, (148)

where ζ0 is an arbitrary constant to be specified and α and β are arbitrary positive exponents.
Regarding the matter sector, we assume that the matter distribution is well described

by an anisotropic perfect fluid. Thus, the energy-momentum tensor (Tµν) is given by

Tν
µ = diag(−ρ, pr, pt, pt), (149)

where ρ ≡ ρ(r) represents the energy density, pr ≡ pr(r) denotes the radial pressure, and
pt ≡ pt(r) is the tangential pressure, which depend only on the radial coordinate (r) to
maintain the spherical symmetry of the wormhole. Under these assumptions, the matter
Lagrangian is given by Lm = 1

3 (pr + 2pt), and consequently, the auxiliary tensor (Θµν)
results in

Θµν = −2
3
(pr + 2pt)

(
Tµν −

1
2

gµνT
)
− TTµν + 2Tσ

µ Tσν. (150)

We developed the methodology to obtain wormhole solutions by considering that the
function of f (R, T ) is separable and linear in both R and T , that is,

f (R, T ) = R + γT , (151)

and briefly generalized it to cases where the function includes highers powers of T along
the way, which can be seen in detail in [105].

Under this assumption, the field equations in Equation (3) and the conservation
equation in Equation (7) become

Gµν = 8πTµν − γ

(
Θµν −

1
2

gµνT
)

, (152)

8π∇bTµν = γ∇b

(
Θµν − 1

2
gµνT

)
, (153)

respectively. Now, with the assumptions from Section 5.2, the field equations in Equation (152)
yield three independent components, which are expressed as follows:

8πρ =
γ

6

(
p2

r − 2p2
t − 3ρ2 − 8pr pt − 8prρ − 16ptρ

)
− β

r2

( r0

r

)β+1
, (154)

8πpr =
γ

6

(
p2

r + 2p2
t − 3ρ2 − 12pr pt + 4prρ − 4ptρ

)
− 1

r2

( r0

r

)β+1
− αζ0

r2

( r0

r

)α
[

1 −
( r0

r

)β+1
]

, (155)

8πpt = −γ

6

(
p2

r + 6p2
t + 3ρ2 + 2pr pt + 2prρ − 2ptρ

)
+

1 + β

2r2

( r0

r

)β+1
+

α2ζ2
0

4r2

( r0

r

)2α
[

1 −
( r0

r

)β+1
]

+
αζ0

4r2

( r0

r

)α
[

2α − (1 + 2α + β)
( r0

r

)β+1
]

. (156)

Equations (154)–(156) form a system of three equations with three unknowns, namely
ρ, pr, and pt. Each of these equations is quadratic in its respective unknown, implying that
the system can potentially yield up to eight independent solutions. However, the nature
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of these solutions may vary, including the possibility of some solutions being complex,
depending on the specific values of the parameters involved.

5.2.2. Wormhole Solutions

Due to the complexity of the system of Equations (154)–(156), analytical solutions for
ρ, pr, and pt cannot be obtained explicitly, even when considering specific choices for the
free parameters of r0, α, β, γ, and ζ0. However, analytical solutions for these quantities can
still be obtained using a recursive approach. We begin by choosing specific values for the
free parameters and solve the system to find ρ(r0), pr(r0), and pt(r0) at an initial radius of
r = r0. This provides an initial set of values {ρi

0, pi
r0, pi

t0} for i ∈ {1, . . . , 8} corresponding
to the eight independent solutions of the system. Then, for each solution, the radius (r) is
incremented in small steps, such as rn+1 = rn + ϵ, where ϵ is a small increment, to compute
ρ(rn+1), pr(rn+1), and pt(rn+1). By recursively applying this process up to a sufficiently
large radius (r), one can analytically determine the behavior of the solutions. The same
method is applicable to any form of the function of f (R, T ) containing higher powers of
T and no crossed RT terms, given that the relation between the matter fields remains
algebraic, although the set of solutions is larger.

Among the obtained solutions, we focus only on those that are astrophysically relevant,
meaning that their matter components satisfy the energy conditions (see Equation (23)).
For a diagonal energy-momentum tensor (Tµν) as given in Equation (149), these energy
conditions are expressed as follows:

ρ + pr ≥ 0, ρ + pt ≥ 0, ρ ≥ 0, ρ + pr + 2pt ≥ 0, ρ ≥ |pr|, ρ ≥ |pt|. (157)

From the set of eight solutions for the matter quantities within the theory, solutions
that violate any of these energy conditions are discarded, and only those that satisfy all of
the energy conditions are considered.

