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Abstract: We present thought experiments to measure the Arnowitt–Deser–Misner EADM and Bondi–
Sachs energy EBS of isolated systems in general relativity. The expression of EBS used in the protocol
is likely to have other applications. In particular, it is well-suited to be promoted to an operator in
non-perturbative loop quantum gravity.
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1. Introduction

It is a pleasure to write this article in honor of Jorge Pullin on the occasion of his 60th
birthday. Jorge has made important contributions to loop quantum gravity and classical
general relativity over the years and, rather astonishingly, he is currently engaged in
experimental work at the LIGO Livingston facility. We thought it would be appropriate
to honor his extraordinary breadth of interests through an article that touches on all three
areas—albeit only through thought experiments in the third area since, unlike Jorge, we
cannot come even close to participating in actual hands-on experiments!

Total energy Etotal is, perhaps, the most basic observable of an isolated system in
general relativity. However, the notion is surprisingly subtle for the following reasons:

(i) In Newtonian gravity, the analogous observable is the total mass which can be ob-
tained by integrating the matter density over sources, or by computing the flux of the
‘electric field’—the gradient of the Newtonian potential—across any finite 2-sphere
that surrounds matter sources. In general relativity, this is not possible. In generic
situations, there is no invariantly defined scalar potential, nor a 2-form that one can
integrate on a finite 2-sphere surrounding sources to obtain a quantity with dimen-
sions of energy that is independent of the choice of the 2-sphere. This feature is
a consequence of a fundamental conceptual obstruction: in general relativity, the
gravitational field also contributes to the total energy momentum, the ‘gravitational
charge’. A source-free Maxwell field in Minkowski space–time, for example, does not
contribute to the electric charge, while a source-free solution to Einstein’s equations
does carry energy–momentum (even when space–time is topologically R4). In the
gauge theory language, general relativity is analogous to a non-Abelian Yang–Mills
theory, where the total charge has to be defined by an integral at infinity. Similarly, in
general relativity, total energy can be only defined using 2-sphere integrals in asymptotically
flat regions of space–time.

(ii) In Newtonian gravity, the mass of an astrophysical body can be determined oper-
ationally by observing the orbits of test bodies moving around it. One can extend
this idea to general relativity if the central body is stationary. However, in general
asymptotically flat situations, this is not possible. Now mass becomes a genuinely
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global notion in that it requires an examination of the behavior of test particles dis-
tributed across an entire 2-sphere in the asymptotic region. That the notion of total
energy in general relativity is genuinely global ‘in angles’ is brought to the forefront
by a theorem due to Carlotto and Schoen [1–3]. Using gluing techniques, they have
shown that the initial value equations of general relativity admit asymptotically flat,
regular solutions on a 3-manifold Σ with positive Arnowitt–Deser–Misner (ADM)
energy that have an astonishing property: Outside a cone C extending to infinity, the
Cauchy data on Σ are isomorphic to that on a Cauchy surface in Minkowski space.
(In the literature, the ADM energy is sometimes referred to as ADM mass.) Σ can
be taken to be topologically R3 and the angular span of C can be very small. In the
space–time obtained by evolving such data, the 4-metric gab is flat in the domain D of
dependence of the complement of C in Σ. Test particles in this region will not experi-
ence any physical acceleration or tidal forces. Therefore, observations of the orbits of
test particles in D will yield no information about the ADM mass of these space–times.
As a consequence, once the requirement of stationarity is dropped, experiments–even
thought experiments–aimed at measuring the total energy (or just checking if it is non-
zero), require a full 2-sphere’s worth of test particles in the asymptotic region, in striking
contrast to Newtonian theory.

(iii) The standard definition of the ADM mass is not arrived at by invoking any operational
protocols or thought experiments. Rather, it is based on Hamiltonian methods and
uses asymptotic symmetries [4,5]. More precisely, one constructs the phase space of
asymptotically flat initial data on a 3-manifold Σ and defines components of the ADM
4-momentum PADM

a as Hamiltonians generating asymptotic space–time-translations at
spatial infinity. The ADM energy EADM is the time component of PADM

a in the asymp-
totic rest frame defined by Σ. This mathematical procedure leads to the conclusion
that the ADM energy depends only on the configuration variable (the positive definite
3-metric qab on the 3-manifold Σ) and is independent of momentum (pab, encoded in
the extrinsic curvature). This does not happen in any non-gravitational field theory of
physical interest.

