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Abstract: Quantum and classical mechanics are fundamentally different theories, but the corre-
spondence principle states that quantum particles behave classically in the appropriate limit. For
high-energy periodic quantum systems, the emergence of the classical description should be un-
derstood in a distributional sense, i.e., the quantum probability density approaches the classical
distribution when the former is coarse-grained. Following a simple reformulation of this limit in
the Fourier space, in this paper, we investigate the macroscopic behavior of freely falling quantum
particles. To illustrate how the method works and to fix some ideas, we first successfully apply it to
the case of a particle in a box. Next, we show that, for a particle bouncing under the gravity field, in
the limit of a high quantum number, the leading term of the quantum distribution corresponds to the
exact classical distribution plus sub-leading corrections, which we interpret as quantum corrections
at the macroscopic level.

Keywords: classical limit; quantum bouncer; universality of free fall

1. Introduction

In general, the correspondence principle states that the predictions of a new physical
theory becomes identical to the predictions of an old theory in the appropriate limit.
For example, the correspondence principle is accomplished by special relativity, which
reduces to the Newtonian prediction for velocities much smaller than the speed of light
in a vacuum. Also, the general theory of relativity reduces to the Newtonian gravitation
for weak gravitational fields. In a similar fashion, one expects the predictions of quantum
mechanics to reproduce those of classical mechanics in some limit; however, such quantum-
to-classical correspondence is more subtle, such that there is no agreement after a century
of discussion. The main difficulty is perhaps that the conceptual frameworks of these
theories are fundamentally different. This led Einstein to assert, as subtly discussed in his
famous letters with Born, that quantum formalism is inadequate for providing a complete
description of reality [1].

In the literature, one can find various approaches to discussing the quantum-to-
classical correspondence [2–6], all of them rooted in either (i) Planck’s limit h → 0 or
(ii) Bohr’s correspondence principle n ≫ 1 [7]. The former was introduced to show that the
Planck energy density for black-body radiation reduces to the Rayleigh–Jeans law as h → 0,
and the latter was introduced to show that the transition frequency between neighboring
energy levels in the hydrogen atom tends to the classical orbital frequency of the electron as
n ≫ 1. As pointed out by Liboff, these two formulations are not universally equivalent [8].
On the other hand, since these statements of the correspondence principle were introduced
before the development of modern quantum mechanics, it was not clear how they should be
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applied to the wave function or matrix elements of an operator. Some methods addressing
the quantum-to-classical correspondence in the context of modern quantum theory include
the WKB method, the path integral formulation and Ehrenfest’s theorem. In Ref. [9], we
discussed in detail why these approaches are not universally reliable for investigating the
classical limit of quantum mechanics, since, at the end, all of them require a very narrowly
peaked probability density.

The quantum–classical correspondence has also been discussed using the Wigner
phase-space formulation of quantum mechanics [10]. This seems to be a natural framework
to tackle this problem since both theories can be expressed in terms of a joint position–
momentum distribution. Indeed, as shown in Ref. [11] for a quantum harmonic oscil-
lator, the classical limit of the Wigner function for highly excited states (i.e., coherent
and WKB states) yields the microcanonical ensemble. Other important analyses of the
quantum–classical correspondence in the framework of the Wigner function are presented
in references [12–14].

On the other side, a simpler and often more intuitive approach for visualizing the
quantum–classical correspondence in periodic systems involves a direct comparison of
the probability densities in either position or momentum spaces [15–19]. Of course, such
correspondence does not arise pointwise since the quantum distribution is highly oscillatory
for n ≫ 1 while the classical distribution is smooth between the turning points. Instead,
as is widely accepted [8], the correspondence should be understood in a locally averaged
sense. The analytical evaluation of local averages is rather difficult in the position space
and it can be performed only for the infinite square well potential [15], whose quantum
distribution is mathematically simple enough. This problem was invoked by Einstein to
illustrate his concerns on the completeness of quantum mechanics, concluding that, despite
the emergence of the classical distribution, it requires speaking of an ensemble and tells
nothing on the individual particle [1]

In recent papers, we reformulated the method to evaluate the local average of a quan-
tum distribution based on two reasonable simple assumptions: (i) the system is periodic
and (ii) the quantum distribution rapidly oscillates for high quantum numbers around the
classical distribution [20–22]. Periodicity allows us to express the classical and quantum
distributions in Fourier series, and the local averaging process in position space implies that
the quantum Fourier coefficient asymptotically approaches the classical Fourier coefficient.
This simple procedure renders, at first order of approximation, the exact classical proba-
bility density for intricate periodic quantum systems, such as the nonrelativistic [20] and
relativistic [23] harmonic oscillator, the hydrogen atom [22] and the quantum bouncer [9].
However, the analysis of the subdominant terms of the asymptotic distribution remains
open. These terms, being nonvanishing, can be interpreted as a residual quantum behavior
at the macroscopic scale. Physically, this means that the convergence in distribution does
not produce the exact classical results but a macroscopic quantum distribution that consists
of the classical distribution plus small oscillations around it. This analysis is far from trivial
and, in this paper, we aim to fill this gap. In particular, we will focus on the quantum
corrections to the quantum bouncer. As mentioned, in Ref. [9], we computed the exact
classical limit of this system and envisaged the emergence of the quantum corrections,
which were not discussed nor computed there. Here, we shall present a full theory to inves-
tigate the quantum corrections in general, which are to be applied to this particular system.
We choose this system because, apart from its importance from the quantum–mechanical
side (which implies that the macroscopic description of a system emerges from quantum
mechanics), it also has profound implications from the gravitational point of view, as we
shall discuss in the following.

The universality of free fall (UFF), often referred to as the weak equivalence principle,
states that every test body (being small enough to neglect the effects of gravity gradients)
experiences the same acceleration in a gravitational field, regardless of their mass or internal
composition. It constitutes one of the logical foundations of general relativity [24]. The UFF
also represents a profound difference between the classical and quantum domains since the
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dynamics of quantum particles are mass-dependent and thus not satisfying the essence of
the weak equivalence principle [25]. The validity of the UFF requires the Eötvös parameter
to be zero for any couple of test bodies freely falling in the presence of a gravity field [26,27].
Classical and quantum experiments performed to constrain the value of this parameter have
been reported, the former with an astonishing precision [27,28], highly overcoming that of
the second ones [29–31], though there are proposals to dramatically improve the precision
of quantum tests [32]. The validity of the UFF in quantum mechanics has also been studied
theoretically, yielding many different conclusions by means of different approaches [33–35].
Other authors have discussed the relevance of this subject as well [36,37]. In this paper,
we demonstrate that the UFF is an emergent phenomenon. Following the method that we
introduced, we show that the macroscopic behavior of the quantum bouncer implies, at
first order of approximation, the validity of the UFF. However, the quantum corrections
indicate that, even at the macroscopic scale, there is a residual mass-dependent quantum–
mechanical behavior, which implies that the UFF is not universal at all but an emergent
phenomenon in the classical world.