As a specific example, let us consider the parameter combination of α = β = −γ = 1,
r0 = 3M, and ζ0 = − 6

5 .2 The matter density (ρ), as well as the combinations of ρ + pr,
ρ + pt, ρ + pr + 2pt, ρ − |pr|, and ρ − |pt|, are plotted in Figure 3 for the solution that
satisfies all previously mentioned energy conditions.

Similar to findings in linear f (R, T) gravity [140], from the example above and from all
the solutions satisfying the energy conditions that we have found for the linear case of the
function of f (R, T ), we concluded that solutions satisfying the energy conditions through-
out the entire spacetime could only be obtained by taking negative values of γ, as shown in
Figure 3. However, when considering higher powers of T , i.e., f (R, T ) = R + γT + σT n,
we found that solutions satisfying all the energy conditions can be achieved even for posi-
tive values of γ, provided that σ remains negative. Furthermore, for both cases, a notable
characteristic stood out, which is the fact that despite the spacetime being asymptotically
flat, the matter components do not vanish across the entire radial coordinate range, in-
dicating non-localized behavior, as seen in Figure 3. Therefore, to improve the physical
relevance of these solutions, we must match them with an exterior vacuum spacetime with
a finite radius. We address this issue in the next section.



Universe 2024, 10, 339 28 of 40

3 4 5 6 7 8

12.562

12.563

12.564

12.565

12.566

r /M

ρ

3 4 5 6 7 8

16.7535

16.7540

16.7545

16.7550

16.7555

r /M

ρ
+
p i

ρ+pt

ρ+pr

3 4 5 6 7 8

25.1330

25.1335

25.1340

25.1345

r /M

ρ
+
p r

+
2p
t

3 4 5 6 7 8
8.3745

8.3750

8.3755

8.3760

8.3765

8.3770

8.3775

r /M

ρ
-
|p
i|

ρ-|pt |

ρ-|pr |

Figure 3. Considering the parameters α = β = −γ = 1, r0 = 3M, and ζ0 = − 6
5 , the matter density ρ

and the combinations of ρ + pr, ρ + pt, ρ + pr + 2pt, ρ − |pr|, and ρ − |pt| are presented.

5.2.3. Junction Conditions and Matching

To obtain physically relevant spacetime solutions that describe localized objects, one
has to employ the junction conditions to perform matching between the interior and
exterior spacetimes at a finite radius. In the context of GR, these equations were derived
long ago [151] and have been applied in various astrophysical scenarios, such as in
the analysis of traversable wormholes [152–157], fluid stars [158–160], and gravitational
collapse [161,162]. Since these conditions are theory-dependent, several studies have
analyzed them in the context of different modified theories of gravity (we refer to [106]
for a review), from f (R) gravity and its extensions [163–169] to theories with additional
fundamental fields [170–173]; metric-affine gravity [174–176]; and, more recently, in the
context of f (R, T ) gravity [105]. In this section, we present the latter work, including
both the derivation of the junction conditions and the matching performed between the
interior wormhole spacetime and an exterior vacuum spacetime.

Junction Conditions

We begin the derivation of the junction conditions by first considering the linear case
of the function, that is, f (R, T ) = R + γT , and later briefly extend the analysis to cases
where the function includes higher powers of T , namely f (R, T ) = R + γT + σT n.

Let us consider a spacetime manifold (Ω) consisting of two distinct and complementary
regions (Ω±), each described by metric tensors (g±αβ) in their respective coordinate systems
(xα

±). We define Ω+ as the exterior spacetime and Ω− as the interior spacetime. The
interface between Ω± is a three-dimensional hypersurface (Σ) with a metric (hab) expressed
in terms of a coordinate system (ya), where Latin indices exclude the direction orthogonal
to Σ. The projection tensors from the four-dimensional spacetime (Ω) onto the hypersurface
(Σ) are expressed as eα

a = ∂xα/∂ya. The normal vector on Σ is defined as nα = ϵ∂αl, where l
is the affine parameter along geodesics orthogonal to Σ, and ϵ takes values 1, −1, and 0 for
space-like, time-like, and null geodesic congruences, respectively. By construction, note
that nαea