Furthermore, even in general relativity, this result seems surprising from the per-
spective of stationary space–times in which there is an exact time-translation symmetry.
Thus, even before the advent of the ADM framework, it was known that in stationary
space–times one can define the Komar charge [6], which also carries the interpretation of
the total energy, but which is constructed from the norm of the Killing field that resides in
the ‘time–time component’ of the 4-metric gab, rather than in the spatial metric qab. Indeed,
this fact has led some leading researchers to doubt the correctness of ADM energy.1 It took
a careful analysis [7–9] to show that the two apparently distinct expressions, in fact, agree
in stationary space–times that are asymptotically flat at spatial infinity.

Finally, the expression of the full ADM 4-momentum PADM
a involves only the gravita-

tional variables—the positive definite 3-metric qab and its conjugate momentum pab. Matter
fields do not feature in the expression of PADM

a even when their support extends all the way
to infinity, as is often the case for the electromagnetic field in the Einstein–Maxwell theory.
Yet PADM

a represents the total 4-momentum of the isolated system, including contributions
from sources.

(iv) In contrast to PADM
a , the Bondi–Sachs 4-momentum PBS

a at null infinity I + is dynam-
ical in that it changes in response to the radiation escaping through I + and thus has
richer content that PADM

a . It was originally identified by imposing suitable boundary
conditions as one recedes from sources in null directions, examining asymptotic field
equations and requiring that the radiated energy should be positive [10,11]. In contrast
to the ADM 4-momentum PADM

a , the Bondi–Sachs 4-momentum PBS
a does not have

the interpretation of a Hamiltonian in any phase space framework if the cross-section
on which it is defined has non-zero news.2

These considerations spell out the mathematical reasoning that led to the definition
of 4-momenta PADM

a and PBS
a of isolated systems in general relativity. The Hamiltonian
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framework underlying PADM
a and the balance laws that are used to arrive at PBS

a are
powerful guidelines. Positivity of the resulting ADM and Bondi–Sachs energy are deep
results [14–18] that provide strong support for the final expressions of PADM

a and PBS
a . Yet,

the arguments are rather indirect and the expressions are rather mysterious from a physical
standpoint. In the Newtonian limit, the ADM energy in the rest frame of the system does
yield the Newtonian mass. But, as we see from the Carlotto–Schoen construction, highly
non-trivial possibilities arise in full general relativity. Is there a more direct physical sense
in which the mass of a general isolated system that test bodies in the asymptotic regions
respond to is the one provided by ADM 4-momentum? The expression of Bondi–Sachs
4-momentum is even further removed from direct physical considerations. As we discuss
below, in the Newman–Penrose framework, it is a specific combination of the Coulombic
field (the Weyl tensor component Ψ◦

2) that ‘falls off as 1/r3’ and radiative fields (the Bondi
news σ̇◦ and the asymptotic shear σ◦) that ‘fall-off as 1/r’. A priori it is rather mysterious
why this precise combination is necessary to capture the notion of the total energy of the
isolated system at a given retarded instant of time. In particular, we cannot make an appeal
to the Newtonian limit to argue for these choices since there are no gravitational waves in
Newtonian theory.

The purpose of this paper is to suggest thought experiments to measure the ADM and
Bondi–Sachs energies. In each case, we will first recast the original expressions of these
observables to a form that makes their physical content more transparent. The experiments
will provide a precise sense in which they carry the connotations that we physically expect
of total energy, given the well-established features of general relativity. This exercise
provides some surprising insights and will have interesting applications as well.

In Section 2, we consider space–times that are asymptotically flat at spatial infinity.
We will first recall that the standard expression of ADM energy can be recast in terms of
curvature in a number of ways [9]. One of these equivalent expressions involves the leading
order part of the 4-dimensional Riemann tensor that dictates the tidal acceleration between
test particles in the asymptotic region. Therefore, it is possible to introduce a thought
experiment to measure the ADM energy (in any given asymptotic rest frame) by observing
the relative acceleration between test particles distributed on a 2-sphere with a large area-
radius R, and a nearby one with radius R − δ. This experiment provides an operational
meaning to the ADM energy by tying it with tidal acceleration, the hallmark of the physical
effect of gravity in the framework of general relativity. This thought experiment measures
the ADM energy for generic gravitational systems, including the exotic ones represented
by initial data of Carlotto–Schoen type. Furthermore, the thought experiment in terms of
tidal accelerations can also be used directly in Newtonian gravity to measure mass [19].
In the passage from Newtonian gravity to general relativity, the very meaning of ‘gravity’
is profoundly altered. But the notion of tidal acceleration carries over. Therefore, one
can make the case that the essence of the physical effect of the total energy of an isolated
system lies in the tidal accelerations it causes, irrespective of whether one uses Newtonian
gravity or general relativity. It is then natural to devise thought experiments to measure
the gravitational mass by focusing on tidal accelerations.

