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Abstract: The objective of this paper is to reproduce and predict the series of solar cycle amplitudes
using a simple time-series model that takes into account the variable time scale of the Gleissberg
oscillation and the absence of clear evidence for odd–even alternation prior to Solar Cycle 9 (SC9). It
is demonstrated that the Gleissberg oscillation can be quite satisfactorily modelled as a sinusoidal
variation of constant amplitude with a period increasing linearly with time. Subtracting this model
from the actual cycle amplitudes, a clear even–odd alternating pattern is discerned in the time series
of the residuals since SC9. For this period of time, the mean value of the residuals for odd-numbered
cycles is shown to exceed the value for even-numbered cycles by more than 4σ, providing the clearest
evidence yet for a persistent odd–even–odd alternation in cycle amplitudes. Random deviations from
these means are less than half the standard deviation of the raw cycle amplitude time series for the
same period, which allows the use of these regularities for solar cycle prediction with substantially
better confidence than the simple climatological average. Predicted cycle amplitudes are found to
be robust against the addition or omission of some data points from the input set, and the method
correctly hindcasts SC23 and SC24. The potential physical background of the regularities is also
discussed. Our predictions for the amplitudes of SC25, SC26, and SC27 are 155.8 ± 20.7, 96.9 ± 25.1
and 140.8 ± 20.7, respectively. This suggests that the amplitude of SC26 will be even lower than that
of SC24, making it the weakest cycle since the Dalton Minimum.
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1. Introduction

Regularities in the long-term variation of solar activity have long been sought and
found. A 22-year cyclicity, evident in the frequently observed alternation in the amplitudes
of subsequent cycles, was noted early on (see [1]). In 1939, Gleissberg [2] called attention
to an oscillatory signal with a period of about eight solar cycles. Terrestrial proxy records
indicate the existence of even longer periodicities in solar activity [3,4].

Attempts to exploit these oscillatory variations for solar cycle prediction have, how-
ever, not met with much success [5]. The underlying cause of this, as already recognised by
Gleissberg [6], is that apparent periodicities found by harmonic analysis may vary or vanish
with time, and depend on the reference period of time for which they are derived. Specifi-
cally, the odd–even alternation may have been absent and/or have passed through a phase
jump during and before the Dalton Minimum [7], while the time scale of the Gleissberg
oscillation has been shown to be steadily increasing since the 18th century [8,9]. As these
shorter time scale variations are the most relevant for cycle prediction, precursor methods
and physical model-based approaches have largely superseded time-series methods in
the field.

In this paper, a new attempt is made at reproducing and predicting the series of solar
cycle amplitudes using a simple model that takes into account the variable time scale of the
Gleissberg oscillation and the absence of clear evidence for odd–even alternation prior to
Solar Cycle 9 (SC9). Random deviations from this model are found to be less than half the
standard deviation of the raw cycle amplitude time series for the same period, which allows
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the use of these regularities for solar cycle prediction with substantially better confidence
than the simple climatological average.

After briefly presenting our input data and methods in Section 2, Section 3 details the
analysis and its results. The possible physical significance of these findings is discussed in
Sections 4 and 5 concludes the paper.

2. Data and Methods

International sunspot numbers (version 2), provided by World Data Center for Sunspot
Index and Long-term Solar Observations (WDC-SILSO) of the Solar Influences Data Anal-
ysis Center (SIDC) at the Royal Observatory of Belgium, were used for this study [10].
Following general practice in solar physics, cycle maxima were defined by the maxima
of the 13-month smoothed value of the international sunspot number, Smax. Integrated
cycle amplitudes ∑ S were calculated as the sum of the yearly mean total sunspot numbers
during a cycle, with the minimum years counted to the incipient cycle. The resulting cycle
amplitude parameters are given in the Supplementary data.

Nonlinear parameter fitting was performed with the Levenberg–Marquardt algorithm,
as implemented in the scipy.optimize.curve_fit function of Python 3.10.