The remainder of this paper is organized as follows. In Section 2, we introduce the
method in a pedagogical fashion. For the sake of clarity, we first discuss what the classical
probability density means and then we reformulate the local averages in the Fourier space.
As a guiding model, in Section 3, we apply the method to the infinite square well potential.
Next, in Section 4, we show that, for a particle bouncing under a gravity field, in the limit
of a high quantum number, the leading term correctly reproduces the classical distribution.
We discuss in detail the sub-leading terms, which are interpreted as quantum corrections.
Finally, in Section 5, we summarize our results and provide some context for the relevance
of our findings.

2. Emergence of a Macroscopic Description from Coarse-Grained Quantum Mechanics

In this section, we review the method that we developed in Refs. [20–22]. For a peda-
gogical introduction to the method, we first discuss the meaning of a classical probability
distribution and present a formal definition in position representation. Next, assuming
the coarse-grained convergence of the quantum distribution to the classical distribution in
the limit of a high quantum number, we reformulate the method in the Fourier space and
discuss some subtleties.

2.1. Classical Probability Density

The classical mechanics of a particle give deterministically the position and mo-
mentum as a function of time and hence we do not require a probabilistic description
in this case. This is why we do not often discuss the concept of a classical probability
function in the classical mechanics context. However, this concept is precisely what pro-
vides the bridge to investigate the quantum-to-classical transition, and hence deserves a
detailed discussion.

For a consistent definition of the probability density within the classical physics, we
need to introduce a randomness element into the problem. One possibility is by stipulating
that the motion initiates at a random time or that the measurement occurs at a random
time [16]. Another possibility is by assuming that we are dealing with a large number
of identical systems, such that we cannot know the starting times for all these systems.
Following these ideas, we shall formulate the concept of the classical probability density.

Let us consider a generic one-dimensional potential V(x), as shown in Figure 1,
which can give rise to bound states that can be described either classically or quantum
mechanically. Since we are considering one-dimensional motion solely, the particle bounces
back and forth between the classical turning points at xa and xb, with a period τ. The
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turning points are defined, for a fixed value of energy E, as V(xa) = V(xb) = E, and the
classical period is given by

τ =
√

2m
∫ xb

xa

dx√
E − V(x)

. (1)

We now introduce the concept of the classical probability density, ρcl(x). We can easily
define the classical probability dPcl = ρcl(x)dx as the probability of finding the particle in
the interval [x, x + dx] at a random time t. We note that each value of x will be realized
twice per classical period, one each in the back/to and forth/from parts of the motion.
Therefore, the probability dPcl can be estimated as how much time dt(x) the particle spends
in the region [x, x + dx] during one period τ. This simple argument gives

dPcl = ρcl(x)dx =
dt(x)
τ/2

, (2)

where τ/2 is half the classical period. From this expression, we read the properly normal-
ized classical probability density as

ρcl(x) =
2

τ|v(x)| =
1
τ

√
2m

E − V(x)
, (3)

where v(x) is the local speed. Physically, this result implies that, if we perform a measure-
ment at a random time, the particle is more likely measured at positions where it travels
slowly. Since the classical motion is restricted between the turning points, ρcl(x) = 0 for
x /∈ (xa, xb). As anticipated, we shall use this simple formulation of the classical proba-
bility density to make contact with the quantum mechanical probability density ρ

qm
n (x),

defined by

ρ
qm
n (x) = ψ∗

n(x)ψn(x), (4)

where ψn(x) is an energy eigenstate of the system and n is the principal quantum number.

Figure 1. Plot of a generic one-dimensional potential V(x) supporting bound-state motion (blue
line). The red line indicates the value of the energy E, whose intersection with the potential V(x)
determines the turning points xa and xb, indicated with the vertical dashed-lines.

2.2. Local Average of the Quantum Probability Density

Many authors illustrate the validity of Bohr’s correspondence principle by directly
comparing the classical and quantum probability densities for large quantum numbers,
as defined by Equations (3) and (4), respectively. These kinds of plots are quite common
in the literature and can be found, for example, in Refs. [15–19] for simple bound-state
systems, such as the particle in a box, the harmonic oscillator, the hydrogen atom and the
quantum bouncer. Such plots reveal that the highly oscillatory quantum probability density
ρ

qm
n (x) does not converge pointwise to the smooth classical probability density ρcl(x) in
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any limit. Instead, the classical limit should be understood in a distributional sense, which
means that, for every smooth function f (x), the integral

∫
f (x)ρqm

n (x)dx must converge to∫
f (x)ρcl(x)dx. In this sense, any function f (x) provides averaging over rapid oscillations

of the quantum probability density and hence it is justified to speak about the classical limit.

The notation to say that ρ
qm
n (x) converges in distribution to ρcl(x) is ρ

qm
n (x) d−→ ρcl(x) [38,39].

The convergence in distribution means that the quantum distribution ρ
qm
n (x), if averaged

locally in a finite interval, approaches the classical distribution ρcl(x) for sufficiently large
values of the principal quantum number n. A more formal statement of this might be that

ρcl(x) = lim
n≫1

1
2ϵn

∫ x+ϵn

x−ϵn
ρ

qm
n (y) dy, (5)

where the interval ϵn decreases as the quantum number n increases [8]. As is, the formula (5)
can be successfully applied to the case of a particle in a box [15]. However, it is impractical
for more intricate bound-state systems, such as the harmonic oscillator, the hydrogen atom
and the quantum bouncer. We now reformulate the Formula (5) in a different manner.