In Section 3, we consider space–times that are asymptotically flat at null infinity. In
the absence of gravitational waves, as one would expect, one can use the same thought
experiment as in Section 2 [19]. However, the strategy is not viable in the presence of
gravitational radiation. In retrospect, this is not that surprising because the Newtonian
intuition fails in the description of processes in which gravitational waves carry away
energy. While the Bondi–Sachs expression provides a specific prescription for including
contributions from gravitational waves, as we already noted, physically, it is rather obscure
as to why the specific term that is included is the appropriate one. We will first recast that
expression using properties of ingoing null geodesics. The new expression will show that
in all space–times that are asymptotically flat at null infinity, the total Bondi–Sachs energy
is a measure of the rate at which the ingoing light front emanated by a 2-sphere contract
in the asymptotic region. Therefore, one can devise a thought experiment to measure the
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Bondi–Sachs energy EBS in terms of the asymptotic properties of null geodesics. Note that
the experiment can also be used in situations in which EBS is time-changing due to outgoing
gravitational waves. In retrospect, it is perhaps not surprising that one has to use properties
of null geodesics for Bondi-energy in place of time-like geodesics used for ADM energy.
We focus on these two notions of energy because they are by far the most important ones,
widely used in the community. Other notions (see, e.g., [20]) are neither as compelling nor
have they proved to be as useful.

In Section 4, we summarize the results and suggest some future applications. In a
nutshell, the standard expressions of EADM and EBS were arrived at using well-motivated
mathematical considerations. However, one also expects the presence of a gravitational
mass to manifest itself via physical effects on test bodies, and a priori it is far from clear how,
and indeed why, such effects are correctly encapsulated in these expressions. Therefore,
it is interesting that, using the notion of asymptotic flatness in the respective regimes, the
expressions can be recast to a form that brings out a precise sense in which they have the cor-
rect physical connotations, given our understanding of the interplay between physics and
geometry encoded in general relativity. Specifically, these expressions suggest thought ex-
periments to measure EADM and EBS in generic asymptotically flat space–times. The specific
expressions will also be useful in other contexts in both classical and quantum gravity.

Our conventions are as follows. Physical space–times are denoted by (M, gab), where
gab has signature −, +, +, +. The torsion-free derivative operator compatible with gab is
denoted by ∇ and its curvature tensors are defined via: 2∇[a∇b]vc = Rabc

dvd, Rac = Rabc
b,

and R = gabRab. The decomposition of the Riemann tensor into trace-free and trace
parts is given by: Rabcd = Cabcd + ga[cSd]b − gb[cSd]a, where Cabcd is the Weyl tensor and
Sab = Rab − 1

6 R gbc the Schouten tensor constructed from the Ricci tensor Rab.

2. The ADM Energy

In this section, we will begin by recasting the standard expression of the ADM energy
EADM in a form that refers to the 4-d Riemann tensor rather than the 3-d metric. We will
then use this new form to introduce a thought experiment involving tidal accelerations
to measure EADM. The thought experiment is motivated by Newtonian considerations
but encompasses all gravitational fields of general relativity, including those that have no
Newtonian analogs. By carrying it out in different asymptotic rest-frames, one recovers the
full information in PADM

a .

2.1. Preliminaries

The ADM 4-momentum is defined in the setting of a 3 + 1 Hamiltonian framework.
Let us fix a 3-manifold Σ, which is topologically R3 outside a compact set so that it has
only one asymptotic end. The fields of interest are a positive-definite 3-metric qab, its
conjugate momentum pab, and the matter density ρ and current ja. From the perspective
of the 4-d metric gab obtained by evolution, pab is related to the extrinsic curvature kab via
pab =

√
q

G (kab − kqab) and the matter density and current are related to the stress–energy
tensor via ρ = Tabτaτb and ja = Tbcτbqac, where τa is the unit time-like normal to Σ with
respect to the 4-metric gab. The initial data (qab, kab, ρ, ja) are subject to the scalar and vector
constraints of general relativity:

R− kabkab + k2 = 16πG ρ, and Da(kab − kqab) = 8πG jb. (1)

Here, D and R are the (torsion-free) derivative operators and the scalar curvature defined
by qab. In the positive energy theorems, one assumes the energy condition ρ ≥ (ja ja)

1
2 .