α = 0 holds true. Using this notation, the induced metric (hab) and the extrinsic
curvature (Kab) of the hypersurface (Σ) are expressed as

hab = eα
a eβ

b gαβ, Kab = eα
a eβ

b∇αnβ. (158)
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To derive the junction conditions, we employ the distribution formalism. In this
approach, any quantity (X) and its derivative (∇αX) are expressed in terms of distribution
functions as follows:

X = X+θ(l) + X−θ(−l), (159)

∇αX = ∇αX+θ(l) +∇αX−θ(−l) + ϵnα[X]δ(l), (160)

where X± represents the quantity (X) in the spacetimes (Ω±); θ(l) is the Heaviside distri-
bution function defined as θ(l) = 0 for l < 0, θ(l) = 1 for l > 0, and θ(l) = 1

2 for l = 0;
δ(l) = ∂lθ(l) is the Dirac delta distribution; and we have introduce the definition of [X] to
represent the jump of X across Σ, that is,

[X] = X+|Σ − X−|Σ. (161)

If the quantity (X) is continuous across Σ, then [X] = 0. Additionally, notice that by
definition, we have [nα] = [eα

a ] = 0.
To obtain the junction conditions, we start by writing every quantity appearing in the

field equations (see Equation (152)) in the distribution formalism. Let us begin with the
metric of gαβ, which, in the distributional formalism, becomes

gαβ = g+αβθ(l) + g−αβθ(−l). (162)

With the metric expression in Equation (162), we proceed to compute the Christoffel
symbols (Γγ

αβ) associated with the metric of gαβ, which involves calculating the derivatives

(∂λgαβ). Using Equation (160), these derivatives are expressed as ∂λgαβ = ∂λg+αβθ(l) +
∂λg−αβθ(−l) + ϵnλ[gαβ]δ(l). However, the presence of the term proportional to δ(l) poses
a challenge when defining the Riemann tensor (Rα

βλγ) in the distributional formalism.
Since the Riemann tensor (Rα

βλγ) depends on products between the Christoffel symbols

(Γγ
αβ), it results in terms proportional to δ2(l), which are singular in the distributional

formalism. The junction conditions are introduced precisely to eliminate such singular
terms from the field equations when expressed in the distribution formalism. Thus, to
remove the singular term arising in the Riemann tensor (Rα

βλγ), we impose that the metric
of gαβ must be continuous across Σ, i.e.,

[
gαβ

]
= 0. Considering [eα

a ] = 0, this condition
can be expressed in a coordinate-independent manner by projecting both indices onto the
hypersurface (Σ), resulting in

[hab] = 0. (163)

Equation (163) represents the first junction condition, stipulating that the induced
metric at Σ must be continuous. Using this result, the derivatives of gαβ become

∂λgαβ = ∂λg+αβθ(l) + ∂λg−αβθ(−l). (164)

We can now compute the Christoffel symbols in the distributional formalism and
subsequently derive the Riemann tensor, along with its contractions, namely the Ricci
tensor (Rab) and the Ricci scalar (R), which are well-defined. These quantities are expressed
as follows:

Rαβ = R+
αβθ(l) + R−

αβθ(−l)−
(

ϵ[Kab]ea
αeb

β + nαnβ[K]
)

δ(l), (165)

R = R+θ(l) + R−θ(−l)− 2ϵ[K]δ(l), (166)

where K = habKab represents the trace of the extrinsic curvature.
Considering the matter sector, it is useful to link the existence of a thin shell at the

hypersurface (Σ) with any terms proportional to δ(l) in the gravitational sector of the
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modified field equations. Therefore, in the distribution formalism, we express the energy-
momentum tensor as follows:

Tαβ = T+
αβθ(l) + T−

αβθ(−l) + Sαβδ(l), (167)

where Sαβ = Sabea
αeb

β, and Sab denotes the three-dimensional energy-momentum tensor
of the thin shell. To obtain the scalar (T ) in the distributional formalism, one can simply
contract Tαβ with itself using the previous expression (167), resulting in

T = T +θ(l) + T −θ(−l) +
(

T+
αβ + T−

αβ

)
Sαβδ(l) + SαβSαβδ2(l), (168)

Note that the term proportional to δ2(l) in Equation (168) is singular in the distribu-
tional formalism and needs to be removed. The only possible approach to eliminate the
term proportional to δ2(l) in T is to require the energy-momentum tensor of the thin shell
to vanish, that is,

Sαβ = 0. (169)

When Equation (169) holds true, the matching is referred to as a smooth matching.
Unlike in several other theories of gravity, where this kind of matching is considered a
specific case of a broader thin-shell matching, in f (R, T ) gravity, smooth matching between
two spacetimes is the only method allowed to maintain the regularity of the action.