Since any periodic motion can be expressed as a superposition of sinusoidal harmonic
modes, we can write a periodic function f (λ), where λ can be the time t or a spatial
coordinate x, as a series of sinusoidal functions, i.e., as a Fourier series [40]. The function
f can be taken as either the classical and quantum probability densities for bound-state
systems, for example. We then introduce the Fourier expansions:

ρcl(x) =
1

2πh̄

∫
ρcl(p)eipx/h̄dp, ρ

qm
n (x) =

1
2πh̄

∫
ρ

qm
n (p)eipx/h̄dp, (6)

where ρcl(p) and ρ
qm
n (p) are the classical and quantum Fourier coefficients, respectively.

Needless to say, the Fourier coefficient in Equation (6), ρ
qm
n (p), does not correspond to the

momentum space probability density |ϕn(p)|2, where ϕn(p) = 1
2πh̄

∫
ψn(x)e−ipx/h̄dx is the

wave function in momentum space. Instead, ρ
qm
n (p) has the same information content as

the probability distributions in position space ρ
qm
n (x), just encoded in a different way.

Substitution of the Fourier expansions (6) into Equation (5) leads to∫
ρcl(p)eipx/h̄dp = lim

n≫1

∫
ρ

qm
n (p)

[
1

2ϵn

∫ x+ϵn

x−ϵn
eipy/h̄ dy

]
dp. (7)

Evaluating the inner integral and keeping only the leading ϵn-independent term,
we obtain ∫

ρcl(p)eipx/h̄dp ∼ lim
n≫1

∫
ρ

qm
n (p)eipx/h̄dp. (8)

Finally, the linearity of the Fourier expansions implies, from Equation (8), that the
quantum Fourier coefficient ρ

qm
n (p) approaches, asymptotically, the classical Fourier coeffi-

cient ρcl(p) for n ≫ 1, i.e.,

lim
n≫1

ρ
qm
n (p) ∼ ρcl(p) +O(1/n). (9)

This expression, expressed in the Fourier space, is equivalent to the local average
process of Equation (5) in position space. We observe that, being n large, the quantum
Fourier coefficient ρ

qm
n (q) will be expressed as a power series of 1/n such that the leading

term will correspond exactly with the classical coefficient ρcl(q), and the higher-order
terms will be quantum corrections at the macroscopic level. In previous papers, we have
shown that the leading term correctly yields the classical distribution for different systems,
such as the particle in a box and the harmonic oscillator [20], the hydrogen atom [22] and,
much more recently, the quantum bouncer [9]. However, the quantum corrections have
not received attention yet. Here, we aim to fill in this gap since it has important physical
implications.
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3. A Guiding Model: The Infinite Square Well Potential

Consider the simplest bound-state problem in quantum theory: a point particle in one
dimension confined between perfectly reflecting walls at x = 0 and x = L. This potential,
although simple, has been used to model real quantum well systems that can be created in
the laboratory, e.g., it provides physical realizations of atomic mirrors [41]. Classically, the
particle moves with the same speed v at every position inside the well because there are no
forces acting there. Using the expression (3) for the classical probability density, with

V(x) = 0 for x ∈ [0, L], E =
1
2

mv2, and τ =
2L
v

, (10)

we obtain

ρcl(x) =
1
L

H(x)H(L − x), (11)

where H(z) is the Heaviside step function defined by H(z) = 1 for z ≥ 0 and H(z) = 0 for
z < 0. Therefore, the classical probability density of finding the particle at x is constant
inside the box and there is no preferable position for finding a classical particle. The
quantum-mechanical problem is quite different. In this case, the normalized eigenfunctions
ψn(x) satisfying Dirichlet boundary conditions on the walls and energy eigenvalues En can
be written as

ψn(x) =

√
2
L

sin
(nπx

L

)
H(x)H(L − x), En =

p2
n

2m
=

n2π2h̄2

2mL2 , n = 1, 2, 3, · · · . (12)

In Figure 2, we plot the dimensionless classical probability density (11) and the di-
mensionless quantum probability density ρ

qm
n (x) = ψ∗

n(x)ψn(x) for the excited energy
eigenstate with n = 3 and for a high-energy eigenstate with n = 20. The former case
suggests that the probability of finding the particle near to the walls is nearly zero. Also,
there are specific points, the nodes, in which the probability of finding the particle is zero.
Clearly, this situation cannot be interpreted in terms of classical physics since it implies
that the particle accelerates and decelerates continuously, even in the absence of forces
inside the box. In the latter case, we observe that the classical distribution ρcl(x) does not
follow the quantum distribution ρ

qm
n (x) but instead follows the local average. This can

be understood as follows. In a high-energy eigenstate (n ≫ 1), the wavelength is very
short and hence, at every point inside the box, there are effectively a peak and a node. So,
as n is increased, peaks and nodes get closer and closer to each other and the quantum
distribution appears to become a constant equal to the average of the peak and the node,
i.e., equal to 1/L, which is the classical distribution, thus losing any information regarding
the nodes, but this is indeed true only in the formal limit n → ∞. This naive conclusion
is reached when averaging over an oscillation solely, but this is not the case, since, as
discussed in the previous section, the quantum-to-classical transition should be understood
in a distributional sense, and hence information regarding the nodes must survive in the
limiting process, as we shall see in the following. Now, let us derive this result in an
analytical fashion by using the mathematical formulation introduced in Section 2.2. Fourier
expanding the quantum probability density ρ

qm
n (x), as defined in Equation (6), gives the

Fourier coefficients

ρ
qm
n (p) =

∫
ρ

qm
n (x)e−ipx/h̄dx =

1
iQ

1 − e−iQ

1 −
( Q

2πn
)2 , (13)

where Q ≡ pL/h̄ ∈ (−∞,+∞). Of course, by inverse Fourier transforming this expression,
we go back to the sinusoidal quantum probability density. Now, we look for the asymptotic
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behavior of the Fourier coefficient (13) in the limit n ≫ 1. We have to carry this out with
some care. For large n, this expression can be written as the geometric series

ρ
qm
n (p) ∼ 1

iQ

(
1 − e−iQ

) ∞

∑
k=0

(
Q

2πn

)2k
, (14)

which is valid over the compact domain |Q| < 2πn in order to guarantee its conver-
gence. This imposes a restriction upon the Fourier variable p, namely |p| < 2pn, where
pn = nπh̄/L is the momentum defined by Equation (12). This restriction, which emerges
from the mathematical structure of the quantum Fourier coefficient, is indeed physical
since it is also consistent with the condition imposed by the energy surface in the classical
case. Therefore, though in the quantum regime the momentum can reach any value, once
we fix the (high) energy of the system to obtain the asymptotic behavior of the Fourier
coefficient for n ≫ 1, the possible values for the momentum become restricted. This subtle
fact was not considered in Ref. [20] and we shall explore its consequences in the following.