We are interested in the initial data that are asymptotically flat at spatial infinity. Thus,
we require that, outside a compact set, Σ admits a flat metric q̊ab and imposes fall-off
conditions on components of various fields in the Cartesian coordinates xk

¯ of q̊ab:

(i) (qa
¯
b
¯
− q̊a

¯
b
¯
) = O( 1

r ); D̊c
¯

qa
¯
b
¯
= O( 1

r2 ); and, D̊c
¯
D̊d

¯
qa

¯
b
¯
= O( 1

r3 );
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(ii) ka
¯
b
¯
= O( 1

r2 ); and D̊c
¯

ka
¯
b
¯
= O( 1

r3 );

(iii) ρ, ja
¯
, and the space-space components ta

¯
b
¯

of Tab are all O( 1
r4 );

as r → ∞. Here, r is the radial coordinate defined by xk
¯ and D̊ the (torsion-free)

derivative operator compatible with q̊ab. The fall-off condition on the stress-energy
tensor is motivated by the asymptotic behavior of physically interesting Maxwell
fields at spatial infinity.

Given the initial data, the ADM energy EADM = −τaPADM
a is defined by

EADM =
1

16πG
lim
r̊→∞

∮
r=r◦

(D̊c qbc − D̊b qac) q̊ac r̊bd2V (2)

where r̊b = q̊abD̊ar is the unit normal to the r = r◦ 2-spheres w.r.t. q̊ab. Thanks to our
conditions on the initial data, the integral is well-defined. Furthermore (although it is far
from being clear from its expression), it is positive and vanishes if and only if the initial
data correspond to Minkowski space–time [14,15].

2.2. Expressing the ADM Energy in Terms of Curvature

To recast (2) in terms of the Riemann tensor Rabcd of the 4-d solution gab, we will
proceed in three steps. In the first, we will recast it using the Ricci curvature Rab of the
physical 3-metric qab, in the second, in terms of the Weyl curvature Cabcd of the 4-metric
gab, and, in the third, using the full Riemann tensor Rabcd. These expressions will refer only
to the asymptotic behavior of r and not to other features of the fiducial metric q̊ab, such as
its derivative operator D̊.

To carry out the first step, one uses the following fact. The difference between the
derivative operators D and D̊ is captured in a tensor field Cab

c:

(Da − D̊a)kb = Cab
ckc ∀ kc, where

Cab
c = − 1

2 qcm (
D̊aqbm + D̊bqam − D̊mqab

)
(3)

and, since q̊ab is flat, the Ricci tensor Rab of qab is given by

Rac = 2
(

D̊[a Cb]c
b + Cd

c[a Cb]d
b). (4)

One then substitutes the expression (3) of Cab
c in (4) and uses the fall-off condition (i) in

the definition of asymptotic flatness, and the fact that r D̊aD̊br =
(
q̊ab − D̊arD̊br) =: ˚̃qab is

the metric induced by q̊ab on the r = r◦ 2-spheres. Then, in terms of the radial–radial
component of Rab, we have:

−
∮

r=r◦
r r̊a r̊b Rab d2V = 1

2 lim
r◦→∞

∮
r=r◦

(D̊c qbc − D̊b qac) q̊acτbd2V , (5)

where r̊a denotes the unit normal to the r = r◦ 2-spheres w.r.t. q̊ab. In arriving at (5), one
has to perform integration by parts and use Stokes’ theorem to set certain terms to zero.3

Therefore, the equality refers only to the integrals, not to the integrands. Equation (5)
immediately implies that the ADM energy can be expressed in terms of the leading-order
(i.e., 1

r3 -) part of the radial–radial component of curvature Rab of the physical 3-metric [9]:

EADM = − 1
8πG

lim
r̊→∞

∮
r=r◦

r (r̊a r̊b Rab)d2V . (6)

This is, in fact, the expression of the ADM energy used in the Carlotto–Schoen analysis [1,2].
In the second step, we wish to further recast the expression in terms of Weyl curvature

of the 4-metric gab obtained by evolving the initial data. For this, one uses the fact that the
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electric part Eab = Cacbd τbτd of the 4-d Weyl tensor on the 3-manifold Σ can be expressed
in terms of the initial data and the Ricci tensor Rab of the 4-metric gab as follows:

Eab = Rab − kackb
c + kkab −

1
2
(
qa

cqb
d + qabqcd) (Rcd −

1
6

Rmngmngcd) . (7)