Based on the definitions provided above and under the restriction in Equation (169),
we project the field equations for the function of f (R, T ) = R + γT that are presented
in Equation (152) onto the hypersurface (Σ) with eα

a eβ
b , for which they take the form of

[Kab]− [K]hab = 0. Taking the trace of this result with hab yields [K] = 0. Substituting this
back into the original equation results in

[Kab] = 0. (170)

Therefore, the second junction condition implies that the extrinsic curvature (Kab)
must be continuous across Σ.

In summary, the matching between two spacetimes in linear f (R, T ) gravity must
always be smooth, meaning it must occur without a thin shell. The two junction conditions
that must be satisfied are the same as in GR—the induced metric (hab) and the extrinsic
curvature Kab must be continuous across the hypersurface (Σ) as follows:

[hab] = 0, [Kab] = 0. (171)

When considering a higher-order power of T in the function, the field equations
include products in the form of T n−1Θab and powers of T n. For the linear case, we have
shown that for T to be well-defined in the distributional formalism, the matching must
be smooth, meaning there is no thin shell, i.e., Sαβ = 0. This requirement ensures that
T and the auxiliary tensor (Θαβ), as defined in Equation (150), are completely regular,
featuring only terms proportional to θ(l) and no terms proportional to δ(l). As a result, the
products of T and Θαβ, as well as the powers of T n, maintain this regularity. Therefore,
introducing a higher-order power law of T in the function of f (R, T ) does not lead to
additional junction conditions, as long as crossed RT terms are absent.

Matching with an Exterior Vacuum

Let us now apply the junction conditions derived in the previous Section Junction Conditions
to match the interior wormhole spacetime with an exterior spherically symmetric and static vac-
uum solution. The metrics for the interior and exterior spacetimes are given by

ds2
− = −Ceζ0(

r0
r )

α

dt2 +

[
1 −

( r0

r

)β+1
]−1

dr2 + r2dΩ2, (172)
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ds2
+ = −

(
1 − 2M

r

)
dt2 +

(
1 − 2M

r

)−1
dr2 + r2dΩ2, (173)

respectively. The metric in Equation (172) is derived from Equation (146) using the sug-
gested ansatz for the redshift and shape functions, as given in Equation (148), and C is
introduced for convenience to ensure that the time coordinates in both the interior and
exterior metrics coincide. The metric in Equation (173) corresponds to the Schwarzschild
solution with a mass of M [177].

The analysis becomes more convenient if we begin with the second junction con-
dition (Equation (171)). Due to the spherical symmetry of the metrics under considera-
tion, the extrinsic curvatures (K±

ab) have only two independent components, namely K00

and Kθθ = Kϕϕ sin2 θ. Thus, we derive two independent constraints on the matching, that
is, [K00] = 0 and [Kθθ ] = 0, which are given by

αζ0

2

( r0

r

)α
√

1 −
( r0

r

)β+1
+

M
r

√
r

r − 2M
= 0, (174)

√
1 −

( r0

r

)β+1
=

√
1 − 2M

r
, (175)

respectively. Solving the second of these conditions for the radius (r) using Equation (175),
we obtain unique real solutions for M > 0 and r0 > 0, given by

rΣ = (2M)
− 1

β (r0)
1+ 1

β , (176)

which corresponds to the radius (rΣ) at which the matching must be performed. The radius
(rΣ) must satisfy rΣ > 2M to prevent event horizons in the complete wormhole spacetime,
which implies that the throat radius (r0) should also satisfy r0 > 2M for any β ≥ 1.
Introducing the obtained solutions for rΣ back into the first condition (Equation (174)), we
can solve it with respect to the value of ζ0, for which matching at the radius (r = rΣ) is
possible. Doing so, the expression for ζ0 becomes

ζ0 =
(2M)

1−α+β
β (r0)

α
β

α

[
(2M)

1+ 1
β − (r0)

1+ 1
β

] . (177)

Given that r0 > 2M, as derived from the previous constraint, it follows that for any α ≥ 1
and β ≥ 1, we have ζ0 < 0. This is expected because negative values of ζ0 ensure that the
derivative of g00 maintains consistent signs in both the interior and exterior metrics, which
is necessary for a smooth matching.