Keeping the leading order terms up to 1/n2 in Equation (14), we obtain

ρ
qm
n (q) ∼ 1

iQ

(
1 − e−iQ

)[
1 +

(
Q

2πn

)2
+O(1/n4)

]
, (15)

for |Q| < 2πn. Therefore, the asymptotic behavior of the quantum probability density in
position space is obtained by Fourier transforming Equation (15) as defined in Equation (6).
We obtain

ρ
qm
n (x) ∼ 1

2πh̄

∫
ρ

qm
n (p)eipx/h̄dp =

1
2πL

∫ +2nπ

−2nπ

1 − e−iQ

2πiQ

[
1 +

(
Q

2πn

)2
]

eiQχ dQ, (16)

where χ ≡ x/L. This integral is quite simple. The result is

ρ
qm
n (x) ∼ 1

L
Si[2nπ(1 − χ)] + Si(2nπχ)

π

+
1

Ln2
(1 − 2χ) sin(2πnχ) + 2πnχ(χ − 1) cos(2πnχ)

4π3(χ − 1)2χ2 , (17)

where Si is the sine integral, defined as Si(x) =
∫ x

0
sin t

t dt. Note that, in Equation (17),
x is not restricted to being between 0 and L, as in the original classical and quantum
distributions. In Figure 3, we plot the asymptotic distribution (17) for different values of n.
Taking n = 10, we can see that the macroscopic distribution ρ

qm
10 (x) exhibits oscillations

around the classical distribution inside the quantum well and around zero outside. As we
increase n, for example, up to n = 30, the amplitude of the oscillations decreases in both
regions. As discussed above, in the formal limit n → ∞, we obtain a smooth distribution,
i.e., without the small oscillations. This can be seen by using the asymptotic expansion
limn≫1 Si(2nπx) ∼ π

2 sign(x)− cos(2nπx)
2nπx +O(n−2) [42], such that the limit n → ∞ upon

Equation (17) produces

lim
n→∞

ρ
qm
n (x) = ρcl(x) =

1
L

H(x)H(L − x), (18)

which is exactly the smooth classical probability density. Note that the oscillatory behavior
of the macroscopic distribution vanishes only in the formal limit n → ∞. In a realistic
classical situation, the value of n is given by n =

√
Ecl/E1 =

√
pcl/p1, where Ecl (pcl) is

the classical energy (momentum), and hence the small oscillations around the classical
distribution survive. For example, for a thermal Neutron with Ecl ≈ 10−21J trapped in a
1 mm box, we obtain n ≈ 107. For the even more classical case of a particle with mass 1 g
moving at 1m/s inside a 1 cm box, one obtains n ≈ 1028. Therefore, the small quantum
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oscillations that we can see in Figure 3 are due to the small values of n that we are using
there compared with the realistic value of 1028. Therefore, macroscopically, such oscillations
are strongly suppressed.

As a consistency check, let us evaluate the expectation value of xk by using the classical,
quantum and asymptotic probability densities. The classical expectation value is a simple
task, with the result ⟨ xk ⟩cl =

∫
ρcl(x) xk dx = Lk/(k + 1). The quantum expectation value

can also be computed in a closed form, and it can be expressed in terms of the generalized
hypergeometric function 1F2(a; b, c; z) as

⟨ xk ⟩qm
n =

∫
ρ

qm
n (x) xk dx

= −(πn)2Lk Γ(3/2) Γ[(k + 1)/2] 1F2

[
k + 3

2
;

3
2

,
k + 5

2
;−(nπ)2

]
. (19)

For the sake of comparison, we now evaluate the expectation value by using the
asymptotic distribution (17). Keeping terms up to order 1/n2, we obtain

⟨ xk ⟩qm
n ∼ ⟨ xk ⟩cl

[
1 − k(k + 1)

4π2n2 (1 − δk1)

]
, (20)

and this result can also be obtained by power expanding the exact quantum result (19) in
inverse powers of the quantum number n. Once again, one can further see that the formal
limit n → ∞ applied on Equation (20) yields the exact classical result. In a realistic case, the
additional term in Equation (20) is present and can be interpreted as a residual quantum
behavior at the macroscopic level.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

2.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

2.0

Figure 2. Dimensionless quantum probability density (blue continuous line) Lρ
qm
n (x) of the particle

in a box for different values of the quantum number n. The yellow dotted lines correspond to the
(dimensionless) classical probability density Lρcl(x).
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Figure 3. (Dimensionless) classical (horizontal yellow line) and quantum (oscillatory blue line)
probability densities for a high-energy eigenstate with n = 20.
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4. The Quantum Bouncer: Exact Result and Quantum Corrections

The quantum bouncer, which is the problem of a particle bouncing on a perfectly
reflecting surface under the influence of gravity, is described by a constant field force with
the appropriate boundary condition at the ground level [43]. Strikingly, the GRANIT exper-
iment conducted at the Institute Laue-Langevin [44] and the qBOUNCE collaboration [45]
have observed the gravitational quantum states of ultracold neutrons bounded by the
Earth’s gravitational field. In these experiments, neutrons do not bounce smoothly but
at certain well-defined quantized heights, in agreement with the predictions of quantum
mechanics. UCNs bridge the gap between gravity experiments at short distances and the
precise measurement techniques of quantum mechanics. Due to this, they have been used
to perform weak equivalence principle tests as well as probing the Newton’s inverse square
law of gravity at short distances [45,46].

All the basics of the quantum bouncer were introduced in Ref. [9]. Here, we just
summarize the required results in the presence of the linearized potential energy

V(z) =

{
mgz

∞

z > 0

z ≤ 0
, (21)

where g is the gravitational acceleration, m is the gravitational mass and the vertical position
z is measured from the ground level z = 0. Assuming that the particle is initially at rest
and dropped from a height h, the classical probability density is found to be

ρcl(z) =
1

2
√

h(h − z)
H(h − z) H(z). (22)

Clearly, the probability density blows up as z → h since the particle spends a relatively
longer time near h. It is worth pointing out that the function ρcl(z) does not depend on
the mass of the particle, in contrast with the expressions for the classical distributions for
the harmonic oscillator [20] and the hydrogen atom [22]. This is a direct consequence of
the universality of free fall, often referred to as the weak equivalence principle, which is
exactly true in classical mechanics.

