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Abstract: In this paper, we make a detailed side-by-side comparison between Jordan and Einstein
frames in the context of cosmic magnetogenesis. We have computed the evolution of the vector
potential in each frame along with some observables such as the spectral index and the magnetic field
amplitude. We found that contrary to the Einstein frame, the electric and magnetic energy densities
in the Jordan Frame do not depend on any parameter associated with the scalar field. Furthermore,
in the Einstein frame, and assuming scale invariance for the magnetic field, most of the total energy
density contribution comes from the electric and magnetic densities. Finally, we show the ratio
between magnetic field signals in both frames printed in the CMB.
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1. Introduction

One of the most exciting outstanding puzzles in modern Cosmology is the origin of the
accelerating expansion of the Universe [1–4]. Modifications to Einstein’s gravity have been
interesting candidates for explaining its origin without the cosmological constant. Repre-
sentative modified gravity models that have been studied include scalar–tensor theories
(STTs) [5–13], f (R) gravity [14–16], Gauss–Bonnet gravity [17–19], DGP (Dvali–Gabadadze–
Porrati) model [20], and brane–world gravity [21,22] among others [23]. Depending on
the coupling between the scalar field and the scalar curvature, STTs are formulated in
two distinct frames, the Jordan Frame (JF) and the Einstein frame (EF). In the former, the
scalar field is non-minimally coupled to gravity, while in the latter, a minimal coupling is
present. Both frames are related by conformal transformations of the metric, along with
a redefinition of the scalar field. Moving from JF to EF gets rid of non-minimal coupling
from the gravity sector in the action, and the Lagrangian of the redefined scalar restores its
canonical form. This transformation preserves the non-minimal coupling with the “new”
scalar field in the matter sector. As a consequence, the matter energy–tensor momentum is
no longer covariantly conserved, implying that massive particles will not follow geodesics
due to the appearance of an additional force in this frame.

Although these two frames are conformally related and, at least on a classical level,
are physically equivalent [24–32], there are still controversial opinions regarding this in the
literature. For example, it is possible to have acceleration in the Jordan frame, and when a
conformal transformation moves to the Einstein frame, the transformed metric can describe
a decelerating Universe [33]. In [34], it was pointed out that in quadratic and scale-invariant
gravity the solution space of the Jordan frame cannot be entirely mapped into the solution
space of the Einstein frame. Additionally, in [35], they demonstrate that gauge invariance
does not guarantee frame invariance (e.g., the Bardeen potentials). Therefore, we want
to explore behaviors in the physical quantities within a specific cosmological scenario by
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performing the calculations in these frames without invoking the conformal transformation
between them.

This paper aims to analyze, side-by-side, the physical quantities in both the Jordan
and Einstein frames within the context of magnetogenesis. In this scenario, we focus on
nonminimal couplings and the breaking of the conformal invariance of the electromag-
netic field. Our specific goal is to describe the main physical observables in both frames
without invoking conformal transformations and to compare constraints on magnetic field
spectra [36–42].

This paper is organized as follows: In Section 2, we briefly review the conformal
transformations between Jordan and Einstein frames. Section 3, describes the evolution
of the potential vector using both frames and we evaluate power spectra. In Section 4 we
show different constraints on the magnetic field spectra in both frames, while in Section 5
we discuss the CMB signal left from those fields. Finally, we conclude with a summary in
Section 6.

2. Conformal Transformations between Jordan and Einstein Frames

In this section, we briefly show the standard procedure to demonstrate the equivalence
between scalar–tensor theories in the Jordan and Einstein frames [6,7,15].

Let us consider the action for scalar–tensor theories in the so-called Jordan frame [7,43]

SJ =
∫

d4x
√
−gZ(ϕ, R), (1)

Z =
1
2

f (ϕ)R − 1
2

ω(ϕ)gcd∇cϕ∇dϕ − V(ϕ), (2)

where the function f (ϕ) is the coupling function, ω(ϕ) is a parameter, and V(ϕ) is the
potential of the scalar field. Performing a conformal transformation on the metric

∗gab = Ω2(x)gab, where Ω2 = f (ϕ), (3)

and defining a new scalar field χ [6]

dχ

dϕ
=

√
3
2

(
fϕ

f

)2

+
ω

f
, (4)

where fϕ = ∂
∂ϕ f (ϕ) , allows us to write the action in the Einstein frame [6]

SE =
∫

d4x
√
− ∗gQ(χ,

∗
R), (5)

Q =
1
2

∗
R − 1

2
∗gcd∇cχ∇dχ − U(χ), (6)

where
∗
R is the Ricci scalar corresponding to the metric ∗gab and

U(χ) =
V(ϕ(χ))

f (ϕ(χ))2 . (7)

The f (R) gravity can be cast in the form of scalar–tensor theories considering the action
without the kinetic term (ω(ϕ) = 0) of the scalar field [44–46]

S f (R) =
∫

d4x
√
−g
(

fϕ(R − ϕ) + f (ϕ)
)
, (8)

and by taking the variation of the action with respect to the scalar field, we obtain

fϕϕ(R − ϕ) = 0. (9)
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If fϕϕ ̸= 0 then ϕ = R, recovering the f (R) action [47]. Using this transformation, the
potential follows

V = ϕ fϕ − f (ϕ) −→ V = R fR − f (R), (10)

where fR = ∂
∂R f (R). We can get the Brans–Dicke (BD) theory, which is a particular case of

the scalar–tensor theories via

f (ϕ) = ϕ, ω(ϕ) =
ωBD

ϕ
, (11)

and plugging it into Equation (4) becomes

ϕ = e
√

2
3 χ, (12)

where we have used ωBD = 0 because of its equivalence.