Let us now consider the first junction condition given in Equation (171). Since the
angular components of the metrics in Equations (172) and (173) coincide, the angular parts
of the induced metric (hαβ) are straightforwardly continuous. Therefore, the continuity
condition ([h00] = 0) is analyzed independently and takes the following form:

Ceζ0(
r0
r )

α

=

(
1 − 2M

r

)
. (178)

We take the results derived from the second junction condition, namely the radius
(rΣ) from Equation (176), where the matching occurs, and the corresponding value of ζ0
from Equation (177), and substitute them into Equation (178) and solve for the constant
(C), obtaining

C =

[
1 −

(
2M
r0

)1+ 1
β

]
e
−α

[
( r0

2M )
1+ 1

β −1

]
. (179)
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Since r0 > 2M, the constant (C) remains strictly positive, regardless of the values of
α ≥ 1 and β ≥ 1, therefore preserving the correct metric signature.

To summarize, given r0 > 2M, α ≥ 1, and β ≥ 1, the second junction condition
(
[
Kαβ

]
= 0) determines the radius (rΣ) for the matching (see Equation (176)) and the

corresponding value of ζ0 (see Equation (177)). Meanwhile, the first junction condition
(
[
hαβ

]
) sets the value of the constant (C), ensuring the continuity of the complete spacetime

metric (see Equation (179)).
Let us provide the following example. Consider the specific case where r0 = 3M,

α = 1, and β = 1. With these parameters, Equation (176) gives the matching radius at
rΣ = 9

2 M, Equation (177) gives ζ0 = − 6
5 , and Equation (179) results in C = 5

9 e
4
5 . The

g00 components of the interior, exterior, and matched metrics are plotted in the left panel
of Figure 4. Notice that the g00 component of the metric transitions smoothly from the
interior to the exterior metric, ensuring the continuity of both the induced metric and the
extrinsic curvature.

Analyzing the radial component of the grr metric, as shown in the right panel of
Figure 4, we observe that even though the radial component is not directly constrained
by the junction conditions, as both the induced metric (hab) and the extrinsic curvature
(Kab) are three-dimensional tensors on the hypersurface (Σ), we find that grr remains
continuous, although not differentiable at r = rΣ. This continuity of grr is anticipated
when considering its dependence on the mass function within a spherical hypersurface of

radius r (m(r)), as given by grr =
(

1 − 2m(r)
r

)−1
, from which we obtain m(r) = r0

2
( r0

r
)β (see

Equations (148) and (172)). Indeed, since the matching between the interior and exterior
spacetimes are smooth, i.e., lacking a thin shell, it follows that the mass function (m(r)) is
continuous at rΣ, which, in turn, ensures the continuity of the grr component of the metric.
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Figure 4. The interior wormhole spacetime in Equation (172) (red dashed curve) and the exterior
Schwarzschild spacetime in Equation (173) (blue dotted curve) for β = 1, r0 = 3M, and α = 1. The
thin black line represents the solution obtained by matching the interior and exterior solutions at
r = rΣ for the gtot

00 component (left panel) and gtot
rr component (right panel).

5.2.4. Summary

In conclusion, this analysis of traversable wormhole spacetimes within the framework
of f (R, T ) gravity for a linear model on both R and T demonstrates the existence of numer-
ous traversable wormhole solutions that satisfy all energy conditions, therefore possessing
significant physical relevance. An intriguing aspect of the obtained solutions is that, al-
though the spacetime metrics are asymptotically flat, the f (R, T ) theory permits matter
distributions that are not asymptotically vacuum and, therefore, not localized. However,
the localization of the solutions is achievable via the use of the theory’s junction conditions.
These conditions were derived, revealing that only smooth matching is allowed under this
theory, as the scalar (T ) becomes singular in the presence of a thin shell. Consequently,
the junction conditions for a smooth matching reduce to those of GR, i.e., the continuity
of the induced metric and extrinsic curvature at the hypersurface separating the interior
and exterior spacetime regions. Upon performing this matching, localized wormhole
solutions satisfying all energy conditions throughout the entire spacetime were obtained,



Universe 2024, 10, 339 33 of 40

highlighting their particular astrophysical relevance. Moreover, the methods introduced
in this work can be straightforwardly generalized to more complex dependencies of the
function of f (R, T ) in T , provided that crossed terms between R and T are absent. Fur-
thermore, due to the requirement that the matching in this theory be smooth, the absence
of these crossed terms also ensures that no additional junction conditions arise, allowing
for effective localization of the solutions obtained in the same manner as in the linear
(T ) counterpart.