The associated quantum mechanical problem, the so-called quantum bouncer, is more
intricate. The normalized solution to the Schrödinger equation that satisfies the boundary
condition ψn(z = 0) = 0 (i.e., the ground is impenetrable) and decays as z goes to infinity
is [47–49]

ψn(z) =
1√
lg

Ai(an + z/lg)

Ai′(an)
, (23)

where Ai(x) is the Airy function [50], an is the n-th zero of the Airy function Ai(x) and

lg =
(

h̄2

2m2g

)1/3
is the gravitational length. The resulting quantized energies are given by

En = −mglgan with n = 1, 2, 3, · · · .
In Figure 4, we superimpose the normalized quantum probability density

hnρ
qm
n (z) = hn|ψn(z)|2 (continuous blue line) with the normalized classical distribution

hnρcl(z) (dashed yellow line) as a function of the normalized distance z/hn and for different
values of n, namely for the ground state n = 1 and for the excited state with n = 20.
Here, hn = −lgan determines the turning point. As in the case of the infinite square well
potential, the quantum probability density for the n-th eigenstate rapidly oscillates around
the smooth classical distribution for n ≫ 1.

We now proceed to the evaluation of the Fourier coefficient ρ
qm
n (p), which is given by

ρ
qm
n (p) =

∫
ρ

qm
n (z)e−ipz/h̄dz =

1
lg Ai′ 2(an)

∫ ∞

0
Ai2(an + z/lg) e−ipz/h̄dz. (24)



Universe 2024, 10, 351 10 of 19

As far as we know, the exact analytical evaluation of this integral has not been reported
yet. However, for the purposes of this paper, we only require its asymptotic behavior for
n ≫ 1. To achieve this, we use the method of Albright [50], as some basic primitives of the
Airy functions allow us to express the Fourier coefficient (24) as a series in inverse powers
of an. The details of the calculations are relegated to Appendix A, and here we only present
the final results. Let us only retain the dominant terms. For the sake of simplicity, we split
the Fourier coefficient (24) as the sum of two terms, i.e., ρ

qm
n (p) ∼ ρ

(0)
n (p) + ρ

(1)
n (p). The

leading term ρ
(0)
n (p) is found to be

ρ
(0)
n (p) = e−iQn

√
π

2Qn

1 + i
2

erf
(

1 − i√
2

√
Qn

)
, (25)

where Qn ≡ phn/h̄, and erf(x) is the error function defined by Equation (A11) [42]. The
sub-leading term is given by

ρ
(1)
n (p) =

1
96a3

n

[
−
(

15 − 8iQ3
n

)
ρ
(0)
n (p) + 2Qn(2Qn + 5i)− 15

]
. (26)

Now, we have to inverse Fourier transform these coefficients to obtain the asymptotic
form of the quantum probability density in position space. It can also be written as the
sum of two terms, namely ρ

qm
n (z) ∼ ρ

(0)
n (z) + ρ

(1)
n (z), where ρ

(0)
n (z) and ρ

(1)
n (z) are the

Fourier transformations of Equations (25) and (26), respectively. To perform this, we have
to take some care, since while the exact Fourier coefficient (24) is valid for p ∈ (−∞, ∞),
the approximate expressions (25) and (26) are not. This situation is similar to the case of
the Fourier coefficient for the infinite square well potential: while the exact coefficient
(13) is valid for Q ∈ (−∞,+∞), the asymptotic coefficient (15) is valid for |Q| < 2πn. To
clearly see this point, one can inverse Fourier transform the leading order term (25) over
p ∈ (−∞, ∞) and obtain the exact classical result

ρ
(0)
n (z) =

1
2πh̄

∫ ∞

−∞
ρ
(0)
n (p) eipz/h̄ dp =

H(hn − z) H(z)
2
√

hn(hn − z)
. (27)

However, if the sub-leading term (26) is Fourier-transformed in a similar fashion, the
corresponding integral does not converge. This is not surprising at all since, as discussed,
the application of the method of Albright to compute the asymptotics of the quantum
Fourier coefficient (24) has a definite domain of validity, something like what happens with
the infinite square well potential. Recall that, in order to properly obtain an expansion of
the quantum Fourier coefficient (13), we restricted the Fourier variable p to the domain
p ∈ [−2pn, 2pn], where pn = nπh̄/L is the momentum of the particle. In the quantum
bouncer case, we have a similar situation, since our expression for the Fourier coefficient is
valid over a finite domain solely, since we truncate the series when using the method of
Albright. Such analysis is still absent in the literature and we estimate it from a numerical
analysis in Appendix B. Indeed, numerically, we determine the domain over the Fourier
variable Qn = phn/h̄ to be Qn ∈ [an/2,−an/2], where an is the n-th zero of the Airy
function. We are now ready to evaluate the inverse Fourier transform, which should be
performed over the finite interval p ∈ [−h̄/2lg, h̄/2lg]. To keep close contact with the exact

classical limit, we express the integral as follows
∫ h̄/2lg
−h̄/2lg

=
∫ ∞
−∞ −

∫ −h̄/2lg
−∞ −

∫ ∞
h̄/2lg

and use

the identity ρ
(0)
n (−p) = [ρ

(0)
n (p)]∗ such that

ρ
(0)
n (z) =

1
2πh̄

∫ h̄/2lg

−h̄/2lg
ρ
(0)
n (p) eipz/h̄ dp

=
H(hn − z) H(z)
2
√

hn(hn − z)
− 1

πh̄

∫ ∞

h̄/2lg
Re
[
ρ
(0)
n (p) eipz/h̄

]
dp. (28)
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The last integral can be approximated as follows. First, we take the real part explicitly:

1
πh̄

∫ ∞

h̄/2lg
Re
[
ρ
(0)
n (p) eipz/h̄

]
dp =

1√
2πhn

∫ ∞

λn

{
cos[x(ζ − 1)]C(

√
πx/2)

− sin[x(ζ − 1)] S(
√

πx/2)
} dx√

x
, (29)

where λn = −an/2 > 0, ζ = z/hn and C(x) =
∫ x

0 cos
(

π
2 t2) dt and S(x) =

∫ x
0 sin

(
π
2 t2) dt

are the Fresnel integrals.
Now, for n ≫ 1, the integrand is highly oscillatory. In addition, the interval of integra-

tion (for large x) give us a way to approximate the integral since one can consider the asymp-
totic behavior of the Fresnel integrals for large arguments. Keeping the leading contribution,
we obtain

