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Abstract: We provide a short review of the recent developments in entropic cosmology based
on two thermodynamic laws of the apparent horizon, namely the first and the second laws of
thermodynamics. The first law essentially provides the change in entropy of the apparent horizon
during the cosmic evolution of the universe; in particular, it is expressed by TdS = −d(ρV) + WdV
(where W is the work density and other quantities have their usual meanings). In this way, the first
law actually links various theories of gravity with the entropy of the apparent horizon. This leads to
a natural question—“What is the form of the horizon entropy corresponding to a general modified
theory of gravity?”. The second law of horizon thermodynamics states that the change in total entropy
(the sum of horizon entropy + matter fields’ entropy) with respect to cosmic time must be positive,
where the matter fields behave like an open system characterised by a non-zero chemical potential.
The second law of horizon thermodynamics importantly provides model-independent constraints on
entropic parameters. Finally, we discuss the standpoint of entropic cosmology on inflation (or bounce),
reheating and primordial gravitational waves from the perspective of a generalised entropy function.

Keywords: entropic cosmology; inflation; reheating; primordial gravitational waves; bounce

1. Introduction

The benchmark of Bekenstein–Hawking entropy connects two apparently different
sectors, namely gravity and thermodynamics, on equal footing. In particular, the black hole
horizon exhibits thermal behaviour whereby the entropy of the horizon scales by the area
of the horizon and the surface gravity fixes the corresponding temperature [1–4]. In the
cosmological context, there exists an apparent horizon that is a marginally trapped surface
with vanishing expansion that divides the observable universe from the unobservable
universe. Similar to black hole thermodynamics, the cosmic horizon is generally considered
to exhibit thermal behaviour [5–25], and one can motivate it using the following arguments:

• During the cosmic evolution of the universe, the matter fields inside of the horizon
show a flux from inside to outside the horizon (the flux is outward in nature during
the accelerating stage), which results in a decrease in the matter fields’ entropy. This
violates the second law of thermodynamics, which states that the change in total
entropy must be positive. Therefore, the cosmic horizon should be incorporated with
entropy to manage the increase in total entropy (the sum of horizon entropy + matter
fields’ entropy).

• The cosmological field equations are time-reversal-symmetric; thus, they always come
with a contracting solution, along with an expanding one. However, our observational
data indicate that the universe is expanding. Therefore, the natural question that
comes to mind is “Why does the universe always choose the expanding solution?”.
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In order to answer this question, we need to associate thermal behaviour with the
cosmic horizon. Then, the second law of horizon thermodynamics actually disagrees
the contracting solution in order to achieve a positive change in total entropy.

Consequently, the subject of “entropic cosmology” has gained a lot of interest, in which
the cosmic horizon is associated with entropy that follows the following thermodynamic
law [5–8,19]:

ThdSh = −d(ρV) +
1
2
(ρ − p)dV (1)

where V is the volume enclosed by the apparent horizon expressed by Rh = 1/H (with H
being the Hubble parameter of the universe); moreover, Th and Sh are the temperature and
entropy of the horizon, respectively (and the other quantities have their usual meanings).
We now assume that the universe is homogeneous and isotropic, owing to which the
total energy inside the apparent horizon is expressed as U = ρV; otherwise, if ρ depends
on spatial coordinates, then the energy inside the horizon should be expressed by the
integral (over the volume of the horizon) of U =

∫
ρdV. Here, Th is fixed by the surface

gravity of the apparent horizon, which, in the case of the spatially flat Friedmann–Lemaître–
Robertson–Walker (FLRW) metric, turns out to be

Th =
H
2π

∣∣∣∣1 + Ḣ
2H2

∣∣∣∣. (2)

At this stage, we would like to mention that the microscopic origin of horizon entropy
(and its associated temperature) is still a debatable topic and needs further investigation
(see [26,27] for some progress in this regard). Together with Equation (1) (which is the first
law of horizon thermodynamics in cosmology), the second law states that [20]

d(Sh + Sm) > 0, (3)

where Sm represents the entropy of the matter fields inside of the horizon. With a specific
form of horizon entropy, the first law of horizon thermodynamics (along with the local
conservation law of the matter fields) leads to the cosmological field equation; for instance,
the Bekenstein–Hawking-like entropy of the cosmic horizon provides the usual FLRW
equations of Einstein gravity from Equation (1). However, for a different form of horizon
entropy (compared to Bekenstein–Hawking-like horizon entropy), we end up with the
following modified cosmological field equations:

Ḣ
(

∂Sh
∂S

)
= −4πG(ρ + p) (4)

and ∫ (
∂Sh
∂S

)
d
(

H2
)
=

8πG
3

ρ +
Λ
3

, (5)

where S = π/(GH2) is the Bekenstein–Hawking entropy (clearly, for Sh ≡ S, one obtains
the usual FLRW equations). Such a modified cosmic scenario has some interesting cosmo-
logical consequences starting from inflation (or bounce) to the dark energy era [5–25,28–39].
Some variants of Bekenstein–Hawking entropy are Tsallis entropy [40], Rényi entropy [41],
Barrow entropy [42], Sharma–Mittal entropy [43], Kaniadakis entropy [44], loop quantum
gravity entropy [45], etc. The important point is that all of these entropies share some
common features; for example, they all vanish at the limit of S → 0, and they show
monotonically increasing behaviour with respect to the Bekenstein–Hawking entropy vari-
able (S). One more reason for interest in entropic cosmology is that it is related to the
holographic cosmology initiated by Witten and Susskind [46–48]. In particular, entropic
cosmology proves to be equivalent to the generalised holographic scenario with suitable
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holographic cut-offs [49,50]. The significant contributions of holographic cosmology (or,
equivalently, entropic cosmology) corresponding to the aforementioned entropies explain
the dark energy era of our universe, namely holographic dark energy (HDE) [51–69].