3. Analysis and Results

Following the standard approach in Gleissberg’s work [11,12], for the study of centennial-
scale variations in the amplitude of solar activity, shorter variations are filtered out by
taking a boxcar average of cycle amplitudes with weight 12221. The amplitude of cycle n
filtered is then given by:

⟨Smax⟩(n) =
1
8

(
S(n−2)

max + 2S(n−1)
max + 2S(n)

max + 2S(n+1)
max + S(n+2)

max

)
. (1)

This smoothed variation is here fitted with a sinusoidal of constant amplitude and
linearly increasing period, i.e.,

Sfit = S0 + S1 sin(2π(n − ϕ0)/P) with P = c0 + c1n. (2)

The best fit is displayed in Figure 1 in green dash-dots. With a mean error (relative to the
curve amplitude) of ∼7% only, the fit is quite convincing (χ2 = 4.1, p = 0.997). A fit with a
constant period (S1 = 0), in contrast, leads to a mean error of 18% with χ2 = 23.01, and a
p value of 0.114 only. (Note that an exponentially increasing period was also tested, but the
fit was found to be inferior to the linear case.)

Subtracting the fitted values from the raw, unsmoothed cycle amplitudes results in
the residuals plotted in red in the lower part of the figure. A characteristic, persistent
zig-zag pattern of alternating amplitudes is apparent, especially starting from SC9. Prior
to that time, issues arise with the coverage and homogeneity of observations, as well
as with the atypical behaviour of the Sun itself around the Dalton minimum [13,14], so
here we will focus on cycles starting from SC9. The mean value of the residual for odd
and even cycles in this period are 26.9 ± 7.5 and −22.2 ± 9.2, respectively, which yields
a 4σ difference. This is the strongest statistical evidence yet for a systematic difference
between even and odd cycle amplitudes, made possible by the subtraction of the linearly
lengthening Gleissberg oscillation.

For individual cycles, the residual amplitudes scatter around the mean, with a stan-
dard deviation of 21.205 and 26.061 for odd and even cycles, respectively. This is an
improvement to a factor of two relative to the scatter of 47.233 shown by all cycles around
the climatological average amplitude for the same period. Hence, adding the mean value
of the residual that corresponds to the odd/even cycle number to our model, as seen in
Equation (2), for the Gleissberg oscillation offers a way to predict the amplitudes of solar
cycles with substantially better precision than simple climatology. These predictions are
shown by the dashed line in Figure 1 and subsequent figures.
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Figure 1. Solar cycle maximum amplitudes. The raw maximum amplitudes are shown in light
grey; 12221 filtered values in blue. An analytic fit with a sinusoidal variation of linearly increasing
period is shown by the green dash-dotted line. Residuals obtained by subtracting the fit from the
raw data are displayed in red in the lower part of the figure. From SC9, a systematic shift between
odd-numbered (green triangles) and even-numbered (blue dots) cycles is clearly visible; bands of
width ±1σ around the respective mean values of the residuals for odd and even cycles are shown in
grey and gold, respectively. The dashed extension of the light grey curve presents the prediction of
upcoming sunspot cycles based on these regularities.

As the procedure involves a nonlinear parameter optimization routine, questions may
arise as to how stable it is in response to the addition or omission of a few data points.
To test this, in Figure 2, we present a “hindcast” produced using data up to SC22 only.
This results in a “postdiction” for SC23 and SC24. The predicted values are 185.6 ± 22.2
and 123.0 ± 29.5, which compare favourably with the observed values of 180.3 and 116.4,
respectively.

Figure 2. Solar cycle maximum amplitudes considering data up to SC22 only. Asterisks mark the
observed maximum amplitudes of SC23 and SC24, while the black triangle is the current lower
estimate for SC25, to be compared with the predictions. For other notations see the caption of Figure 1.
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A disadvantage of the 12221 filtering is that it lags behind the most recent cycle by
two cycles. A 121 filter of the form

⟨Smax⟩(n) =
1
4

(
S(n−1)

max + 2S(n)
max + S(n+1)

max

)
. (3)

is expected to give more weight to the recent variation in solar activity, potentially leading
to improved predictions. Indeed, a hindcast using 121 filtering (Figure 3) leads to further
improved postdictions for SC23 and SC24, at 181.9 and 113.1, respectively.

Figure 3. Solar cycle maximum amplitudes considering data up to SC22 only, with a 121 filter used
for smoothing. Asterisks mark the observed maximum amplitudes of SC23 and SC24, while the
black triangle is the current lower estimate for SC25, to be compared with the predictions. For other
notations see the caption of Figure 1.