1
πh̄

∫ ∞

2h̄/lg
Re
[
ρ
(0)
n (p) eipz/h̄

]
dp ∼ 1

2
√

2πhn

∫ ∞

λn

cos[x(ζ − 1)]− sin[x(ζ − 1)]√
x

dx

=
H(hn − z) H(z)
2
√

hn(hn − z)

[
1 − C

(√
2λn

π
(1 − ζ)

)
− S

(√
2λn

π
(1 − ζ)

)]
, (30)

and therefore

ρ
(0)
n (z) =

H(hn − z) H(z)
2
√

hn(hn − z)

[
C

(√
2λn

π
(1 − ζ)

)
+ S

(√
2λn

π
(1 − ζ)

)]
. (31)

This expression gives the exact classical probability density with small oscillations
around it. This is clearly seen from the asymptotic behavior of the Fresnel integrals for
large arguments, i.e., C(x) + S(x) ≈ 1 + 1

πx
[
sin(πx2/2) + cos(πx2/2)

]
for x ≫ 1. As in

the quantum well case, the formal limit n → ∞ yields the exact smooth classical probability
distribution ρcl(z), given by Equation (22). Finite values of n retain the small oscillations,
which we interpret as a residual quantum behavior at the macroscopic scale.

In all of the above, we have taken n ≫ 1 for definiteness and made some important
approximations based on this assumption. Now, we shall better justify our choice. For
a particle freely falling from a height h, the principal quantum can be estimated from
an = −h/lg. Since we are assuming that n ≫ 1, one can use the approximate expression for
the zeros of the Airy function an ≈ −[(3π/2)(n − 1/4)]2/3 and therefore n ∼ 2

3π (h/lg)3/2.
For reference, for a Cs atom, one finds lg = 0.226 µm such that, if released from 1 mm,
the corresponding quantum number is n ∼ 62,500. For the much lighter Na atom, one
finds lg = 0.727 µm, which produces n ∼ 10,000. To obtain smaller values for n, the
gravitational length must be larger, and this is achieved with lighter particles. For example,
the gravitational length for a neutron is lg = 5.87 µm, which leads to n ∼ 470. These
estimations justify our analysis of the above.

So far, we have studied only the physics arising from the leading order term of the
quantum Fourier coefficient and showed the emergence of the exact classical probability dis-
tribution plus small quantum corrections with an amplitude driven by
∼ λ−1/2

n ≈ n−1/3 ≪ 1. Now, we have to investigate the sub-leading term arising from the
quantum Fourier coefficient ρ

(1)
n (p) given by Equation (26). In addition, since the quantum

correction arising from ρ
(0)
n (p) decays as n−1/3, we will keep terms up to this order in the

following. The inverse Fourier transformation of Equation (26) then reads as
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ρ
(1)
n (z) =

1
2πh̄

∫ h̄/2lg

−h̄/2lg
ρ
(1)
n (p)eipz/h̄dp

≈ 1
192πhna3

n

∫ λn

−λn

[
8iQ3

n ρ
(0)
n (p) + 2Qn(2Qn + 5i)− 15

]
eiQnζ dQn, (32)

where we have neglected the term decaying as 1/n2. Retaining the most important contri-
butions, we obtain

ρ
(1)
n (z) ∼ − 1

192πhn

sin(ζλn)

ζλn
, (33)

which decays as n−2/3, i.e., faster than the correction arising in Equation (31). However, it
is worth to mention that this term provides small oscillations beyond the classical turning
point, which do not arise in Equation (31).

All of the above tell us that the asymptotic form of the quantum probability density in
position space is

ρ
qm
n (z) ∼ H(hn − z) H(z)

2
√

hn(hn − z)

[
1 +

sin[λn(1 − ζ)]− cos[λn(1 − ζ)]√
2πλn(1 − ζ)

]
− 1

192πhn

sin(ζλn)

ζλn
, (34)

where we have power-expanded the Fresnel integrals in Equation (30) up to the first-order
correction. The next-order expansion is smaller than those of Equation (33). In Figure 5,
we plot the asymptotic distribution (34) for n = 20 (left panel) and n = 100 (right panel).
We observe that the asymptotic distribution exhibits small oscillations around the smooth
classical probability density. In these cases, the small oscillations are observable due to the
small value of n that we are using, but they are strongly suppressed in a realistic situation.

To validate our results, we now evaluate some expectation values. For example, the
classical expectation value of zk, with k ∈ Z+, is

⟨ zk ⟩cl =
∫ h

0
zk ρcl(z) dz = hk

√
π Γ(k + 1)

2 Γ
(
k + 3

2
) . (35)

The expectation value can be computed easily by using the asymptotic probability
density ρ

qm
n (z) ≈ ρ

(0)
n (z) + ρ

(1)
n (z). Using the standard procedure to regularize infinite

trigonometric integrals, we obtain

⟨ zk ⟩qm
n ∼ ⟨ zk ⟩cl +

1
2πh̄

∫
dp ρ

(1)
n (p) lim

ϵ→0+

∫ ∞

0
zk eipz/h̄e−ϵz dz

= ⟨ zk ⟩cl +
1

2πh̄

∫
ρ
(1)
n (p)

Γ(k + 1)
(−ip/h̄)k+1 dp, (36)

such that the final result becomes

⟨ zk ⟩qm
n = ⟨ zk ⟩cl

[
1 +

−4k3 + 6k2 + k + 6
48 a3

n

]
. (37)

Clearly, the second term can be interpreted as a quantum correction at the macroscopic
level. For the sake of comparison, we have to evaluate the quantum expectation value and
then power-expand the result up to a−3

n . To our knowledge, a closed-form expression for
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the quantum expectation value has not been reported yet. However, with the method of
Albright, we can obtain an asymptotic expression for the expectation value, i.e.,

⟨ zk ⟩qm
n =

∫ ∞

0
zkρ

qm
n (z) dz =

lk
g

Ai′ 2(an)

k

∑
l=0

(
k
l

)
(−an)

k−l
∫ ∞

an
xl Ai2(x) dx

∼ hk
n

k

∑
l=0

(
k
l

)
(−1)l

2l + 1

[
1 +

l(l − 1)(l − 2)
2(2l + 1)(2l − 5)

1
a3

n

]
, (38)

and, performing the summations, we retrieve exactly the asymptotic expectation value
given by Equation (37).
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Figure 4. (Dimensionless) classical (horizontal yellow line) and quantum (oscillatory blue line)
probability densities for the quantum bouncer for the ground state (n = 1) and for the excited state
with n = 20.
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Figure 5. (Dimensionless) classical (horizontal yellow line) and quantum (oscillatory blue line)
probability densities for a high-energy eigenstate with n = 20 and n = 100.