3. U(1) Gauge Field Coupled with Scalar-Tensor Theories

In what follows, we shall describe the magnetogenensis approach in both Jordan
and Einstein frames. We will work on both frames independently in order to review the
advantages and properties that each frame offers.

3.1. Magnetogenesis in Jordan Frame

We consider a model with non-minimal coupling between scalar–tensor theories and
the electromagnetic field in the Jordan frame

SJ
int = −1

4

∫
d4x
√
−gZ(ϕ, R)FabFab +

γg

4

∫
d4x
√
−gZ(ϕ, R)Fab F̃ab, (13)

where Fab = ∇a Ab −∇b Aa is the electromagnetic field–strength tensor. Here, Aa is the
U(1) gauge field, F̃ab is the dual electromagnetic tensor, and γg is a constant that leads to a
magnetic field with a net helicity [38]. To obtain the equation of motion we vary the action
with respect to Ab

1√−g
∂a

[√
−gZ(ϕ, R)

(
Fab −

γg

2
ϵabcdFcd

)]
= 0, (14)

where ϵabcd is the totally antisymmetric tensor defined as ϵabcd = ηabcd
√−g . Here, ηabcd is a

Levi–Civita symbol. Working in the Coulomb gauge A0 = 0, ∂i Ai = 0 the equation of
motion is written as

A′′
i +

Z′

Z
A′

i − a2(τ)∂j∂j Ai +
Z′

Z
γgηijka2(τ)∂j Ak = 0, (15)

where prime denotes differentiation with respect to conformal time and we have assumed
a spatially flat Friedmann–Lemaître–Robertson–Walker (FLRW) spacetime

ds2 = a2(τ)(−dτ2 + dx2). (16)

Defining Āi = 2
√

ZAi, the equation of motion reads as

Ā′′
i +

1
4

[(
Z′

Z

)2

− 2
Z′′

Z

]
Āi − a2(τ)∂j∂j Āi +

Z′

Z
γgηijka2(τ)∂j Āk = 0. (17)
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Quantizing the electromagnetic field, we can expand the vector potential in the helicity
basis in terms of creation and annihilation operators b̂†

h(k) and b̂h(k) with the co-moving
wave vector [48–50],

Âi(τ, x⃗) =
∫ d3k

(2π)3/2 ∑
h=±

[
eih(k)b̂h(k)Ah(τ, x⃗)ei⃗k·⃗x + e∗ih(k)b̂

†
h(k)A∗

h(τ, x⃗)e−i⃗k·⃗x
]
. (18)

Using the above expression along with A = a(τ)Ā, Equation (17) becomes

A′′
h +

[
k2 +

Z′

Z
γghk +

1
4

(
Z′

Z

)2

− 1
2

Z′′

Z

]
Ah = 0. (19)

The evolution of this equation develops in three stages. In early stages k|τ| ≫ 1 the
term k2 dominates over the last two (the mode is far inside the horizon). Later on, when
k|τ| ≪ 1, the term proportional to γg dominates, but only the modes γgh > 0 are amplified.
Finally, as τ → 0 the terms ∝ 1/τ2 are amplified but the term γgh < 0 is less amplified
than the other case; for that reason we will neglect its effect [38,51]. Now, before calculating
the spectral densities of the electric and magnetic energy densities, we need to compute
the contribution to the energy density of the electromagnetic field; to achieve this, we
will find the stress–energy tensor of the EM field, which is obtained by varying the action
Equation (13) with respect to the metric gab

Tab = − 2√−g
δS(JF)

δgab = −1
4

Z(ϕ, R)gabF2 + Z(ϕ, R)gcdFacFbd

+
1
4

[
f (ϕ)F2Rab − gab□

(
f (ϕ)F2

)
+∇a∇b

(
f (ϕ)F2

)]
− 1

4
ω(ϕ)∇aϕ∇bϕF2

−
γg

4

[
f (ϕ)F̃2Rab − gab□

(
f (ϕ)F̃2

)
+∇a∇b

(
f (ϕ)F̃2

)]
+

γg

4
ω(ϕ)∇aϕ∇bϕF̃2, (20)

where F2 = FcdFcd and F̃2 = Fcd F̃cd. Taking a = b = 0, we have

T00 =
1
2

m1gij A′
i A

′
j +

1
2

a2m2gijgkl∂j Al(∂i Ak − ∂k Ai) +
(

m3a−2gij A′
i A

′
j

)′
−
(

m3gijgkl∂j Al(∂i Ak − ∂k Ai)
)′

+ 2γgm4ϵijk A′
i∂j Ak + 2γg

(
m3ϵijk A′

i∂j Ak

)′
(21)

where we have neglected the second-order spatial derivative of the quadratic quantity of
electromagnetic fluctuations [52] and defined the following quantities

m1 ≡ 1
2

(
f (ϕ)R + 3a−2ω(ϕ)(ϕ′)2 − 2V(ϕ)