Our asymptotic conditions on the stress–energy tensor of matter fields imply the 4-d Ricci
tensor falls off as O( 1

r4 ) and those on the extrinsic curvature imply that the terms that are
quadratic in kab also fall-off as O( 1

r4 ). Therefore, it immediately follows [9] that the ADM
energy can also be written as:

EADM = − 1
8πG

lim
r̊→∞

∮
r=r◦

r (r̊a r̊b Eab)d2V . (8)

There is a covariant framework to describe spatial infinity in the 4-dimensional setting
without any 3 + 1 decomposition [21]. In that framework, the full ADM 4-momentum
PADM

a is naturally expressed in terms of the 4-d Weyl tensor. Equation (8) is the ‘time’
component of that expression of PADM

a in the rest frame chosen by τa, which is orthogonal
to our Cauchy surface Σ.

Finally, note that our fall-off conditions imply that the Ricci-tensor Rab of the 4-d metric
gab falls off as 1

r4 . Therefore, we can also express the ADM energy in terms of the Riemann
tensor as

EADM = − 1
8πG

lim
r̊→∞

∮
r=r◦

r (r̊aτb r̊c τdRabcd)d2V . (9)

It is this expression that naturally suggests a thought experiment to measure EADM in any
space–time that is asymptotically flat at spatial infinity, including those obtained by the
Carlotto–Schoen construction.

2.3. The Thought Experiment

To motivate the thought experiment, let us make a small detour and consider an
isolated system in Newtonian gravity. Now, the matter density has compact spatial support,
and the Newtonian potential is given by Φ = −GM/r + O(1/r2) in the asymptotic region
outside sources. In full general relativity, it is the tidal force ∇a∇bΦ that has a clean
counterpart in terms of curvature. So, let us express mass M in terms of the Newtonian
tidal acceleration. For this, we can consider a large 2-sphere of radius r surrounding the
matter source, and a nearby concentric 2-sphere of radius r − ϵ. Let us now consider a
shell of (massive) test particles at rest on each of these two 2-spheres. Let us drop them at
t = 0. Then, to the leading order, the 2-spheres will continue to remain 2-spheres, but their
separation δ will increase because of tidal effects associated with the inhomogeneity of the
field: particles on the inner 2-sphere will experience a slightly greater acceleration then
those on the outer 2-sphere. To leading order, the increase in the separation is dictated by

ϵ̈ =
(
r̂a r̂b ∂a∂bΦ

)
ϵ =

(2GM
r3

)
ϵ + O(

1
r4 ) (10)

where ∂a is just the 3-dimensional derivative operator of the Euclidean space. This equation
leads to an expression of the Newtonian mass of the isolated system in terms of the tidal
acceleration, as a limit of a 2-sphere integral

M =
1

8πG
lim

ro→∞

∮
r=ro

r r̂a r̂b ∂a∂bΦ d2V (11)

Our thought experiment to measure the central mass consists of observing the increase
in separation between radially separated ‘partner particles’ that lie on the two shells,
and averaging it over angles. From a Newtonian perspective, the experiment—especially
the “averaging over angles”–seems unnecessarily cumbersome. But to find the general



Universe 2024, 10, 367 7 of 19

relativistic analog of this thought experiment, averaging becomes essential as illustrated by
the Carlotto–Schoen construction.

We can now carry over this physical idea to general relativity by replacing the New-
tonian tidal acceleration with the appropriate component of curvature that features in
the geodesic deviation equation. Let us consider an isolated system in general relativity
represented by a space–time (M, gab) that is obtained by the evolution of initial data on a
3-manifold Σ, satisfying the asymptotic conditions (i)–(iii) listed above. On the 3-manifold
Σ, introduce two 2-spheres S1 and S2 that are metric 2-spheres w.r.t. q̊ab with radii r◦ and
r◦ − δ, each endowed with a uniform distribution of (massive) particles, with 4-velocities
aligned with τa the unit normal to Σ, at the initial time (represented by Σ). This is the
general relativistic analog of dropping the particles from rest. Denote by ϵ(θ, φ) the proper
distance between points on S1 and S2 that are related by geodesics normal to S1 (defined
by qab). Let them fall freely, i.e., follow geodesic orbits w.r.t. the physical 4-metric gab. By
the geodesic deviation equation, the radial component of the tidal acceleration of these test
particles will dictate the increase in separation between them. At the initial time, we have:

r̂a (ϵ̈ r̂a) = − ϵ r̂a r̂c(t̂b t̂d Rabcd). (12)