5. Conclusions

Classical and quantum descriptions of single-particle systems are fundamentally
different: while the former tells us the exact position and momentum of a particle, the latter
gives us the probability of finding the particle at some position or bearing some momentum.
This makes the analysis of the quantum–classical correspondence difficult. There are
traditional methods that address such correspondence, for example, the WKB method
and the Ehrenfest’s theorem; however, these are not universally reliable for investigating
the classical limit in a general way. Also, the correspondence has been discussed in the
language of the theory of distributions. By direct comparison of the classical and quantum
probability densities, one realizes that the classical behavior emerges as a coarse-grained
description of the quantum system. Therefore, since the correspondence is not pointwise,
one expects the emergence of remnants of the quantum behavior at the macroscopic level
as small oscillations enveloping the classical distribution.
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The distributional quantum-to-classical convergence means that the quantum dis-
tribution, if averaged locally over a finite interval, approaches the classical distribution
provided that the quantum number is large. This is formally expressed by Equation (5).
The evaluation of Equation (5) is impractical in most cases (except for the infinite square
well potential, since the quantum distribution is sinusoidal); however, it can be carried
out in a simpler fashion when transformed to the Fourier space. In short, the convergence
in distribution (5) is expressed in Fourier space by Equation (9), i.e., the quantum Fourier
coefficient approaches the classical Fourier coefficient when the quantum number is large,
but sub-leading quantum corrections emerge. In order to demonstrate the applicability
of this method, we initially addressed the problem of a particle in a box. To this end, we
compute an exact quantum Fourier coefficient (13), which is valid for any value of the
momentum (Fourier variable), and then compute its asymptotic behavior for n ≫ 1, which
naturally restricts the domain of the Fourier variable (which, in this case, is dictated by the
convergence of a geometric series). Finally, by inverse Fourier transforming the asymptotic
quantum Fourier coefficient, we obtain Equation (17), which is the emergent macroscopic
distribution in position space, i.e., the locally averaged quantum distribution. Figure 3
shows the macroscopic distribution. As expected, it behaves as the classical distribution
plus small oscillations whose amplitude decreases as 1/n2 with n ≫ 1. As a consistency
check, we evaluated the exact expectation value of xk (with k ≥ 0) and demonstrated its
consistency with the one computed when evaluated by using the macroscopic distribution.
Our result implies that, at the macroscopic scale, all happens as if the quantum behavior is
hidden, leaving us with an apparent world described consistently in a classical language.

The validity of the universality of free fall is one of the cornerstones of general relativity
and one may ask if it emerges or not from the quantum behavior at high energies. Its
validity in the classical domain is widely accepted, but the mass-dependent quantum
dynamics explicitly break it. All of these factors motivate the analysis of the macroscopic
behavior of the quantum bouncer: a particle bouncing on a perfectly reflecting surface
under the influence of gravity. In this paper, we have also studied this problem following
the program described above. The first step is the computation of the exact quantum
Fourier coefficient (24). The integral cannot be evaluated in an analytical fashion. However,
using the method of Albright, we obtained an asymptotic expression for n ≫ 1, whose
leading and sub-leading terms are given by Equations (25) and (26), respectively. The
validity of these expressions was verified by comparing the asymptotics of the quantum
Fourier coefficient (25) + (26) versus the exact result (24) computed numerically. This
analysis also gave the domain of validity of our expansion. Finally, by inverse Fourier
transforming the Fourier coefficient in the corresponding compact domain, we obtained the
macroscopic distribution, given by Equation (34). In Figure 5, we superimposed the smooth
classical distribution with our macroscopic distribution and reach similar conclusions as
those of the particle in a box: for n ≫ 1, the macroscopic distribution behaves as the
classical distribution plus small oscillations, which we interpret as quantum corrections
at the macroscopic level. All in all, our results indicate that the universality of free fall is
an emergent phenomenon since quantum mechanics imply a remnant mass-dependent
quantum behavior even at macroscopic scales.

We close by commenting on a possible generalization of this work. As discussed, the
Wigner phase-space formulation of quantum mechanics provides a natural framework in
which the quantum–classical correspondence can be studied in a common language: joint
position–momentum distributions. The method that we introduced works in the position
space, where one can directly visualize the distributional convergence of the probability
densities. However, it is natural to wonder whether such a procedure can be extended to the
phase-space probability distribution. We have left this problem for a future investigation.
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Appendix A. Evaluation of the Fourier Coefficient for the Quantum Bouncer

The goal of this section is to obtain an approximate expression for the Fourier co-
efficient (24) in inverse powers of an for n large. To this end, in Equation (24), we first
change variable to x = an + z/lg and then Taylor expand the exponential e−ipx/h̄ =

∑∞
k=0

1
k! (−ipx/h̄)k, i.e.,

ρ
qm
n (p) =

e−iphn/h̄

Ai′ 2(an)

∫ ∞

an
Ai2(x) e−iplgx/h̄dx

=
e−iphn/h̄

Ai′ 2(an)

∞

∑
k=0

(−iplg/h̄)k

k!