)
(22)

m2 ≡ 1
2

(
f (ϕ)R − a−2ω(ϕ)(ϕ′)2 − 2V(ϕ)

)
(23)

m3 ≡ 3
2
H f (ϕ) (24)

m4 ≡ 1
2

ω(ϕ)(ϕ′)2. (25)

Taking the expectation value for the stress–energy tensor in the vacuum state |0⟩ (defined
by the condition bh(k) |0⟩ = 0, for all k), we obtain the total energy density

ρ = ρE + ρB + ∆ρ, (26)
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where

ρE = −
〈

0
∣∣∣ T0 (E)

0

∣∣∣ 0
〉
=

m1

8π2

∫ ∞

0

dk
k

k3

a4

∣∣∣∣∣
(
A+(τ, k)√

Z

)′
∣∣∣∣∣
2

+

∣∣∣∣∣
(
A−(τ, k)√

Z

)′
∣∣∣∣∣
2
, (27)

ρB = −
〈

0
∣∣∣ T0 (B)

0

∣∣∣ 0
〉
=

m2

8π2

∫ dk
k

k5

a4

[∣∣∣∣A+(τ, k)√
Z

∣∣∣∣2 + ∣∣∣∣A−(τ, k)√
Z

∣∣∣∣2
]

, (28)

∆ρ =
3

8π2a2
d

dτ

∫ ∞

0

dk
k

k3

a4 H f (ϕ)

∣∣∣∣∣
(
A+(τ, k)√

Z

)′
∣∣∣∣∣
2

+

∣∣∣∣∣
(
A−(τ, k)√

Z

)′
∣∣∣∣∣
2


− 3
8π2a2

d
dτ

∫ ∞

0

dk
k

k5

a4 H f (ϕ)

[∣∣∣∣A+(τ, k)√
Z

∣∣∣∣2 + ∣∣∣∣A−(τ, k)√
Z

∣∣∣∣2
]

+
3

8π2a2
d

dτ

∫ ∞

0

dk
k

k4

a4 H f (ϕ)

(∣∣∣∣A+(τ, k)√
Z

∣∣∣∣2 − ∣∣∣∣A−(τ, k)√
Z

∣∣∣∣2
)′

. (29)

Here, the first term is the electric energy density stored at a given scale, the second
term is the magnetic energy density, and finally, ∆ρ represents the additional contributions
to the total energy density.

3.2. Magnetogenesis in Einstein Frame

Let us follow the same procedure to calculate both the evolution equation of the
potential vector and the energy density in the Einstein frame, following the same procedure
described in the previous section. The action in this frame is written as

SE
int = −1

4

∫
d4x
√
− ∗gQ(χ,

∗
R)Fab

∗
Fab +

1
4

∫
d4x
√
− ∗gQ(χ,

∗
R)γgFab

∗̃
Fab.

Now, the equation of motion for the electromagnetic vector potential in the Coulomb gauge
is given by

A′′
h +

[
k2 +

Q′

Q
γgηijkk +

1
4

(
Q′

Q

)2

− 1
2

Q′′

Q

]
Ah = 0, (30)

where A = 2a(τ)
√

QAi. The stress–tensor energy reads

∗
Tab = −1

4
Q(χ,

∗
R) ∗gab

∗
F2 + Q(χ,

∗
R) ∗gcdFacFbd +

1
4

( ∗
F2 ∗

Rab −
∗gab

∗
□

∗
F2 +

∗
∇a

∗
∇b

∗
F2
)

−
γg

4

(
∗̃
F2 ∗

Rab −
∗gab

∗
□

∗̃
F2 +

∗
∇a

∗
∇b

∗̃
F2
)
− 1

4
∗
∇aχ

∗
∇bχ

∗
F2 +

γg

4
∗
∇aχ

∗
∇bχ

∗̃
F2, (31)

where the time–time component is given by

∗
T00 =

1
2

∗m1
∗gij A′

i A
′
j +

1
2

∗m2
∗a2 ∗gij ∗gkl∂j Al(∂i Ak − ∂k Ai) +

(
∗m3

∗a−2 ∗gij A′
i A

′
j

)′
−
(

∗m3
∗gij ∗gkl∂j Al(∂i Ak − ∂k Ai)