Therefore, our discussion of Newtonian gravity motivates us to operationally define the total
energy of the system w.r.t. the rest frame defined by τa as:

Eoper = − 1
8πG

lim
r◦→∞

∮
r=r◦

r (r̊aτb r̊c τdRabcd)d2V (13)

The right side is precisely the ADM energy EADM of Equation (9). Thus, a measurement of
the tidal acceleration at the instant defined by Σ provides the operational meaning of the
ADM energy of the initial data on Σ. Note that the thought experiment involves only tidal
acceleration, which is an intrinsic and essential feature of general relativity that holds for all
gravitational fields, including the exotic ones in which space–time is flat outside an angular
cone extending to infinity. However, the integrand in (13) can be locally negative; this is
why it is possible to ‘screen’ gravity as exemplified by the gluing techniques. Finally, while
we used the fiducial flat metric q̊ab in the intermediate stage, its specific choice washes
out in the limit r◦ → ∞. As discussed in Section 1, we must take this limit in general
relativity because the gravitational field itself contributes to the total energy. Thus, before
taking the limit, one obtains only an approximate value of EADM: the thought experiment
involves making a series of measurements using 2-spheres of increasing area and then
taking the limit. Thanks to the positive energy theorem [14,15], we are guaranteed that
the total energy EADM is always positive so long as sources satisfy the energy condition
specified above.

To summarize, while the operational meaning of the original expression (2) of the
ADM energy EADM is quite obscure, when recast in terms of the 4-d Riemann tensor
one immediately sees that it can be measured by observing tidal acceleration of nearby
spherical distributions of test particles in the asymptotic region. It is essential to perform the
experiment in the asymptotic region—not just outside the matter source, as in Newtonian
gravity—because in general relativity, the gravitational field itself contributes to the total
energy (and hence to the total 4-momentum). A second contrast to Newtonian gravity is
that one needs a whole 2-sphere worth of test particles surrounding the source because,
in general relativity, the space–time metric can be flat in large regions near spatial infinity
even when EADM is strictly positive. To extract its value, one needs an integration over all
angles. By changing the asymptotic rest frame used in the thought experiment, one can
measure different components of PADM

a and thereby reconstruct the full 4-vector.

3. The Bondi–Sachs Energy

Let us now turn to null infinity. As in Section 2, the thought experiment will be
performed in the asymptotic region of the physical space–time. Therefore, it is convenient to
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work with the Bondi–Sachs framework rather than Penrose’s conformal completion. Thus,
we will consider solutions that are asymptotically flat at null infinity in the sense that the
physical metric gab satisfies vacuum equations in the asymptotic region and admits the
standard Bondi–Sachs expansion there [10,11]. In the absence of gravitational radiation at
I +, the Bondi–Sachs energy is also expressible as an integral over the leading order (i.e.,
“1/r3”) term in the electric part of the asymptotic Weyl curvature. Therefore, one can repeat
the thought experiment of Section 2. The analysis has to be slightly modified to account
for the fact that in the limit r̊ → ∞, the 2-sphere approaches a cross-section of null infinity;
the limit is taken along a constant retarded time hypersurface u = u◦ rather than along a
Cauchy surface Σ. Apart from the resulting modifications in the details, we can use the
same thought experiment as in Section 2.3, as discussed in [19].

The tidal acceleration experienced by massive particles refers to the Coulombic aspect
of the gravitational field (encoded in the curvature components that fall off as 1/r3). In the
presence of gravitational waves, the Bondi–Sachs energy has an additional term containing
the radiative information encoded in metric coefficients that fall off as 1/r. Therefore, a
measurement of tidal acceleration of rings of massive particles fails to capture the full
content of the Bondi–Sachs energy. However, it is possible to use instead properties of
null rays, which can be thought of as trajectories of massless particles. Recall that the
original expression of the ADM energy was in terms of the 3-metric and we had to recast
it in terms of curvature that captures tidal acceleration directly. Similarly, the original
Bondi–Sachs expression in terms of metric coefficients has to be recast to one that is more
directly adapted to properties of null geodesics in the asymptotic region. As in the ADM
case, one proceeds in steps. The first step of this procedure was already taken by Newman
and Penrose, using null tetrads [22]. We will begin with that expression and further recast it
using expansions of null normals to a suitable family of 2-spheres. The thought experiment
to measure the Bondi–Sachs energy will involve the expansion of ingoing null rays.