Prompted by this improvement, for our “official” forecast, we use all data available
up to SC24 and a 121 filter (Figure 4). Parameters for the optimised fit are S0 = 173.7,
S1 = 56.56, ϕ0 = 1.718, c0 = 4.443, and c1 = 0.176. Odd (even) cycles scatter around a
value offset by +23.6 (−24.2) relative to this fit, with a standard deviation of 20.7 (25.1).

Figure 4. Solar cycle maximum amplitudes considering all numbered cycles, with a 121 filter used for
smoothing. For notations see the caption of Figure 1.
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The resulting predictions for SC25, SC26, and SC27 are 155.8 ± 20.7, 96.9 ± 25.1 and
140.8 ± 20.7, respectively. This suggests that SC26 will be even lower in amplitude than
SC24 was, making it the weakest cycle since the Dalton Minimum.

Current predictions for SC25 by SILSO and the SWPC tend to fall below our prediction
here: they typically fall in the range of 128–154, though the full range covered extends
from 100 to 171 [15–19]. Should this cycle indeed prove to be a negative fluke exceeding
1σ, how would that impact on the further predictions for the forthcoming cycles? To test
this, we also compute fiducial forecasts including fiducial data for SC25, assuming that
its amplitude will not exceed the current lower limit of 127.1 (reached in November 2023).
The outcomes from our various models are summarised in Table 1. It is apparent that
predictions are quite robust against minor changes in the input data set, leaving our above
conclusion about SC26 intact. The use of a 12221 filter invariably leads to somewhat higher
predictions, but still within the 1σ limit.

Table 1. Predictions for solar cycles from different choices of input data and smoothing. Bold numbers
denote preferred values. Numbers in italics are input values. All numbers were rounded to integers
for brevity.

Input Data Last Cycle Filter Predictions
in Input SC23 SC24 SC25 SC26 SC27 SC28

Smax 22 121 182 ± 21 113 ± 29 147 ± 21
Smax 24 121 180 116 156 ± 21 97 ± 25 141 ± 21
Smax 25 121 180 116 127 95 ± 20 141 ± 25 98 ± 20
Smax 22 12221 186 ± 22 123 ± 29 165 ± 22
Smax 24 12221 180 116 168 ± 21 113 ± 26 163 ± 21
Smax 25 12221 180 116 127 114 ± 21 162 ± 26 118 ± 21

∑ S 22 121 961 ± 50 701 ± 89 762 ± 50
∑ S 24 121 1020 544 803 ± 49 555 ± 102 695 ± 49
∑ S 25 121 1020 544 700 536 ± 49 685 ± 99 515 ± 49
∑ S 22 12221 911 ± 83 686 ± 118 795 ± 83
∑ S 24 12221 1020 544 844 ± 72 618 ± 118 789 ± 72
∑ S 25 12221 1020 544 700 618 ± 72 789 ± 118 621 ± 72

Beside their maximum amplitude, another measure of solar cycles is their integrated
sunspot area, i.e., the sum of annual mean sunspot numbers ∑ S during their whole
duration (area under the curve). Indeed, the odd–even alternation is often seen more
evidently in these data [7,20]. Repeating the fitting exercises outlined above for ∑ S, our
findings are similar. An example case is shown in Figure 5. While the results of the
“hindcast” test (see Table 1) are somewhat less convincing in the ∑ S data, the odd–even
alternation is now even more consistently seen in the residuals, without a single exception
since SC9.
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Figure 5. Solar cycle integrated sunspot areas with a 121 filter used for smoothing. For other notations
see the caption of Figure 1.

4. Discussion

The convincing forecasting performance of the simple time-series model presented
above, based on a combination of a secular oscillation with linearly increasing amplitude
and an odd–even alternation, calls for a theoretical interpretation.

4.1. Gleissberg Oscillation

In oscillatory phenomena like the solar dynamo, long-period secondary oscillations often
arise as a beat period due to a second base period. As the beat frequency equals the difference
of the base frequencies, a century-scale oscillation might be interpreted as the beat of two base
periods separated by ∼1 year. For example, two base cycle periods of 10.5 and 11.5 years would
yield a beat period of 10 cycles, comparable to the Gleissberg cycle.