Based on the above arguments, some immediate questions that arise include the
following:

1. What is the form of the horizon entropy that leads to the cosmological field equations
for a general modified theory of gravity from Equation (1)?

2. Does there exist any generalised entropy that can generalise all the known entropies
proposed so far (like Tsallis entropy, Rényi entropy, Barrow entropy, Sharma–Mittal
entropy, Kaniadakis entropy, etc.)? This question is well motivated, as all these
entropies share some common properties, as mentioned above.

3. If a generalised form of entropy exists, then what are the constraints on the generalised
entropic parameters coming from the second law of horizon thermodynamics? Fur-
thermore, what is the standpoint of generalised entropy on primordial gravitational
waves? Does the constraint coming from the primordial gravitational waves match
that based on the second law of horizon thermodynamics?

The present article, based on some of our previous works [19,20,24,25,28,33], provides
a brief review, answering the above questions. We follow the (−,+,+,+, ....) signature of
a spatially flat (n + 1) dimensional spacetime metric, and we take G = c = h̄ = 1, where G
is the Newton’s constant, c is the speed of light and h̄ is Planck’s constant.

2. First Law of Horizon Thermodynamics: Consistent Entropy for a General Modified
Theory of Gravity

The question that we encounter in this section is the following: What is the form of
entropy that, based on the thermodynamic law (1), can produce the cosmological field
equations for a general modified theory of gravity [19]?

The FLRW equations for a general modified theory of gravity in (n + 1) dimensional
spacetime can be expressed as

H2 =
16π

n(n − 1)
(ρ + ρc) and Ḣ = − 8π

(n − 1)
(ρ + ρc + p + pc), (6)

where ρc and pc represent the modifications compared to Einstein gravity. Owing to such
modifications, we can expect that the corresponding horizon entropy for a general modified
gravity theory will take the following form:

Sh =
A
4
+ Sc(A), (7)

where the suffix ‘h’ represents horizon’ entropy. Here, A = nΩnRh
n−1 represents the area

of the apparent horizon in n + 1 dimensional spacetime, and Sc is a function of A. In
particular, the horizon entropy for a general theory of gravity is considered to be corrected
over that in the case of Einstein gravity, namely Equation (7). The correction (Sc) explicitly
depends on the modification of gravitational action, which we need to find in such a way
that the following thermodynamic law holds with E = ρV and W = 1

2 (ρ − p):

ThdSh = −dE + WdV. (8)

By using Sh = A
4 + Sc, the above equation can be equivalently written as

Th
dSc

dt
=

d
dt
(ρcV)− Wc

dV
dt

+

[
− d

dt
(ρV + ρcV) +

1
2
(ρ + ρc − p − pc)

dV
dt

− T
d
dt

(
A
4

)]
, (9)
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where Wc =
1
2 (ρc − pc). With Rh = 1

H in combination with Equation (2), we obtain

dSc

dt
= −2πnΩn(ρc + pc)Rh

n, (10)

upon the integration of which, we obtain

Sc = 2πnΩn

∫
Rh

n−2
(

ρc + pc

Ḣ

)
dRh. (11)

Equation (11) argues that Sc should be a function of only Rh (or, equivalently, the area
of the horizon), as dRh is the only differential present in the rhsof the above expression. In
general, the integration into Equation (11) should be realized by specifying the scale factor
(a = a(t)) as a function of the cosmological time (t). In particular, if we consider a specific
scale factor, then H(t) and, consequently, Rh are also expressed as a function of t, and as a
result, the integrand in Equation (11) can be expressed in terms of Rh. Then, Equation (11)
can be integrated to yield Sc = Sc(Rh). With the above form of Sc, Equation (7) provides
the full entropy corresponding to a general modified theory of gravity as

Sh =
A
4
+ 2πnΩn

∫
Rh

n−2
(

ρc + pc

Ḣ

)
dRh, (12)

It can be observed that for ρc = pc = 0, i.e., for Einstein’s theory of gravity, the entropy
from Equation (12) becomes Sh = A/4, as per our expectation. Moreover, for ρ = p = 0,
i.e., without any matter fields, Equation (6) yields (ρc + pc)/Ḣ = −8π/(n − 1), which
immediately yields to Sh = 0 from Equation (12). However, this is expected, as there is no
flux of matter fields from inside to outside of the horizon for ρ = p = 0 or, equivalently,
there is no information loss associated with the horizon.

Below, we present some specific examples of gravity theories and determine the
respective entropy from Equation (12).

• For (n + 1) dimensional GB gravity, where the FLRW equations are expressed as

H2 + λ(n − 2)(n − 3)H4 =
16π

n(n − 1)
ρ,[

1 + 2λ(n − 2)(n − 3)H2
]

Ḣ = − 8π

(n − 1)
(ρ + p), (13)

with λ being the GB parameter, the corresponding horizon entropy from Equation (12)
is expressed as

Sh =
A
4

{
1 +

2λ(n − 1)(n − 2)
Rh

2

}
. (14)

• For (3 + 1) dimensional f (Q) gravity theory, the FLRW equations are expressed as

H2 =
1

6 fQ

(
ρ +

f
2

)
,

Ḣ = − 1
2 fQ

(
ρ

2
+

f
2
+ 12H2 fQQḢ − f

4
+

p
2
− Ḣ fQ

)
, (15)

where fQ and fQQ represent the first and second derivatives of f (Q) (with respect to
the variable (Q)), respectively. Clearly, in this case, one requires a certain form of f (Q),
which is taken to be a power law type, i.e., f (Q) = Qn (with n being a constant). Such
a form of f (Q), along with Equation (12), leads to the following entropy corresponding
to the (3 + 1) dimensional f (Q) gravity:
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Sh =
A
4

[
1 − 32π

{
1 +

n(1 − 2n)
(2 − n)

(
6π

A

)n−1
}]

. (16)

It can be noted that in both GB gravity and f (Q) gravity theories, the integration of
Equation (12) can be performed without specifying the scale factor (a = a(t)). This may
not be the case when the gravitational field equations contain higher derivatives of the
Hubble parameter; for instance, in the F(R) gravity theory, where the FLRW equations
contain

...
H, one needs to specify the scale factor (a(t)) to perform the integration and to

determine Sh (corresponding to F(R) gravity) from Equation (12) [19]. On other hand, it is
well known that a F(R) theory can be recast as a scalar-tensor theory through the conformal
transformation of the spacetime metric, where the scalar potential depends on the form of
F(R) under consideration. However, it was pointed out in [19] that such a mathematical
equivalence between F(R) and scalar-tensor theory is spoiled from the perspective of the
entropy of the apparent horizon.