3.1. Preliminaries

Following Bondi and Sachs, let us introduce a null foliation u = const in the asymp-
totic region of the given physical space–time (M, gab), consisting of outgoing null surfaces
N◦, labeled by u = u◦. Foliate each N◦ by a family of 2-spheres given by r = const, where
r is the area radius of the 2-sphere. Each of these 2-spheres has two future-directed null
normals. The outgoing null normal ℓa is tangential to N◦ and normalized via Lℓr = 1, and
the ingoing one na, by the condition gabℓ

anb = −1. One can also carry out a conformal
completion of (M, gab) à la Penrose [23] using Ω = 1

r as the conformal factor, so that
the metric ĝab = Ω2gab is well-defined at I +. In this conformal completion, the induced
degenerate metric q̊ab at I + is a round 2-sphere metric of unit radius; we have a “Bondi
conformal frame” at I +. For our thought experiment, conformal completion is not neces-
sary. Nonetheless, as is often done in the literature, it is convenient to refer to structures
on I + that would have resulted had we carried out this completion. As one approaches
I +, the chart (u, r, θ, ϕ) breaks down in the limit, since r → ∞. For limits of scalars, this
breakdown is harmless. But for limits of tensor fields, one cannot directly use the limiting
behavior of their components in the (u, r, θ, φ) chart to draw reliable conclusions about
the limits of the tensor fields themselves to I +.4 Therefore, to take these limits, we will
use the chart (u, Ω, θ, φ) and take the Ω → 0 limits of components of various fields in this
chart. Note, however, that we will work in the physical space–time (M, gab) (on which Ω is
strictly positive) and all our fields will refer to the physical metric gab. But we will permit
ourselves to say that in the limit Ω → 0, the family of 2-spheres Ω = Ω◦ on any one N◦
defines a cross-section S◦ of I +, with ˆ̊na = limΩ→0 na as its null normal within I +. In
fact, the limit ˆ̊na is a Bondi–Metzner–Sachs (BMS) vector field on I +, representing a unit
time translation. We will refer to any smooth vector field on M, that would have converged
to ˆ̊na at I + in the conformal completion as an asymptotic time-translation. The Bondi–Sachs
energy refers to this time-translation.



Universe 2024, 10, 367 9 of 19

With this terminology at hand, the Newman–Penrose expression of Bondi–Sachs
energy can be written as:

EBS[S◦] = − 1
8πG

lim
Ω◦→0

∮
Ω=Ω◦

Ω−1 [Cabcd naℓbncℓd + Ω−1 σ
(ℓ)
ab (Lnσ

(ℓ)
cd ) q̃ac q̃bd] d2V . (14)

Here, q̃ab is the intrinsic metric on the 2-spheres Ω = Ω◦ on the null sheet N◦ and
σab = TF q̃a

c q̃b
d ∇cℓd ≡ (q̃a

c q̃b
d − 1

2 q̃ab q̃cd)∇cℓd is the shear of the outgoing null normal ℓa

to the Ω=Ω◦ 2-spheres, where TF stands for “trace-free part of”. In spite of the explicit
factors of Ω−1 and an additional implicit factor of Ω−2 in d2V, the limit is well defined
because the Bondi–Sachs boundary conditions and vacuum field equations near I + imply
that the term in square brackets is O(Ω3). The limit to I + of 2Lnσ

(ℓ)
ab coincides with the

News tensor Nab [13].
Just as the expression of the ADM energy was first given in terms of limits of com-

ponents of the 3-metric as one approaches spatial infinity [4], the Bondi–Sachs energy
was first expressed using limits of components of the 4-metric at null infinity [10,11]. The
Newman–Penrose recasting (14) using Weyl curvature and geometric properties of null
congruences is very similar to the recasting (8) of the ADM expression in terms of the Weyl
tensor. Indeed, the first term in (15) is the same as that in (8). In the Newman–Penrose
framework, it is the component 2ReΨ2 of the Weyl curvature in both cases, albeit in the
ADM case, the limit is taken as the 2-sphere expands out to infinite radius along a Cauchy
surface, while for the Bondi–Sachs energy, the 2-sphere approaches a cross-section of I +.
The second term in (14), however, does not have an analog in the ADM case. It vanishes
in the absence of radiation—i.e., if the news Nab vanishes—and then, as we already com-
mented, one can repeat the thought experiment of Section 2 [19]. But in the presence of
gravitational radiation, that thought experiment does not provide a measurement of Bondi
energy. In Section 3.2, we will further recast (14) using only the expansions of null rays and
use that expression in Section 3.3 to introduce a thought experiment that faithfully captures
the effect of Bondi energy, including the radiative term.