)′
+ 2γg

∗m4
∗
ϵijk A′

i∂j Ak + 2γg

(
∗m3

∗
ϵijk A′

i∂j Ak

)′
, (32)

and where we have defined the following functions

∗m1 ≡ 1
2

( ∗
R + 3 ∗a−2χ′2 − 2U(χ)

)
= Q +

χ′2
∗a2

, (33)

∗m2 ≡ 1
2

( ∗
R − ∗a−2χ′2 − 2U(χ)

)
= Q − χ′2

∗a2
. (34)
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Taking the expectation value for the stress–energy tensor in the vacuum state, we obtain
the following terms

∗
ρE = −

〈
0
∣∣∣ ∗

T0 (E)
0

∣∣∣ 0
〉
=

∗m1

8π2

∫ ∞

0

dk
k

k3

∗a4


∣∣∣∣∣∣
( ∗
A+(

∗
τ, k)√
Q

)′
∣∣∣∣∣∣
2

+

∣∣∣∣∣∣
( ∗
A−(

∗
τ, k)√
Q

)′
∣∣∣∣∣∣
2
, (35)

∗
ρB = −

〈
0
∣∣∣ ∗

T0 (B)
0

∣∣∣ 0
〉
=

∗m2

8π2

∫ dk
k

k5

∗a4

∣∣∣∣∣
∗
A+(

∗
τ, k)√
Q

∣∣∣∣∣
2

+

∣∣∣∣∣
∗
A−(

∗
τ, k)√
Q

∣∣∣∣∣
2
, (36)

∆ ∗
ρ =

3
8π2 ∗a2

d
d ∗

τ

∫ dk
k

k3

∗a4

∗
H


∣∣∣∣∣∣
( ∗
A+(

∗
τ, k)√
Q

)′
∣∣∣∣∣∣
2

+

∣∣∣∣∣∣
( ∗
A−(

∗
τ, k)√
Q

)′
∣∣∣∣∣∣
2


− 3
8π2 ∗a2

d
d ∗

τ

∫ dk
k

k5

∗a4

∗
H

∣∣∣∣∣
∗
A+(

∗
τ, k)√
Q

∣∣∣∣∣
2

+

∣∣∣∣∣
∗
A−(

∗
τ, k)√
Q

∣∣∣∣∣
2


+
3γg

8π2 ∗a2

d

d
∗∗
τ

∫ dk
k

k4

∗a4

∗
H

∣∣∣∣∣
∗
A+(

∗
τ, k)√
Q

∣∣∣∣∣
2

−
∣∣∣∣∣

∗
A−(

∗
τ, k)√
Q

∣∣∣∣∣
2
′

+
γg

8π2 ∗a2

∫ dk
k

k4

∗a6
χ′2

∣∣∣∣∣
∗
A+(

∗
τ, k)√
Q

∣∣∣∣∣
2

−
∣∣∣∣∣

∗
A−(

∗
τ, k)√
Q

∣∣∣∣∣
2
′

. (37)

The total energy density can be calculated by adding up all the energy densities, i.e.,
∗
ρ =

∗
ρE +

∗
ρB + ∆ ∗

ρ. It is important to bear in mind that the action in this frame has
been taken as independent of the Jordan one. By taking a conformal transformation in
Equation (13), we arrive at

SE
int = −1

4

∫
f 2d4x

√
− ∗gQ(χ,

∗
R)Fab

∗
Fab +

1
4

∫
f 2d4x

√
− ∗gQ(χ,

∗
R)γgFab

∗̃
Fab. (38)

Notice factor f 2 in the transformation, which reveals the conformal invariance breaking
between both frames.

4. Magnetogenesis on Power–Law Inflation

In the previous section, we obtained the spectral densities of the electric and magnetic
densities of Jordan and Einstein frames. In this section, we want to explore the above
results using a specific model for these frames.

4.1. Model in Jordan Frame

By using the magnetogenesis procedure, which assumes that the coupling functions
evolve due to a power law, we assume the evolution of the coupling Z in this manner
because, in this context, we are interested in the asymptotic solutions

Z = Z0

(
τ

τ0

)−γ

. (39)

The vector potential behaves

A′′
h +

(
k2 −

2ξγghk
τ

− ξ(ξ + 1)
τ2

)
Ah = 0, (40)

where ξ = 2γ. The solution to this equation is given by [53]
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Ah = C1Wκ,µ(z) + C2W−κ,µ(z), (41)

being Wκ,µ(z) the Whittaker functions. The asymptotic representations of these functions
are [53]

Wκ,µ(z) =


Γ(2µ)

Γ( 1
2+µ−κ)

z
1
2−µ + Γ(−2µ)

Γ( 1
2−µ−κ)

z
1
2+µ, z → 0

e−
1
2 zzκ , z → ∞

(42)

In order to determine the coefficients C1 and C2, we have to match the solution with the
Bunch–Davies vacuum

A → 1√
2k

e−ikτ , for − kτ → ∞. (43)