In the currently prevailing Babcock–Leighton type dynamo models, the cycle period
is determined by the speed of the meridional flow, which is most commonly assumed
to be single-celled. In such a situation, two different base periods can only be present if
the meridional flow amplitude differs between the northern and southern hemispheres.
Furthermore, if hemispheric coupling reduces this flow difference, the two periods will
approach each other, and the beat period will increase. A simple(-minded?) explanation for
the linearly lengthening Gleissberg oscillation would then assume a ∼20% initial difference
in the meridional flow in the early 18th century, followed by a gradual reduction over the
subsequent three centuries. One may speculate that this initial hemispheric asymmetry at
the end of the Maunder Minimum could potentially be related to the extreme hemispheric
asymmetry of the (low) solar activity during the Maunder Minimum, when nearly all
sunspots were observed on the southern hemisphere.

The coupling between the meridional circulation cells in the two hemispheres occurs
via turbulent viscous stress in the equatorial plane. For simplicity, let us ignore the details
of the meridional flow pattern, and assume simply that the momentum density p ≡ |ρv|
is initially constant throughout the volume of each hemisphere, with a jump across the
equator. As the equatorial stress is ν∂p/∂x, where ν is the turbulent viscosity and x is the
latitudinal coordinate, the problem is simplified to solving a 1D diffusion equation:

∂p
∂t

= ν
∂2 p

∂x22 (4)
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The step function initial condition is as follows:

p(x, 0) =


p0 + ∆p x > 0

p0 x = 0
p0 − ∆p x < 0

(5)

The solution reads:

p(x, t) = p0 + ∆p/2 erf [x/(4νt)1/2] (6)

Within the finite volume of the convective zone, of horizontal extent ∼R, where R is
the solar radius, the hemispheric meridional flow momentum excess/deficit can then be
estimated as:

D =
∫ R

0
[p(x, t)− p0] dx (7)

Using R as the unit of length and R2/4ν as the unit of time, the integral evaluates to:

2D
∆p

=
∫ 1

0
erf (xt−1/2) dx = erf (t−1/2)− (t/π)1/2e−1/t(e1/t − 1) (8)

As the difference in flow amplitude scales with D, so does the difference in the frequency
of the dynamo cycles. Hence, the beat period will scale with the inverse of D. This function
is plotted in Figure 6. Note that our time unit translates to:

R2/4ν ≃
(

ν

100 km2/s

)−1
× 40 year. (9)

Figure 6. Normalised beat period (blue solid) against nondimensional time for the 1D interhemi-
spheric relaxation. The cycle numbering at the top axis assumes a turbulent viscosity ν = 80 km2/s.
The green dashed line is Equation (2) with our best fit parameters.
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It is apparent from the figure that, when normalised to a similar level, the predicted
variation of the beat period is comparable to the observed Gleissberg variation for a
turbulent viscosity value of ν = 80 km2/s, considered realistic in the solar convective
zone. These findings then suggest that the cause of the Gleissberg oscillation with a nearly
linearly increasing period is the still ongoing inter-hemispheric relaxation of the meridional
circulation as a closing act of the Maunder Minimum or of the entire Spörer episode.

A number of caveats exist regarding the scenario outlined above.
Firstly, in contrast to the angular momentum (momentum of the rotational flow), the

momentum of the meridional circulation is not conserved. Hence, boundary stresses are
not the only factor in its variation. The main internal generation terms involve nondiagonal
terms in the Reynolds stress tensor. As the amplitude of these terms is expected to remain
below the amplitude of the diagonal terms in most of the convective zone, their neglect in
our rough calculation above may be acceptable to a first approximation.

Secondly, observations show major spatio-temporal fluctuations in the meridional flow
on timescales of a few months. This, however, plausibly involves an internal reorganization
of the flow pattern only, without a significant change in the total momentum of the flow
integrated over a hemisphere, again leaving the main conclusion above intact.

Finally, the underlying concept of a beat of two oscillations assumes that the two
hemispheres behave as independent oscillators with two different periods. Intuitively,
while this may be conceivable for the quadrupole dynamo mode, it is hardly possible
for the dominant dipole mode, due to the strong magnetic link between the hemispheres.
Hence, for the beat to be associated with a significant amplitude modulation, some kind
of nonlinearity is needed in the model, coupling the modes and allowing the beat in the
quadrupole mode to imprint on the dipole mode. As the quadrupole term is responsible for
hemispheric asymmetry in the large-scale magnetic field, its role is supported by the fact
that the Gleissberg oscillation has been found to be associated with hemispheric asymmetry
patterns in a number of studies [8,21].