∫ ∞

an
xk Ai2(x) dx. (A1)

To evaluate this integral, we use the method of Albright. Indeed, if A(x) and B(x) are
any two linear combinations of the Airy functions Ai(x) and Bi(x), and k a positive integer,
the following recursive indefinite integral is valid [50]:

∫
xk A(x)B(x)dx =

xk+1 A(x)B(x)
2k + 1

− k(k − 1)xk−2 A(x)B(x)
2(2k + 1)

+
kxk−1[A(x)B′(x) + A′(x)B(x)]

2(2k + 1)
− xk A′(x)B′(x)

2k + 1

+
k(k − 1)(k − 2)

2(2k + 1)

∫
xk−3 A(x)B(x)dx. (A2)

In particular, if A(x) = B(x) = Ai(x), this indefinite integral simplifies to

∫
xkAi2(x)dx =

xk+1Ai2(x)
2k + 1

− k(k − 1)xk−2Ai2(x)
2(2k + 1)

+
kxk−1Ai(x)Ai′(x)

2k + 1

− xkAi′ 2(x)
2k + 1

+
k(k − 1)(k − 2)

2(2k + 1)

∫
xk−3Ai2(x)dx. (A3)

Substituting this result into Equation (A1), we obtain

ρ
qm
n (p) =

e−iphn/h̄

Ai′ 2(an)

∞

∑
k=0

(−iplg/h̄)k

k!(2k + 1)

{ [
kxk−1Ai(x)Ai′(x)− xkAi′ 2(x) + xk+1Ai2(x)

− k(k − 1)
2

xk−2Ai2(x)
]∣∣∣∣∞

an

+
k(k − 1)(k − 2)

2

∫ ∞

an
xk−3 Ai2(x) dx

}
. (A4)
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However, since Ai(an) = 0 and Ai(x) → 0 and Ai′(x) → 0 as x → ∞, the above
expression reduces to

rlρqm
n (p) =

e−iphn/h̄

Ai′ 2(an)

∞

∑
k=0

(−iplg/h̄)k

k!

{
ak

n
2k + 1

Ai′ 2(an)

+
k(k − 1)(k − 2)

2(2k + 1)

∫ ∞

an
xk−3 Ai2(x) dx

}
. (A5)

The integral in the expression above can be evaluated using the same approach. In
fact, we can easily iterate the previous result. After one iteration, we obtain

ρ
qm
n (p) =

e−iphn/h̄

Ai′ 2(an)

∞

∑
k=0

(−iplg/h̄)k

k!

{
1

2k + 1
ak

nAi′ 2(an) +
k(k − 1)(k − 2)

2(2k + 1)(2k − 5)
ak−3

n Ai′ 2(an)

+
k(k − 1)(k − 2)(k − 3)(k − 4)(k − 5)

4(2k + 1)(2k − 5)

∫ ∞

an
xk−6 Ai2(x) dx

}
. (A6)

As we can see, this expression is a series in inverse powers of an. While the second
term in braces is smaller than the first by a factor of a−3

n , the third is smaller than the
second one by an additional factor of a−3

n . One can continue iterating this result indefinitely;
however, for the purposes of this paper, one can consider only the leading terms. Therefore,
the asymptotic behavior of the Fourier coefficient becomes

ρ
qm
n (p) ∼ e−iphn/h̄

∞

∑
k=0

(−iplg/h̄)k

k!
1

2k + 1

{
ak

n +
k(k − 1)(k − 2)

2(2k − 5)
ak−3

n

}
, (A7)

which can be further simplified by defining Qn ≡ phn/h̄, where hn = −lgan. We thus
obtain

ρ
qm
n (p) ∼ e−iQn

{
∞

∑
k=0

(iQn)k

k!(2k + 1)
+

1
a3

n

∞

∑
k=0

(iQn)k

k!
k(k − 1)(k − 2)

2(2k + 1)(2k − 5)

}
. (A8)

We now write the Fourier coefficient as the sum of two terms, ρ
qm
n (p) = ρ

(0)
n (p) +

ρ
(1)
n (p), where

ρ
(0)
n (p) = e−iQn

∞

∑
k=0

(iQn)k

k!(2k + 1)
, ρ

(1)
n (p) =

1
a3

n
e−iQn

∞

∑
k=0

(iQn)k

2(k − 3)!(2k + 1)(2k − 5)
. (A9)

These summations can be performed in an analytical fashion and expressed in terms
of special functions. For the leading term, we obtain

ρ
(0)
n (p) = e−iQn

√
π

2Qn

1 + i
2

erf
(

1 − i√
2

√
Qn

)
, (A10)

where erf (x) is the error function, defined as

erf (x) =
2√
π

∫ x

0
e−t2

dt. (A11)

The result of Equation (A10) corresponds to Equation (25) of the main text. The
summation of the sub-leading term can also be evaluated analytically, with the result

ρ
(1)
n (p) =

1
96a3

n

[
−
(

15 − 8iQ3
n

)
ρ
(0)
n (p) + 2Qn(2Qn + 5i)− 15

]
, (A12)
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which corresponds to Equation (26) of the main text.

Appendix B. Validity of the Asymptotic Expression for the Quantum Fourier Coefficient

In this section, we determine the domain of validity of our asymptotic expression for
the quantum Fourier coefficient. To this end, we shall compare the exact (numerically eval-
uated) quantum Fourier coefficient ρ

qm
n (p) given by Equation (24) versus our approximate

expression ρ
qm
n (p) ∼ ρ

(0)
n (p) + ρ

(1)
n (p). A simple manipulation of Equation (24) yields

ρ
qm
n (p) =

1
Ai′ 2(an)

e−iQn

∫ ∞

an
Ai2(y) eiQny/an dy. (A13)

where Qn = phn/h̄. On the other side, the full expression for the asymptotic coefficient is
ρ

qm
n (p) ∼ ρ

(0)
n (p) + ρ

(1)
n (p), where

ρ
(0)
n (p) = e−iQn

√
π

2Qn

1 + i
2

erf
(

1 − i√
2

√
Qn

)
, (A14)

ρ
(1)
n (p) =

1
96a3

n

[(
8iQ3

n − 15
)

ρ
(0)
n (p) + 2Qn(2Qn + 5i)− 15

]
. (A15)

Now, in order to determine where asymptotic expression starts to deviate from the
exact result in Figure A1, we plot the function δρ

qm
n (p), defined as the difference between

the exact result (A13) and the asymptotic result (A14) + (A15) for different values of the
quantum number n. The vertical dashed lines correspond to ±λn, where λn = −an/2 > 0.
As we can directly see, this choice is an acceptable range for Qn, where the quantum Fourier
coefficient is well described by its asymptotic expansion. In addition, we observe that, as
the quantum number increases, the approximations is better, as expected.

-50 50 -150 -100 -50 50 100 150

-150 -100 -50 50 100 150 -150 -100 -50 50 100 150

Figure A1. Difference between the exact quantum Fourier coefficient (A13) and the asymptotic result
(A14) + (A15) for different values of the quantum number n. Tje vertical lines marks ±λn.
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