6. Conclusions

The exploration of EMSG presents a novel framework for extending our understanding
of gravitational phenomena beyond the limits of GR. This comprehensive study encom-
passes the theoretical formalism, thermodynamic implications, cosmological models, and
the nature of compact objects within EMSG, providing a robust foundation for future
research and potential observational confirmations. In this work, we delved into the
mathematical formulation of EMSG by presenting the action and field equations in the
geometrical and scalar-tensor representations, laying the groundwork for the theory. The
thermodynamic aspects of EMSG are crucial in understanding the Universe’s evolution.
We also examined particle production in cosmology, highlighting how EMSG influences
matter creation. The thermodynamic interpretation of irreversible matter creation provides
insights into a deeper connection between thermodynamics and cosmological expansion.
This motivated the analysis of the cosmological implications of EMSG. The generalized
Friedmann equations were derived, incorporating the energy balance equation and the
deceleration parameter, and various de Sitter expansion scenarios were analyzed, including
self-interacting potentials and constant-density solutions. The exploration of general cos-
mological models through dimensionless and redshift representations offered a qualitative
discussion of specific models and their observational prospects.

In fact, matter creation processes are believed to play a fundamental role in quantum
field theoretical approaches to gravity, where these processes emerge naturally within
the framework. A well-established result in quantum field theory, particularly in curved
spacetimes, is the creation of quanta from minimally coupled scalar fields in an expanding
Friedmann–Robertson–Walker (FRW) universe. This phenomenon, as rigorously demon-
strated by Leonard Parker in his pioneering research, has become a cornerstone of our
understanding of particle creation in cosmological settings [71–75]. Parker’s work, begin-
ning in the late 1960s, showed that the expansion of the Universe leads to the spontaneous
creation of particles—an insight that has profound implications for both quantum mechan-
ics and cosmology. His findings revealed that the dynamics of an expanding universe
could result in the production of both fermions and bosons, establishing a deep connection
between the geometry of spacetime and quantum field behavior.

Given the significance of these results, finding an equivalent microscopic quantum
description of the matter creation processes discussed in the present work could provide
critical insights into the physical mechanisms that govern particle generation through the
coupling of gravity and matter geometry. Although this analysis lies outside the scope of
the present work, by developing such a microscopic perspective, we could further illumi-
nate the fundamental processes by which particles are created in the Universe, potentially
bridging the gap between quantum field theory and gravitational phenomena. These
models, which offer a synthesis of classical and quantum descriptions of the Universe,
provide a robust platform for exploring how particles( both fermions and bosons) are gen-
erated in an expanding cosmological background. Parker’s extensive body of work serves
as a foundational reference for these explorations, offering both theoretical insights and
analytical techniques necessary to delve into the complexities of particle creation [71–75].
These seminal works provide the theoretical framework and foundational principles that
continue to guide research on how the expanding Universe influences quantum fields,
leading to the creation of matter as we observe it. Through these studies, the intricate
relationship between gravity, quantum fields, and matter creation is progressively being
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unraveled, offering new perspectives on the nature of the Universe. Work along these lines
is currently underway.

Furthermore, we investigated the impact of EMSG on compact objects. Indeed, EMSG
reduces to GR in vacuum, making them indistinguishable without matter or energy. How-
ever, in the presence of an energy-momentum distribution, differences arise because EMSG
includes higher-order corrections dependent on the square of the energy-momentum tensor.
These corrections become significant in high-curvature regions, such as the dense cores of
neutron stars, black holes, or wormholes, leading to noticeable deviations from GR. In this
work, electrodynamics within the EMSG framework were explored, suggesting potential
deviations in electromagnetic phenomena near massive objects. Wormhole geometries
were also studied, with a focus on the metric and field equations, and specific wormhole
solutions were obtained. Junction conditions and matching provide the criteria for viable
physical models. Therefore, the dense cores of compact objects serve as ideal laboratories
to test the predictions of EMSG against those of GR. By studying high-curvature regions,
we can gain insights into the validity of EMSG and potentially identify observable phe-
nomena that distinguish it from GR. As observational technology advances, particularly
in the realms of gravitational wave astronomy and high-energy astrophysics, these devia-
tions could provide crucial evidence supporting or refuting the modifications introduced
by EMSG.