As a result, we see that C2 = 0 and C1 becomes

C1 =
1√
2k

eξhγπ/2. (44)

At the end of the inflation, all the modes outside the horizon will be given by

Ah =
eξhγπ/2
√

2k

 (−2i)−ξΓ(2ξ + 1)
Γ(ξ + 1 − ihγξ)︸ ︷︷ ︸

C3

(−kτ)−ξ +
(−2i)ξ+1Γ(−2ξ − 1)

Γ(−ξ − ihγξ)︸ ︷︷ ︸
C4

(−kτ)ξ+1

. (45)

Assuming maximal helicity |A+| = |A| and |A−| = 0, the expectation values become

−
〈

0
∣∣∣ T0 (JF)

0

∣∣∣ 0
〉
=

H4

16π2 eπξγg

∫ ∞

0

dk
k
|C4|2

(
k

aH

)2ξ+4
(2ξ + 1)2

+
H4

16π2 eπξγg

∫ ∞

0

dk
k

[
|C3|2

(
k

aH

)−2ξ+4
+ |C4|2

(
k

aH

)2ξ+6
]

+
3H6

16π2 eπξγg β0

∫ ∞

0

dk
k
|C4|2

(
k

aH

)2ξ+4
(2ξ + 1)2(β − (2ξ + 3))τ−β

− 3H6

16π2 eπξγg β0

∫ ∞

0

dk
k

[
|C3|2

(
k

aH

)−2ξ+4

(β − (−2ξ + 3))

+|C4|2
(

k
aH

)2ξ+6

(β − (2ξ + 5))

]
τ−β

+
3H6

16π2 eπξγg β0

∫ ∞

0

dk
k
|C4|2

(
k

aH

)2ξ+5
2(2ξ + 1)(2ξ + 4 − β)τ−β, (46)

where we have assumed that the fraction f (ϕ)
Z = β0τ−β. The invariance scale in the

magnetic field is given by ξ = 2,−3, but to the value ξ = −3, the electric field diverges

as
(

k
aH

)−2
in the super horizon limit. To avoid an excessive production of electromag-

netic energy, we calculate the energy stored in the electromagnetic field at the end of the
inflation τf
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ρ
(JF)
EM =

H4

16π2 eπξγg
(2ξ + 1)2

2ξ + 4
|C4|2

(
1 − e−(2ξ+4)N

)
+

H4

16π2 eπξγg

[
|C3|2

−2ξ + 4

(
1 − e−(−2ξ+4)N

)
+

|C4|2

2ξ + 6

(
1 − e−(2ξ+6)N

)]

+
3H6

16π2 eπξγg β0
(2ξ + 1)2

2ξ + 4
(β − (2ξ + 3))τ−β

f |C4|2
(

1 − e−(2ξ+4)N
)

− 3H6

16π2 eπξγg β0

[
|C3|2

β − (−2ξ + 3)
−2ξ + 4

(
1 − e−(−2ξ+4)N

)
+|C4|2

β − (2ξ + 5)
2ξ + 6

(
1 − e−(2ξ+6)N

)]
τ
−β
f

+
3H6

16π2 eπξγg β0|C4|2
2(2ξ + 1)(2ξ + 4 − β)

2ξ + 5

(
1 − e−(2ξ+5)N

)
τ
−β
f , (47)

where N is the number of e-folds and it is defined by N ≡ ln
a f
ai

.

Using f (ϕ)
Z

∣∣∣
τ=τf

= β0τ
−β
f = αH−2, being that α is a parameter that runs 0–1 so as not

to spoil the inflation energy. Figure 1 displays the allowed area for ∆ρ constrained by the α
and β values. α values run 0–1, while β goes 0–70. We can observe in the upper-left plot for
ξ = −2 that ∆ρ permits only small β values (β∼2).

Figure 1. Contour plots of the forbidden regions (in purple) for ∆ρ for four different values of ξ. The
left and right upper plots display the region for ξ = −2 and ξ = 0, respectively. ξ = 1 and ξ = 2 are
described in the left and right bottom plots, respectively.

In contrast, for ξ > 0, the allowed region has a higher yield of broad ranges for these
parameters.
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Figure 2 shows the behavior of ∆ρ and ρtot for two β values taken from the previ-
ous analysis using ξ = −2. The remaining energy density represented by the red line
increases with α, although its contribution is negligible with respect to the magnetic and
electric densities.

Figure 2. Plots for ∆ρ (red line), ρEB = ρE + ρB (green line), and ρtot (blue line) using β = 0.01 (left
plot) and β = 1.9 (right plot) for ξ = −2.

Figures 3 and 4 illustrate the behavior of the electromagnetic field and ∆ρ for ξ = 0, 1,
respectively. Notice how the combination for α and β determines the larger contribution
for either ρEB or ∆ρ. Finally, we can also approximate the forbidden limit at which the total
density equals the inflation energy, as shown in Figure 5.