Despite its attractive features, it is important to realise that the explanation of the
Gleissberg oscillation and its time variation proposed here is not unique. A number of other
explanations for the oscillation have been suggested [22–24], even though the possibility of
their regular period variation has not been explored to date. In particular, the mechanism
proposed in [25], relying on magnetic feedback in the differential rotation, shows some
parallels to our proposal. Another parallel is the proposal that a beat between the dipole
mode and the (unstable or stochastically excited) quadrupole mode is responsible for longer
periodicities related to hemispheric asymmetries [26,27].

4.2. Odd–Even Alternation

The other main element of the prediction method applied here, the systematic odd–
even alternation, does not require new hypotheses as such alternation, persisting for long
periods of time, is regularly seen in many nonlinear dynamo models [28–30].

The origin of this behaviour is readily understood in terms of a nonlinear solar dy-
namo [31–33]. For a relatively broad class of nonlinearities, dynamo models above a second
(not necessarily very high) critical dynamo number may undergo a Hopf bifurcation with
period doubling. Even in the absence of an unstable period-2 mode, the oscillatory charac-
ter of the return to a stable base period can induce alternating behaviour in the presence of
stochastic forcing.

The bad news is that in stochastically perturbed models, the length of persistent
alternating sequences is unpredictable, following a power law distribution. There is no
known way to tell in advance when such a sequence will end. This constitutes the main
limitation of our method, not reflected in the formal error range: there is no guarantee
that the ongoing persistent sequence of odd–even alternation will not suddenly end due to
stochastic fluctuations like rogue active regions [34,35].

A time-honoured alternative explanation for cycle alternation is the presence of a
relic magnetic field in the deep solar interior that adds to or reduces the amplitude of
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magnetic cycles, depending on their polarity [36]. Evidence for this has been claimed on
the basis of hemispheric asymmetries [37]. As in this case no phase jumps are expected in
the alternation, this eventuality would actually reduce the uncertainty in our prediction.

5. Conclusions

In this paper, a new attempt was made at reproducing and predicting the series of
solar cycle amplitudes using a simple model that takes into account the variable time scale
of the Gleissberg oscillation and the absence of clear evidence for odd–even alternation
prior to SC9. Specifically, it was demonstrated (Figure 1) that the Gleissberg oscillation
can be quite satisfactorily modelled as a sinusoidal variation of constant amplitude with a
period increasing linearly with time.

Subtracting this model from the actual cycle amplitudes, a clear even–odd alternating
pattern is discerned in the time series of the residuals since SC9. The only exception to the
rule is SC22, and for cycle amplitudes measured in terms of integrated cycle numbers, even
that exception is absent (Figure 5). For this period of time, the mean value of the residuals
for odd-numbered cycles was shown to exceed the value for even-numbered cycles by more
than 4σ, providing the clearest evidence yet for a persistent odd–even–odd alternation in
cycle amplitudes.

Random deviations from these means are less than half the standard deviation of
the raw cycle amplitude time series for the same period, which allows the use of these
regularities for solar cycle prediction with substantially better confidence than the simple
climatological average. Our predictions (Figure 4) for the amplitudes of SC25, SC26, and
SC27 are 155.8 ± 20.7, 96.9 ± 25.1 and 140.8 ± 20.7, respectively. This suggests that SC26
will be even lower in amplitude than SC24 was, making it the weakest cycle since the
Dalton Minimum.

Our prediction differs from the recent forecast by [38] due to the inclusion of odd–even
alternation and a time-varying Gleissberg period. Predicted cycle amplitudes are found to
be robust against the addition or omission of some data points from the input set, and the
method correctly hindcasts SC23 and SC24. This robustness also implies that our forecasts
for SC26 and SC27 will not be significantly affected, even if SC25 were to prove to be a
negative fluctuation deviating by ∼1σ from the rule.

A tentative explanation was also suggested for the increasing period of the Gleissberg
oscillation in terms of an inter-hemispheric relaxation following the Maunder Minimum
or the entire Spörer event. While the viability of this mechanism still needs to be con-
firmed by detailed modelling and alternative explanations are also possible, it serves to
illustrate that the empirically found robust regularity may potentially also be placed on
solid physical grounds.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/universe10090364/s1.
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