At this stage it deserves mentioning that the determination of the horizon entropy from
the thermodynamic law (1) encounters a problem. In particular, it requires the quantity(

1 + Ḣ
2H2

)
to be positive; otherwise, the entropy (particularly for Einstein gravity) turns out

to be negative, which is impossible. The condition, namely 1 + Ḣ
2H2 < 0, may occur during

the reheating process, where the EoS parameter of the matter field (ω = p/ρ) is larger than
1/3. Then, one may argue that for such a reheating era, where ω > 1/3, there exists no such
entropy (of the horizon) that connects the FLRW Equation (6) with the thermodynamic
law (1). In order to resolve this issue, the following modified thermodynamic law was
proposed in the context of cosmology [19]:

ThdS(m)
h = −dE + ρdV, (17)

where Th is shown in Equation (2) and the superfix ‘m’ stands for the ‘modified’ thermo-
dynamic law. Such a modified thermodynamic law, indeed, resolves the aforementioned
problem [19] and, thus, is considered to be more general than the previous law (1) which is
a limiting case of the modified thermodynamics for p = −ρ.

This modified thermodynamic law surely affects the horizon entropy compared to
that of the previous law. For instance,

• In the case of (n + 1) dimensional Einstein gravity, the modified thermodynamic
law (17) leads to the corresponding horizon entropy, which is expressed as

S(m)
h =

n(n − 1)
4

Ωn

∫ Rh
n−2∣∣∣1 + Ḣ
2H2

∣∣∣dRh, (18)

which, for a constant EoS parameter for the matter field, i.e., for a constant of ω = p/ρ,
results in the following form:

S(m)
h (constant ω) =

A
|4 − n − nω| . (19)

Equation (19) clearly indicates that S(m)
h explicitly depends on the value of ω. Therefore,

in this modified thermodynamic law, the form of entropy corresponding to Einstein’s
gravity changes with the evolution era of the universe. This is unlike the previous
case, where the horizon entropy for Einstein’s gravity is given by A/4, which does
not change in its form with the evolution of the universe.
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S(m)
h (constant ω) = A

4 during inflation when ω = −1,
S(m)

h (constant ω) = A
|4−n| , during matter-dominated era when ω = 0,

S(m)
h (constant ω) = A

4|1−n/3| , during radiation era when ω = 1/3,

• For (n + 1) dimensional GB gravity theory, the required entropy corresponding to (17)
is expressed as

S(m)
h =

A
4

{
1 +

2α

Rh
2

(
n − 1
n − 3

)}
, (20)

when H = constant, and

S(m)
h =

(
1

|1 − 1/(2h0)|

)
A
4

{
1 +

2α

Rh
2

(
n − 1
n − 3

)}
(21)

when H = h0/t, with A = nΩnRh
n−1 representing the area of the apparent horizon.

• For a general modified theory of gravity, the corresponding horizon entropy coming
from the modified thermodynamic law (17) is obtained as

S(m)
h =

n(n − 1)Ωn

4

∫ Rh
n−2∣∣∣1 + Ḣ
2H2

∣∣∣dRh + 2πnΩn

∫
Rh

n−2

 ρc + pc

Ḣ
∣∣∣1 + Ḣ

2H2

∣∣∣
dRh, (22)

The above expressions of horizon entropy (for different gravity theories) arising from
the modified thermodynamic law (17) are proven to exist, irrespective of whether(

1 + Ḣ
2H2

)
is positive or negative.

3. Second Law of Horizon Thermodynamics

Until now, we have used only the first law of thermodynamics of the apparent horizon.
However, in the context of horizon thermodynamics, a consistent cosmology also demands
the validity of the second law of thermodynamics, i.e., the change in total entropy (which
is the sum of the horizon entropy and the entropy of the matter fields) with cosmic time
should be positive [20].

Ṡh + Ṡm > 0. (23)

Equation (1) immediately yields the change in horizon entropy as

Ṡh =
8π

H3 (ρ + p). (24)

Besides the thermodynamics of the apparent horizon governed by Equation (1), we
also need to consider the thermodynamics of the matter fields. In particular, the matter
fields inside the apparent horizon obey the following thermodynamic law:

TmdSm = d(ρV) + pdV − µdN, (25)

where Tm and Sm represent the temperature and the entropy of the matter fields, respec-
tively; note that Tm, in general, is different than the horizon temperature. The matter fields
exhibit a flux through the horizon, which is either outward or inward, depending on the
background cosmic era of the universe. Owing to this flux, the matter fields behave like
an open system, where µ (in Equation (25)) is the chemical potential and dN represents
the change in particle number (within time dt) inside of the horizon. Due to V = 4π

3H3 , the
above expression takes the following form:
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TmṠm = − 4π

H2 (ρ + p)
{

1 +
Ḣ
H2

}
− µṄ. (26)