Figure 3. Plots for ∆ρ (red line), ρEB = ρE + ρB (green line), and ρtot (blue line) using β = 0.01 (left
plot) and β = 4 (right plot) for ξ = 0.

Figure 4. Plot for ∆ρ (red line), ρEB = ρE + ρB (green line), and ρtot (blue line) using β = 25 (left plot)
and β = 65 (right plot) for ξ = 1.
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Figure 5. Plot for ∆ρ (red line), ρEB = ρE + ρB (green line), and ρtot (blue line) using β = 10 (left plot)
and β = 40 (right plot) for ξ = 2.

Assuming that the power spectra scale has a power law, we can write the magnetic
spectral index as

2(2π)3PB = k2 < |A|2 >

⇒ knB ∝ Pk → nB = −2ξ + 1 for − kτ << 1. (48)

where we have used the fact that the magnetic field strength

B(k) = kA+(k) =
kA+(k)
2a
√

Z
=

eπγg
√

k
2
√

2a
√

Z

(
C3(−kτ)−ξ + C4(−kτ)ξ+1

)
. (49)

On the other hand, we can compute the strength of the magnetic field to the present day,
assuming that it is scale-invariant, and also that the universe is instantaneously shifted
from inflation to radiation domination [36]. Hence, the temperature at the end of inflation is

Tf =

(
90

8π3

)1/4 H1/2M1/2
p

T0

g1/12
f

g1/3
0

=

(
90

8π3

)1/4 10−5/2Mp

T0

1001/12

2.641/3

(
H

10−5Mp

)1/2

= 0.0026
Mp

T0

(
H

10−5Mp

)1/2
, (50)

where Mp is the Planck mass. Since the magnetic density decreases with the expansion as
a−4, the value of the magnetic field for the actual epoch becomes

ρB0 = ρB

( a f

a0

)4
→ B0 = 0.63 × 10−10G

(
H

10−5Mp

)
(51)

where the entropy conservation has been used

a0

a f
=

( g f

g0

)1/3 Tf

T0
, (52)

where g f∼100 and g0∼2.64 [36].
Finally, the helicity can be found using the following equation

H =
∫

A · Bd3x ⇒ H =
1

(2π)3

∫
|Ak|2k d3k =

1
2π2

∫
k3|Ak|2dk

=
1

8π2a2Z

∫
k3|Ak|2dk (53)

H =
eξγgπ

16π2a2Z

[
|C3|2

−2ξ + 3
(−kτ)−2ξ k3 +

|C4|2
2ξ + 5

(−kτ)2ξ+2k3
]

(54)
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being the kinetic helicity spectral index

nH = −2ξ + 2. (55)

4.2. Magnetogenesis View from the Einstein Frame

It is important to emphasize that we are going to analyze the evolution of the vector
potential and the magnetic field amplitude independently of what we found in the above
section, that is, we will not use the conformal transformation for the variable Q. For that
reason we assume a power law for the Q-coupling

Q = Q0

( ∗
τ
∗
τ0

)−η

. (56)

Bear in mind that to find asymptotic solutions we make this assumption.
The evolution equation for the vector potential in this frame becomes

∗
A

′′
h +

(
k2 −

2δγghk
∗
τ

− δ(δ + 1)
∗
τ2

)
∗
Ah = 0, (57)

where δ = 2η. After following a straightforward procedure similar to the one used in the
Jordan frame of the previous section, we arrive at

−
〈

0
∣∣∣ ∗

T0 (EF)
0

∣∣∣ 0
〉
=

∗
H4

16π2 eπδγg

(
1 +

∗a−2x′2

Q

) ∫ ∞

0

dk
k
|C4|2

(
k

∗a
∗

H

)2δ+4
(2δ + 1)2

+

∗
H4

16π2 eπδγg

(
1 −

∗a−2x′2

Q

) ∫ ∞

0

dk
k

[
|C3|2

(
k

∗a
∗

H

)−2δ+4

+|C4|2
(

k
∗a

∗
H

)2δ+6]
− 3

∗
H6

16π2 eπδγg

∫ ∞

0

dk
k
|C4|2

Q

(
k

∗a
∗

H

)2δ+4
(2δ + 1)2(4δ + 3)

+
3

∗
H6

16π2 eπδγg

∫ ∞

0

dk
k

[
3
|C3|2

Q

(
k

∗a
∗

H

)−2δ+4
+

|C4|2

Q

(
k

∗a
∗

H

)2δ+6

(4δ + 5)

]

+
12γg

∗
H6

16π2 eπδγg

∫ ∞

0

dk
k
|C4|2

Q

(
k

∗a
∗

H

)2δ+5
2(2δ + 1)(δ + 1)

+
γg

∗
H6

16π2 eπδγg

∫ ∞

0

dk
k

χ′2

Q
|C4|2

(
− 1

∗a
∗

H

)(
k

∗a
∗

H

)2δ+5
2(2δ + 1). (58)

where the energy density at the end of inflation in this frame reads

∗
ρEM =

H4

16π2 eπδγg
(2δ + 1)2

2δ + 4
|C4|2(1 + ψµ)