An interesting avenue for further exploration would be to consider the effects of
non-spherical symmetry, particularly those induced by the distribution of angular mo-
mentum. When a compact object is set into slow rotation, as described in the works of
Hartle [178,179], both the geometry of the surrounding spacetime and the interior distribu-
tion of stress energy experience significant alterations. These modifications become even
more pronounced in the presence of EMSG. In the context of EMSG, the slow rotation of
a compact object could lead to complex changes in the spacetime geometry, potentially
affecting the stability, structure, and observable properties of these objects. The inclusion
of angular momentum distribution in such models is likely to yield new insights into the
behavior of rotating compact objects, particularly in how they deviate from the predictions
of GR. Given the complexity and importance of these considerations, a detailed analysis of
the impact of angular momentum on non-spherical compact objects within the framework
of EMSG would be a valuable contribution to the field. However, this investigation involves
substantial theoretical and computational challenges, which we intend to address in future
work. This future research will aim to provide a more comprehensive understanding of
how rotation and EMSG interact to shape the properties of compact astrophysical objects.

In this context of compact objects, it is also of interest to define the mass of these
geometries as viewed by a distant observer, which is, indeed, not a trivial matter. Here,
one can, indeed, enumerate several concepts, such as the Komar mass [180,181], ADM
mass (Arnowitt-Deser-Misner Mass) [182,183], and Bondi mass [184,185], which are not
equivalent in GR but are related concepts that apply in different contexts. The Komar
mass is the mass associated with stationary spacetimes, specifically those with a time-like
Killing vector field. The Komar mass is a measure of the total mass (including contributions
from both matter and gravitational energy) within a certain region of spacetime. It is
applicable primarily in spacetimes with certain symmetries (e.g., stationary or axisymmetric
spacetimes) and is not defined in non-stationary situations. The ADM mass is a measure
of the total mass (including gravitational energy) of an isolated system as seen from
spatial infinity. It is defined in asymptotically flat spacetimes and represents the conserved
quantity associated with the asymptotic time translation symmetry. The Bondi mass
is defined at null infinity and measures the total mass of an isolated system as seen
by a distant observer, accounting for any energy radiated away as gravitational waves.
Unlike the ADM mass, which is defined in a spatial context, the Bondi mass is relevant in
dynamical spacetimes where gravitational radiation is present. In GR, these three concepts
are not directly equivalent but can be related under specific conditions. For instance, in a
stationary, asymptotically flat spacetime, the Komar mass and ADM mass can be shown
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to be equivalent. This is because both are designed to measure the total mass of a static
or stationary system, although using different methods. The ADM mass and Bondi mass
differ because the Bondi mass decreases as gravitational waves carry energy away from the
system. In a stationary situation with no gravitational radiation, they would be equivalent,
but in general, the Bondi mass is less than the ADM mass for a radiating system.

In modified theories of gravity, such as in EMSG, the relationship between these
masses can differ significantly from GR due to changes in the underlying field equations
and the nature of gravitational interaction. Here, the Komar mass typically relies on the
Einstein field equations and the presence of a time-like Killing vector. In modified gravity
theories, the field equations are altered, and the existence and properties of Killing vectors
may also change, leading to different expressions or interpretations for Komar mass. The
ADM mass is defined based on the Hamiltonian formulation of GR, which may be altered in
modified theories of gravity. As a result, the ADM mass could take a different form or might
not even be well-defined, depending on the asymptotic structure of the modified theory.
Relative to the Bondi mass, in theories with different gravitational radiation properties or
different treatments of null infinity, the definition of Bondi mass could also be modified.
The relationship between energy carried away by gravitational waves and the reduction in
Bondi mass could differ from those in GR.

In conclusion, the study of EMSG provides a compelling extension to existing gravita-
tional theories, offering potential solutions to longstanding problems in cosmology and
astrophysics. The formalism developed here lays a solid foundation for further theoretical
exploration and potential empirical verification. By bridging the gap between gravity,
thermodynamics, and quantum effects, EMSG emerges as a promising candidate for a more
comprehensive theory of gravity, potentially furthering our understanding of the Universe.
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Notes
1 The flaring-out condition in the neighborhood of the throat takes the form of (b − b′r)/b2 > 0 [114].
2 While the choice of ζ0 at this point is somewhat arbitrary, we chose this particular value for reasons that we clarify in the

subsequent section. Various other values of ζ0, including positive values, would yield qualitatively similar solutions.
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