For the purpose of Ṅ, we need to understand that the speed of the formation of the
apparent horizon is different than the comoving expansion speed of the universe. Actually,
the speed of the formation of the apparent horizon turns out to be vh = −Ḣ/H2, while the
comoving speed of the universe at a physical distance of d from an observer is expressed as
vc = Hd. Therefore, vc = 1 at the apparent horizon (i.e., at d = 1/H). Therefore, vc > vh
when the universe undergoes an accelerating era, while for a decelerating era, we have
vc < vh. Hence, we calculate

Vc(t + dt)− V(t + dt) =
4π

3

(
1
H

− Ḣ
H2 dt

)3

− 4π

3

(
1
H

+ dt
)3

=
4π

H2 (1 − ϵ)dt, (27)

with ϵ = −Ḣ/H2, which represents the gap between the comoving volume and the volume
enclosed by the horizon. Therefore, we can write

dN
dt

= − ρ

u
d
dt
[Vc(t + dt)− V(t + dt)], (28)

where u is the energy per particle. The above expression, along with Equation (27), imme-
diately results in

µṄ = −4πρ

H2 (1 − ϵ). (29)

To arrive at Equation (29), we used µ ≡ ∂
∂N (total energy) = u. Plugging this into

Equation (26) yields

TmṠm = − 4π

H2 (ρ + p)
{

1 +
Ḣ
H2

}
+

4πρ

H2 (1 − ϵ). (30)

Equations (24) and (30) provide the change in horizon entropy, as well the change in
matter fields’ entropy (with respect to the cosmic time). These immediately determine the
change in total entropy as

Th
dSh
dt

+ Tm
dSm

dt
= −2π(ρ + p)

(
Ḣ
H4

)
+

4πρ

H2 (1 − ϵ) , (31)

We can eliminate ρ and p from the above expression by using the Friedmann Equa-
tions (4) and (5). As a result, we obtain

Th
dSh
dt

+ Tm
dSm

dt
=

ϵ2

2G

(
∂Sh
∂S

)
− 3(ϵ − 1)

2G
1

H2

∫ (
∂Sh
∂S

)
d
(

H2
)

. (32)

Equation (32) indicates that the total change in entropy depends on the following
two factors: (a) the background cosmic evolution of the universe (through the Hubble
parameter) and (b) the form of the horizon entropy under consideration (through Sh).
Below, we consider some specific forms of horizon entropy and establish the constraints
on the corresponding entropic parameters in order to validate the second law of horizon
thermodynamics during a wide range of cosmic eras.



Universe 2024, 10, 352 8 of 19

• For Tsallis entropy (Sh ≡ ST = Sδ, where the suffix ‘T’ stands for Tsallis entropy
and S = π

GH2 is the Bekenstein–Hawking entropy), the change in total entropy from
Equation (32) is expressed as

Th

(
dST

dt

)
+ Tm

(
dSm

dt

)
=

(
δ

2G

)( π

GH2

)δ−1
{

ϵ2 − 3(ϵ − 1)
(2 − δ)

}
. (33)

1. During inflation, ϵ ≃ 0; thus, in order to have in order for ThṠT + TmṠm > 0
from Equation (33), the Tsallis exponent has to fulfill the following condition:

0 < δ < 2. (34)

2. During the reheating stage, ϵ = 3
2 (1 + ω0), where ω0 is the effective EoS pa-

rameter; thus, Equation (33) leads to the following constraint on δ to satisfy
ThṠT + TmṠm > 0, as the EoS parameter may vary within the range of ω0 = [0, 1]:

0 < δ <
5
4

. (35)

3. During the radiation era, the changes in the matter fields’ entropy and the hori-
zon entropy are expressed as

Ṡm ∝
3

a3H2 (ϵ − 1), (36)

and

ṠT =
4π

GH

(
δ

2 − δ

)( π

GH2

)δ−1
, (37)

respectively. Clearly, Ṡm > 0, as during the radiation era, ϵ is larger than unity;
moreover, the positivity of ṠT leads to

0 < δ < 2. (38)

Because δ remains constant with the cosmic expansion of the universe, all the above
constraints on δ during different cosmic eras are simultaneously fulfilled if the follow-
ing condition is met:

0 < δ < Min
[

2,
5
4

, 2
]
=

5
4

. (39)

Here, it can be noted that such a range of δ also covers the case of Bekenstein–Hawking
entropy, where δ = 1, i.e., Bekenstein–Hawking entropy also fulfills the requirement
of the second law of horizon thermodynamics.

Following the above procedure, one can determine the constraints on entropic pa-
rameters for other forms of the horizon entropy. Here, we present a list for several forms
of Sh [20]:

• For Rényi entropy, Sh ≡ SR = 1
α ln (1 + αS) (with α being the parameter), and the

constraint on the Rényi exponent, from an inflation- to radiation-dominated era,
followed by a reheating stage, is expressed as follows:

α >
GH2

I
π

, (40)

where HI is the Hubble scale during inflation.
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• For Kaniadakis entropy, Sh ≡ SK = 1
K sinh(KS),and the second law of horizon thermo-

dynamics is fulfilled from the inflation → reheating → radiation era if the Kaniadakis
exponent obeys the following constraint:

−1.4

(
GH2

I
π

)
≲ K ≲ 1.4

(
GH2

I
π

)
. (41)

• The four-parameter generalised entropy given by

Sh ≡ Sg[α+, α−, β, γ] =
1
γ

[(
1 +

α+
β

S
)β

−
(

1 +
α−
β

S
)−β

]
, (42)

is the minimal version of generalised entropy that is able to generalise all the known
entropies proposed so far. The parameters should lie within the following constraints
in order to validate the second law of horizon thermodynamics:

α±
β

>
GH2

I
π

, 0 < β <
5
4

and γ > 0. (43)

Importantly, the above ranges provide model-independent constraints on entropic
parameters (for different entropy functions of the apparent horizon) directly from the
second law of horizon thermodynamics during a wide range of cosmic eras of the universe.