(
1 − e−(2δ+4)N

)
+

H4

16π2 eπδγg(1 − ψµ)

[
|C3|2

−2δ + 4

(
1 − e−(−2δ+4)N

)
+

|C4|2

2δ + 6

(
1 − e−(2δ+6)N

)]

− 3H4

16π2 eπδγg ψ
(2δ + 1)2

2δ + 4
(4δ + 3)|C4|2

(
1 − e−(2δ+4)N

)
+

3H4

16π2 eπδγg ψ

[
3|C3|2

−2δ + 4

(
1 − e−(−2δ+4)N

)
+

4δ + 5
2δ + 6

|C4|2
(

1 − e−(2δ+6)N
)]

+
24γg H4

16π2 eπδγg ψ|C4|2
(2δ + 1)(δ + 1)

2δ + 5

(
1 − e−(2δ+5)N

)
+

2γgνH4

16π2 eπδγg ψ
2δ + 1
2δ + 5

|C4|2
(

1 − e−(−2δ+4)N
)

, (59)
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where we have used ψ =
∗

H2

Q

∣∣∣∣
τ=τf

, µ = χ′2 ∗
τ2
∣∣
τ=τf

and ν = χ′2 ∗
τ
∣∣
τ=τf

. Notice a slight

difference between both frames in the magnetic and electric density terms, due to the
existence of the additional variables ψ and µ, missing in the Jordan frame. This difference
lies in the parameter ω(ϕ) on the Jordan frame that emerged from its equivalence with the
f (R) theories. The following contour plots display the permitted and forbidden regions
for ρB, ρE, and ρtot for different values of delta, and where ψ values running 0–1, µ goes
0–70 and ν = 0.5. In Figure 6, the permitted values for ρB and ρtot are located in regions
where µ is close to zero. The electric density is zero as we can see in the first term of the
Equation (59).

Figure 6. Contour plots display the forbidden regions for ρB (left plot) and ρtot (right plot) taking
δ = −2. ψ runs from 0 to 1, µ ranges 0–70, and ν = 0.5. Here, the amplitude scale is ×10−2 and the
forbidden values are shown in purple. We can see that the greatest contribution comes from ρE.

Figure 7 shows the similarity between ρB (green line) and ρtot (blue line), yielding a
negligible value of ∆ρ to avoid increased energy on inflation. The curve with µ = 5 falls
rapidly for ψ = 0.2, because energy densities run into the forbidden region.

Figure 7. Plots for ρEB = ρE + ρB (green line) and ρtot (blue line) taking µ = 1 (left plot) and µ = 5
(right plot). The remaining values are δ = −2, ν = 0.5, and ψ goes from 0 to 1.

The top panel in Figure 8 shows the behavior of ρE, ρB while the bottom panel exhibits
ρEB = ρE + ρB and ρtot with δ = 0. The forbidden region for ρB expands quickly when
ψ goes to 0.1. In this case, ∆ρ contributes to constraining ρtot for the small values of ψ.
Figure 9 unveils that when µ is greater, the contribution of ∆ρ notably affects ρtot. For
µ = 50, the enhancement of energy is faster than µ = 5. In contrast, in Figures 10 and 11,
notice the null contribution from ∆ρ to the total energy density, i.e, ρtot is practically due
to the contribution of ρE. For the latter, the energy grows faster for µ = 60 than µ = 20,
especially in the range of ψ 0–20.
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Figure 8. Contour plot for forbidden regions for ρE (left upper plot), ρB (right upper plot),
ρEB = ρE + ρB (left bottom plot), and ρtot (right bottom plot) taking δ = 0. ψ goes from 0 to 1,
µ ranges 0–70, and ν = 0.5. Here, the scale is ×10−2, and the forbidden values are shown in purple.

Figure 9. Plots for ρEB (green line), ρtot (blue line) taking µ = 5 (left plot), and µ = 50 (right plot) for
δ = 0, ν = 0.5, and ψ ranges 0–1.

Finally, Figures 12 and 13 present the behavior for a scale-invariant magnetic field.
Here, ∆ρ does not contribute to the energy total density.

Let us now obtain the same observable quantities as we found in the Jordan frame.
For the magnetic spectral index, we have

2(2π)3 ∗
PB = k2 < |

∗
A|2 >⇒ k

∗
nB ∝

∗
Pk →

∗nB = −2δ + 1 for − k ∗
τ << 1, (60)

using the fact that

∗
B(k) = k

∗
A+(k) =

eπγg
√

k
2
√

2 ∗a
√

Q

( ∗
C3
(
−k ∗

τ
)−δ

+
∗

C4
(
−k ∗

τ
)δ+1

)
. (61)

While the magnetic field for the present epoch is

∗
B0 = 0.63(1 − ψµ)× 10−10G

( ∗
H

10−5Mpl

)
. (62)
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Finally, the helicity in this frame is written as

∗
H =

∫
∗

A ·
∗
Bd3x ⇒

∗
H =

eδγgπ

16π2 ∗a2Q

[
|C3|2

−2δ + 3
(−k ∗

τ)−2δk3 +
|C4|2

2δ + 5
(−k ∗

τ)2δ+2k3
]

, (63)

while the kinetic helicity spectral index reads as

∗nH = −2δ + 2. (64)

As we can see from Equations (62) and (51), a disparity between both frames is clear.

Figure 10. Contour plot with the permitted values and forbidden regions for ρE (left upper plot), ρB

(right upper plot), ρEB (left bottom plot), and ρtot (right bottom plot) with δ = 1. ψ runs from 0 to 1, µ

ranges 0–70. Here, the scale of the plots is ×10−2, and the forbidden values are shown in purple.

Figure 11. Plot for ρEB (green line) and ρtot (blue line) taking µ = 20 (left plot) and µ = 60 (right plot)
for δ = 1 and choosing ν = 0.5, ψ goes 0–1.
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Figure 12. Contour plot with the permitted values and forbidden regions for ρE (left upper plot), ρB

(right upper plot), ρEB (left bottom plot), and ρtot (right bottom plot) with δ = 2. Here, the scale is
×10−2 and the forbidden values are in purple. We can see two prohibited regions, the first one for
small µ and ψ values, and the second one for µ above 50 and ψ are higher than 0.6.

Figure 13. Plots for ρEB (green line) and ρtot (blue line) taking µ = 10 (left plot) and µ = 60 (right
plot) for δ = 2, choosing ν = 0.5, ψ ranges 0–1.

5. Discussion about Jordan and Einstein Frames

Through this paper, we have shown differences in distinct quantities in scalar–tensor
theories between Jordan and Einstein frames in the context of primordial magnetic fields
by using a model of power law coupled to F2 and FF̃. We found out that the magnetic
spectral index and its helicity are similar in both frames. In contrast, the amplitude of the
magnetic field today differs in each frame (see (65)). It is important to remark that different
assumptions have been taken throughout the work to find the above results, limiting
the solutions that we have encountered. The primary goal of this paper was to compare
observables between Jordan and Einstein frames via asymptotic solutions found in the
scenario of magnetogenesis. For more detail about the evolution of the electromagnetic
field during inflation, see [51,54].

Finally, the ratio between the amplitudes of the magnetic field in Jordan and Einstein
frames (using Equations (62) and (51)) in the actual epoch (assuming a scale-invariant case)
is written as
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∗
B0

B0
= (1 − ψµ)

∗
H
H

. (65)

This equation depends on two factors, the constraints values (see Figure 12) and the
Hubble parameters in both frames. To show an approximate relation between the Hubble
parameters in each frame, let us take two values, µ and ψ, from Figure 14 (this figure is a
zoomed-in perspective of the permitted values for µ and ψ of the ρB values). For example,
assuming µ = 5 and ψ = 0.1, and a value of B0 = 10 nG, we can find that

∗
H = H with

∗
B0 = 5 nG.

Figure 14. Ratio between Hubble parameters in JF to EF using the same amplitude of the magnetic
field taking a scale-invariant case. µ goes to 0–8 and ψ runs over 0–0.12.

In Figure 15 (this figure was realized using a patch of the CAMB code account for
primordial magnetic field [55,56]), we can see the relation between these two parameters
for one value of the amplitude of the magnetic field in JF, B0 = 10 nG, and different values
of the magnetic field in EF,

∗
B0 = 5, 7.5, 12.5, 15 nG, taking nb = −2.9.

Figure 15. The B-mode spectrum from the PMF vector mode, B0 = 10nG in JF, and different values of
the magnetic field in EF ∗B0 = 5, 7.5, 12.5, 15 nG. The results pictured in this figure were arrived at
using MagCAMB [55,56].
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6. Conclusions

This paper aims to provide a detailed side-by-side comparison of the Jordan and
Einstein frames within the primordial magnetic field cosmological scenario. We have calcu-
lated the electromagnetic energy density in both frames, where the electric and magnetic
energy densities along with other contributions from couplings between the gravity sector
with the electromagnetic field tensor contribute to the total energy density. Assuming
a power law model in the magnetic spectra, we found that in Jordan frame the electric
and magnetic energy densities only depend on the power ξ. In contrast, the total energy
density in the Einstein frame depends not only on the power of the coupling but also on
additional parameters relevant to not spoiling inflation energy (59). The amount ∆ρ (the
other contributions of the energy density) was restricted in both frames. For instance, in the
Jordan frame, the parameters that we found were α and β, while in the Einstein frame, we
used ψ and ν. The µ and ν terms are seen as a result because when we do the equivalence
between the scalar–tensor theory in the Jordan frame and f (R)-gravity we turn off the ω
term, but this does not happen in the other frame. We obtained the same value, for which
the magnetic field is scale-invariant, and we derived a relation to the present magnetic field
in both frames in the case of scale invariance (65).
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