4. Generalised Entropy Functions

As mentioned in Equations (4) and (5), different forms of horizon entropy (Sh) lead to
different cosmological scenarios. In this regard, several entropies have been proposed, like
Tsallis entropy [40], Rényi entropy [41], Barrow entropy [42], Sharma–Mittal entropy [43],
Kaniadakis entropy [44], loop quantum gravity entropy [45], etc. However, irrespective of
the form, Sh maintains some common properties, including the following:

• Sh is a monotonically increasing function of the Bekenstein–Hawking entropy variable
(S = A/(4G), where A = 4πR2

h denotes the area of the apparent horizon);
• Sh goes to zero in the limit of S → 0, which can be thought of as equivalent to the

third law of thermodynamics.

Such common properties indicate that there should exist some generalised form of
entropy (with few parameters) that can generalise all the known entropies proposed so
far at suitable representatives of the entropic parameters. Motivated by this idea, a few
parameter-dependent generalised entropy functions (both singular and on-singular) have
been proposed, which are able to generalise known entropies, like Tsallis entropy, Rényi
entropy, Barrow entropy, Sharma–Mittal entropy, Kaniadakis entropy and loop quantum
gravity entropy. Initially, six-parameter and three-parameter generalised entropies were
proposed in [23], taking the forms of

S6(α±, β±, γ±) =
1

α+ + α−

[(
1 +

α+
β+

Sγ+

)β+

−
(

1 +
α−
β−

Sγ−

)−β−
]

, (44)

and

S3(α, β, γ) =
1
γ

[(
1 +

α

β
S
)β

− 1

]
, (45)

respectively, where the respective entropic parameters are shown in brackets. However,
after the introduction of this proposal, it was soon realized that the minimum number of
parameters required in a generalised entropy function that can generalise all the aforemen-
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tioned entropies is equal to four. Consequently, the four-parameter generalised entropy is
expressed as

S4(α±, β, γ) =
1
γ

[(
1 +

α+
β

S
)β

−
(

1 +
α−
β

S
)−β

]
, (46)

where {α±, β, γ} are the parameters that are considered to be positive in order to make S4
a monotonically increasing function with respect to S.

All the above entropies {S6, S4, S3} possesses a singularity in a different type of
cosmological scenario, particularly in bouncing contexts, as Bekenstein–Hawking entropy,
itself, diverges in bouncing scenarios (at the instant of bounce). Such diverging behaviour
is common to all known entropies (like Tsallis entropy, Rényi entropy, Barrow entropy,
Sharma–Mittal entropy, Kaniadakis entropy and loop quantum gravity entropy). To resolve
this issue, a singular-free generalised entropy containing five parameters taking the form of

S5(α±, β, γ, ϵ) =
1
γ

[{
1 +

1
ϵ

tanh
(

ϵα+
β

S
)}β

−
{

1 +
1
ϵ

tanh
(

ϵα−
β

S
)}−β

]
, (47)

was proposed in [25], which turns out to be singular-free due to the presence of a hyperbolic
function and is able to generalise all the entropies known so far. The minimum parameters
required for a singular-free entropy that is also able to generalise all the known entropies
is equal to five. Therefore, the minimal constructions of a generalised version of entropy
are expressed by the four-parameter [24] and five-parameter [25] generalised entropy—
based on universe’s evolution, in particular, whether the universe passes through a non-
singular bounce (or not) during its cosmic evolution respectively. Various representatives
of {S6, S4, S3, S5} and their convergence to the known entropies are schematically shown
in Table 1. The widespread application of generalised entropies to cosmology and black
holes is addressed in [24,25,28–31,33,34].

Table 1. Schematic table summarizing various representatives of generalised entropies and their con-
vergence to known entropies. Here, ST = Tsallis entropy, SB = Barrow entropy, SR = Rényi entropy,
SSM = Sharma–Mittal entropy, SK = Kaniadakis entropy and Sq = loop quantum gravity entropy.

S3

γ = α SSM

S4

α− = 0, α+ = γ SSM

α → ∞ ST, SB α+ → ∞, α− = 0 ST, SB

α, β → 0 with α
β finite SR α− = 0, α+ = γ, β → 0 with α+

β finite SR

β → ∞, γ = α Sq β → ∞, α− = 0, α+ = γ Sq

β → ∞, α+ = α− SK

S5

ϵ, α− → 0, α+ = γ SSM

S6

α− = 0, α+ = γ+β+ SSM

ϵ → 0, α− = 0, α+ → ∞, γ =
(

α+
β

)β
ST, SB α+ = α− → 0, γ+ = γ− ST, SB

ϵ, β → 0, α− = 0, α+ = γ with α+
β finite SR α+, β+ → 0, γ+ = 1 with α+

β+
finite SR

ϵ, α− → 0, β → ∞, α+ = γ Sq β+ → ∞, α− = 0, γ+ = 1 Sq

ϵ → 0, β → ∞, α+ = α− SK β± → 0, α+ = α−, γ± = 1 SK

5. Primordial Gravitational Waves (GWs) in Entropic Cosmology

In this section, we discuss primordial GWs generated during inflation in the context
of entropic cosmology when the entropy of the apparent horizon is expressed by the four-
parameter generalised entropy (Sg) that was been recently proposed in [24]. In particular,

Sg[α+, α−, β, γ] =
1
γ

[(
1 +

α+
β

S
)β

−
(

1 +
α−
β

S
)−β

]
, (48)
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where α±, β and γ are entropic parameters that are assumed to be positive. During the early
stage of the universe, we assume that matter fields are absent; then, the FLRW equation
corresponding to Sg results in a constant Hubble parameter (this statement is also true for
other forms of horizon entropy). This, in turn, leads to eternal inflation, which has no exit
mechanism; moreover, the primordial curvature perturbation is exactly scale-invariant,
which is inconsistent with the Planck data. Thus, in order to support viable inflation, one
may consider that the entropic parameters are not strictly constant; rather, they slowly vary
with time. The following choices are available in this regard [24]:

γ(N) = exp
[∫ N

Nf

σ(N)dN
]

with σ(N) = σ0 + e−(Nf−N), (49)

which the other parameters (α±, β) remain constant. Here, σ0 is a constant, and N denotes
the e-folding number, with Nf being the total e-folding number of the inflationary era. With
varying γ(N), the FLRW equation becomes

−
(

2π

G

)α+
(

1 + α+
β S

)β−1
+ α−

(
1 + α−

β S
)−β−1

(
1 + α+

β S
)β

−
(

1 + α−
β S

)−β

 1
H3

dH
dN

= σ(N), (50)

which, when solved for the Hubble parameter (H = H(N)), yields

H(N) = 4πMPl

√
α+
β

 21/(2β) exp
[
− 1

2β

∫ N
σ(N)dN

]
{

1 +
√

1 + 4(α+/α−)
β exp

[
−2
∫ N

σ(N)dN
]}1/(2β)

, (51)

where
∫ N

0 σ(N)dN = Nσ0 + e−(Nf−N) − e−Nf . The above form of H(N) is compatible with
quasi-dS inflation with an exit at N = Nf; moreover, the primordial curvature perturbation
and the tensor-to-scalar ratio are compatible with the Planck data [70] for a suitable range
of entropic parameters [24].

After inflation ends, the universe enters a reheating phase when the energy density
corresponding to Sg decays to relativistic particles. Here, we consider a perturbative
reheating scenario, which is generally parametrized by a constant EoS parameter (ωeff).
Therefore, the Hubble parameter during the reheating stage is expressed as

H(N) = Hf exp[−(N − Nf)/m], (52)

where Hf is the Hubble parameter at the end of inflation (note: H(N) is continuous at
the junction of N = Nf) and m is an exponent related to the reheating EoS parameter
by ωeff = −1 + 2/(3m). The above Hubble parameter during reheating should be a
solution of the Equation (50); this is possible for the following form of σ(N) [28] during the
reheating stage:

σ(N) =

(
2π

G

)
e2(N−Nf)/m

mH2
f

[
α+ζ

β−1
+ + α−ζ

−β−1
−

ζ
β
+ − ζ

−β
−

]
, (53)

where

ζ± = 1 +
πα±

βGH2
f

e2(N−Nf)/m.
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Thus, as a whole, σ(N) has the form of Equation (49) during inflation and that of
Equation (53) during the reheating stage. Consequently, the e-folds for the reheating and
the corresponding reheating temperature are expressed as

Nre =
2m

(2m − 1)

{
61.6 − 1

4β
ln


βe−(1+σ0 Nf)

{
1 +

√
1 + e2(1+σ0 Nf)

[(
1+σ0

2β

)2
− 1
]}2

(16π2α+/3β)
β {1 + σ0 + 2β}

− Nf

}
(54)

and

Tre = Hi

(
43

11gre

)1/3( T0

k/a0

)
e−(Nf+Nre), (55)

respectively. Reheating phenomenology requires Nre > 0 and Tre > TBBN ≈ 10−2GeV.
The following ranges of the entropic parameters lead to a viable phenomenology during
inflation, as well as during reheating [28]:

Having set the background evolution, we now address the spectrum of primordial
GWs generated during inflation in the context of generalised entropic cosmology [33]. If
hij(t, x⃗) is the tensor perturbation characterising GWs over a spatially flat FLRW spacetime,
then the spacetime metric can be expressed as

ds2 = −dt2 + a2(t)
[(

δij + hij
)
dxidxj

]
. (56)

Upon quantizing hij(t, x⃗), we can write the mode expansion as

ĥij(t, x⃗) = ∑
λ=+,×

∫ d3⃗k
(2π)3/2

[
âλ

k ϵλ
ij (⃗k)h(k, t)ei⃗k.⃗x + c.c.

]
, (57)

where λ = +,× denotes two types of polarisations of the GWs; ϵλ
ij (⃗k) represents the

polarisation tensor, and âk (â+k ) represents the annihilation (creation) operators that satisfy
the usual commutation rules. Moreover, from the transverse condition of GWs, i.e., due
to ∂ihij = 0, one immediately obtains kiϵλ

ij (⃗k) = 0. The Fourier mode (h(k, t)) obeys the
following condition:

ḧ(k, t) + 3Hḣ(k, t) +
k2

a2 h(k, t) = 0. (58)

As described above, the background Hubble parameter is almost constant during
inflation; thus, Equation (58) is solved for h(k, t) during the same period as follows:

h(k, η) = −
√

2
k

(
Hi

MPl

)
η e−ikη

(
1 − i

kη

)
, (59)

where Hi is the constant Hubble parameter during inflation and can be obtained from
Equation (51) at N = 0. For the post-inflationary evolution, let us introduce the transfer
function (χ(k, η)) as

h(k, η) =

[
lim

|kη|≪1
h(k, η)

]
χ(k, η) = i

√
2
k3

(
Hi

MPl

)
χ(k, η), (60)
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in terms of which Equation (58) takes the following form:

χ̈(k, t) + 3Hχ̇(k, t) +
k2

a2 χ(k, t) = 0. (61)

During the reheating stage, H ∝ A− 3
2 (1+weff) (where A = a/af is the rescaled scale

factor; note that A = 1 at the end of inflation); consequently, Equation (61) is solved as
follows:

χRH(k, A) = A− 3+3weff
4

C(k) Jν

 2k/kre

1 + 3weff

(
A

Are

) 1+3weff
2

+ D(k) J−ν

 2k/kre

1 + 3weff

(
A

Are

) 1+3weff
2

, (62)

where ν = (1 − 3m)/(2 + 2m) and kre represent the modes that re-enter the horizon at the
end of reheating. Moreover, C(k) and D(k) are the integration constants, which can be
determined from the continuity condition of the transfer function at the junction between
inflation and reheating, as expressed by

χ(k, A = 1) = 1 and
dχ

dA

∣∣∣∣
A=1

= 0 (63)

respectively. Furthermore, the transfer function during radiation follows from Equation (58)
by using H ∝ A−2 and is expressed as

χRD(k, A) =
e−ib(A−Are)

2A

[(
Are −

1
ib

)
χRH(k, Are)−

(
Are

ib

)
dχRH(k, Are)

dA

]
+

eib(A−Are)

2A

[(
Are +

1
ib

)
χRH(k, Are) +

(
Are

ib

)
dχRH(k, Are)

dA

]
. (64)

where χRH(k, Are) represents the transfer function at the end of reheating; thus, χ(k, A)
becomes continuous at the junction between reheating and radiation occurring at A = Are.

The current dimensionless energy density parameter (Ω(0)
GW(k)) (i.e., in the present

epoch) is expressed as

Ω(0)
GW(k)h2 =

1
6π2

(
gr,0

gr,eq

)1/3
ΩRh2

(
Hi

MPl

)2
{

A2
∣∣∣∣dχRD(k, A)

dA

∣∣∣∣2 + b2 A2
∣∣∣χRD(k, A)

∣∣∣2}, (65)

where ΩR denotes the present-day dimensionless energy density of radiation, and gr,eq and
gr,0 represent the number of relativistic degrees of freedom at matter–radiation equality and
today, respectively. The above solutions of χ(k, A) lead to the following forms of Ω(0)

GW(k)
for different modes:

• For the modes that re-enter the horizon during the radiation era, i.e., for k < kre (where
kre represents the mode that re-enters the horizon at the end of reheating),

Ω(0)
GW(k)h2 ≃

(
1

6π2

)
ΩRh2

(
Hi

MPl

)2
, (66)

where we assumed that gr,0 = gr,eq.
• For the modes that re-enter the horizon during the reheating stage, i.e., for kre < k < kf

(where kf is the mode that re-enters the horizon at the end of inflation),

Ω(0)
GW(k)h2 ≃

(
1

6π2

)
ΩRh2

(
Hi

MPl

)2(
1 + 3weff

) 4
1+3weff

(
Γ(1 − ν)√

π

)2( k
kre

)2
(

3weff−1
3weff+1

)
, (67)

where, once again, we assume that gr,0 = gr,eq.
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As a whole, Equations (66) and (67) clearly demonstrate that the GWs today have a
flat spectrum for the modes that re-enter the horizon during the radiation-dominated era,
while the spectrum is tilted over the modes that re-enter the horizon during the reheating
era. The amount of such tilt is expressed as

nGW = 2
(

3weff − 1
3weff + 1

)
=

2(1 − 2m)

1 − m
, (68)

which is blue for m < 1
2 and red for m > 1

2 . In Figure 1, the GW spectra of today are plotted
for a set of values of the entropic parameters (β, σ0 and m), as well as for two different
inflationary e-folding numbers, namely Nf = 50 and 55. The set of values of the entropic
parameters is consistent with their viable ranges listed in Table 2. The figures clearly
illustrate the qualitative features discussed herein. Therefore, if the future, observatories can
detect the signals of primordial GWs. In such cases, our theoretical expectation determined
in the present work may represent a possible tool for the measurement of the generalised
entropic parameters.

10 10 10 8 10 6 10 4 10 2 100 102 104
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10 20

10 18

10 16
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10 10

10 8

10 6

h2
(0

)
G

W

= 0.2
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= 0.15
m = 2/3

Nf = 50

10 10 10 7 10 4 10 1 102 105 108 1011
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10 10
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10 6
h2

(0
)

G
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= 0.2
m = 5/9

= 0.3
m = 5/9

= 0.15
m = 2/5

Nf = 55

Figure 1. Left plot: Ω(0)
GW vs. f[Hz] for Nf = 50; right plot: Ω(0)

GW vs. f[Hz] for Nf = 55. In both plots,
we consider a set of values of the entropic parameters (β and m), as well as other entropic parameters,
namely σ0 and α+, taken as σ0 = 0.015 and α+/β = 10−6 (see Table 2). Clearly, the GW spectra are
flat for k < kre, with a non-zero tilt in the domain of kre < k < kf. In particular, we take m = 2/3, 5/9
and 2/5, which lead to indices of nGW = −2, −1/2 and 2/3, respectively.

Table 2. Viable ranges of entropic parameters from both the inflation and reheating phenomenology
for three different choices of Nf. Here, it is important to mention that ωeff needs to be greater than
1/3 for Nf ≳ 57.

Viable Choice of Nf Viable Range of σ0 Viable Range of β Viable Range of
(

α+

α−

)β
Reheating EoS

(1) Set-1: Nf = 50 σ0 = [0.0127, 0.0166] (a) 0.05 < β < 0.10 2 × 105 <
(

α+
α−

)β
< 8.5 × 105 1

3 < weff < 1

(b) 0.10 < β < 0.35 7.5 <
(

α+
α−

)β
< 2 × 105 − 1

3 < weff <
1
3

(2) Set-2: Nf = 55 σ0 = [0.0129, 0.0166] (a) 0.06 < β < 0.22 4 × 104 <
(

α+
α−

)β
< 5 × 105 1

3 < weff < 1

(b) 0.22 < β < 0.40 7.5 <
(

α+
α−

)β
< 4 × 104 − 1

3 < weff <
1
3

(3) Set-3: Nf = 60 σ0 = [0.0130, 0.0166] (a) 0.08 < β < 0.40 7.5 <
(

α+
α−

)β
< 3 × 105 1

3 < weff < 1

6. Non-Singular Bounce in Entropic Cosmology

In order to have a bounce in entropic cosmology, the entropy of the apparent horizon
itself needs to be non-singular at the instance of the vanishing Hubble parameter (H = 0).
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This is unlike to four-parameter generalised entropy (or even other known entropies
proposed so far, like Tsallis entropy, Renyi entropy, etc.), which becomes singular at H = 0.
In the spirit of addressing a non-singular bounce, a new singular-free entropy function was
recently proposed in [25], as expressed by

Sns[α±, β, γ, ϵ] =
1
γ

[{
1 +

1
ϵ

tanh
(

ϵα+
β

S
)}β

−
{

1 +
1
ϵ

tanh
(

ϵα−
β

S
)}−β]

, (69)

where α±, β, γ and ϵ are parameters that are considered to be positive, S = π/(GH2)
symbolizes Bekenstein–Hawking entropy and the suffix ‘ns’ stands for ‘non-singular’.
Below, use the following notation:

χ± = 1 +
1
ϵ

tanh
(

ϵα±
β

S
)

.

Note the due to the hyperbolic nature of the tan, the above form of entropy remains
finite at the instance of H = 0, (i.e., at the time of bounce). However, Sns with constant
parameters does not provide a viable cosmology; thus, we consider the γ parameter to vary
with time, while all other parameters remain fixed, i.e.,

γ = γ(N), (70)

with N being the e-fold number of the universe. As an effect of γ = γ(N), the modified
Friedmann equations corresponding to the Sns are expressed asα+ sech2

(
ϵα+

β S
)

χ
β−1
+ + α− sech2

(
ϵα−

β S
)

χ
−β−1
−

χ
β
+ − χ

−β
−

dS =
γ′(N)

γ(N)
dN

where an overprime denotes d
dη . Integrating the above equation, one obtains

tanh
(

ϵπα

βGH2

)
=

{
γ(N) +

√
γ2(N) + 4

2

}1/β

− 1. (71)

where we take α+ = α− = α (without losing any generality) in order to extract an explicit
solution of H(N) that depends on the explicit form of γ(N). In the following, we consider
two symmetric bounce cases, namely exponential bounce and quasi-matter bounce cases,
and determine the associated form of γ(N) using Equation (71).

1. The scale factor,

a(t) = exp
(

a0t2
)

, (72)

describes the exponential bounce, where the bounce happens at t = 0. Herem a0 is
a constant with a mass dimension of [+2], which is actually related to the entropic
parameters of Sns; thus, without losing any generality, we take a0 = ϵπα

4Gβ . Such an
exponential bounce can be achieved from singular-free entropic cosmology, provided
the γ(N) is expressed as

γ(N) =

{
1 +

1
ϵ

tanh
(

1
N

)}β

−
{

1 +
1
ϵ

tanh
(

1
N

)}−β

. (73)
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2. Quasi-matter bounce is described by the following scale factor:

a(t) =

[
1 + a0

(
t
t0

)2
]n

, (74)

where n, a0 and t0 are connected to the entropic parameters. In particular, one may
take n =

√
α, a0 = π

4β and t0 =
√

G/ϵ, with G being the gravitational constant.
Consequently, γ(N) that leads to such quasi-matter bounce is expressed as

γ(N) =

{
1 +

1
ϵ

tanh
[

e−N/
√

α
(

eN/
√

α − 1
) 1

2
]}β

−
{

1 +
1
ϵ

tanh
[

e−N/
√

α
(

eN/
√

α − 1
) 1

2
]}−β

. (75)

At this stage, it deserves mentioning that the comoving Hubble radius in the case of
exponential bounce monotonically decreases with time and asymptotically goes to zero at
both sides of the bounce. This results in the fact that the primordial perturbation modes are
generated near the bounce where all the modes lie in the sub-Hubble regime; moreover,
the perturbation modes in the distant past remain outside of the Hubble radius. As a
result, exponential bounce suffers from a horizon problem. This is unlike quasi-matter
bounce, where the comoving Hubble radius monotonically increases with cosmic time and
eventually diverges in the asymptotic regime. Thus, the perturbation modes generate and
lie in the sub-Hubble regime in the distant past, far away from the bounce. This resolves the
horizon problem in this case. Moreover, quasi-matter bounce also leads to viable observable
quantities consistent with the Planck data [25].

7. Brief Discussion on Future Perspectives

In Section 2, we discussed how a gravity theory is linked with a specific form of horizon
entropy through the first law of horizon thermodynamics. Therefore, it is important to
understand the gravity theory corresponding to four-parameter generalised entropy. This
is important because four-parameter generalised entropy is able to generalise all the known
entropies; thus, the theory of gravity equivalent to such a generalised entropy must have
rich consequences in the context of cosmology, as well as in black hole physics. It is evident
from Section 5 that the theoretical expectation of GW spectra based on four-parameter
generalised entropy does not intersect with the sensitivity curve of NANOGrav. This
may indicate that the standard inflationary evolution may not be the full story of the
early universe. Thus, a modified inflationary evolution—for instance, a short deceleration
epoch inside inflation—may be required to corroborate the theoretical GW spectra with
NANOGrav data. The aspect of the generalised entropy in such a modified cosmic evolution
and its consistency with NANOGrav data have significance in their own right. Apart from
the early universe scenario, there are few unsolvable issues of entropic cosmology yet to be
solved in the context of the dark energy era. For instance, (a) Can we obtain a viable reason
from entropic cosmology regarding the cosmic transition of the universe from standard
deceleration to late-time acceleration?; (b) What is the view of entropic cosmology on the
Hubble tension issue, as well as on the LCDM epoch?, etc. Moreover, with development
of entropic cosmology, black holes and compact objects remain to be studied, which are
obtained with entropic modification of FLRW equations. These issues are timely and will,
perhaps, be studied in the future.
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