3.2. Recasting the Bondi–Sachs Energy in Terms of Null Expansions

We need to recast the expression (14) to a form that is well-adapted to a thought
experiment. As in Section 2, we will proceed in three steps.

Let us begin by noting that the boundary conditions and algebraic Bianchi identities
imply that Nab is also the limit to I + of −2Ωσ

(n)
ab , where σ

(n)
ab = TF q̃a

c q̃b
d ∇cnd is the shear

of the ingoing null normals. Therefore, the right side of (14) can also be written as:

EBS[S◦] = − 1
8πG

lim
Ω◦→0

∮
Ω=Ω◦

Ω−1 [Cabcd naℓbncℓd − σ
(ℓ)
ab σ

(n)
cd q̃ac q̃bd]d2V . (15)

In the next step, we will use a 2 + 2 decomposition of the 4-dimensional curvature. This is
analogous to the more familiar 3 + 1 decomposition in which the Gauss–Codazzi equations
relate the intrinsic and extrinsic curvature of a 3-d submanifold Σ to projections of the
4-d curvature tensor. Now, any 2-sphere S in a 4-d space–time is naturally equipped with
two null normals ℓa and na (which can always be required to satisfy the normalization
condition ℓana = −1). Using these normals, one can carry out a 2 + 2 decomposition and
relate projections of the 4-d curvature tensor to the intrinsic curvature of the metric on
S and the extrinsic curvatures of the two null normals, each of which admits a natural
decomposition into trace terms (the expansions θ(ℓ), θ(n)) and trace-free terms (the shears

σ
(ℓ)
ab , σ

(n)
ab ). If the 4-metric gab satisfies the vacuum Einstein’s equation, the decomposition

yields a constraint:

Cabcd naℓbncℓd − σ
(ℓ)
ab σab

(n) +
1
2
(

2R̃ + θ(ℓ)θ(n)
)
= 0, (16)
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where 2R̃ is the scalar curvature of the intrinsic 2-metric q̃ab on S. This is an exact identity
that holds outside sources; no asymptotic conditions have been used. Since the first two
terms on the left side constitute the integrand of the Bondi–Sachs energy (15), one can
express EBS[S◦] also as an integral of the scalar curvature and the two null expansions:

EBS[S◦] =
1

16πG
lim

Ω◦→0

∮
Ω=Ω◦

Ω−1 [2R̃ + θ(n)θ(ℓ)
]

d2V . (17)

The first term 2R̃ on the right side can be readily integrated using the Gauss–Bonnet formula.
However, since the integrand in the second term involves products of null expansions, the
expression is still not well-suited for a thought experiment (see Remark 2 at the end of
Section 3.3). Therefore, we have to further recast (17) to a more convenient form using the
Bondi–Sachs boundary conditions and the vacuum Einstein’s equations.

Let us begin by spelling out the implications of Bondi–Sachs boundary conditions
that are needed in this last step: Using the chart (u, Ω, θ, φ), the Bondi–Sachs boundary
conditions imply

guu = −1 + O(Ω); guΩ = Ω−2 + O(1);

guA = O(1); and gAB = Ω−2q̊AB + Ω−1CAB + O(1) , (18)

where A, B = 1, 2 stand for θ, φ, and q̊AB is the unit 2-sphere metric. The Bondi–Sachs
fall-off conditions on the metric coefficients also imply that coordinate derivatives of
these metric components satisfy the fall-off conditions compatible with Equation (18) (e.g.,
∂Ω guu = O(1) + O(Ω), ∂uguu = O(Ω), ∂Aguu = O(Ω)). These fall-offs imply that the
two expansions have the following behavior5

θ(n) = −Ω + O(Ω2) and θ(ℓ) = 2Ω + O(Ω3). (19)

The absence of a term O(Ω2) in the fall-off of θ(ℓ) is a consequence of the absence of terms
of the order O(Ω−1) in guΩ, which, in turn, is a consequence of Einstein’s equations. Next,
we note that since

∮
S

2R̃ d2V is the Gauss invariant that equals 8π for any 2-sphere S, and
since Ω−1= r, the area radius, we have

Ω−1
∮

S

(
2R̃ − 2Ω2)d2V = 0 (20)

for any S in the Bondi–Sachs family of 2-spheres on the u = u◦ null surface, even before
taking the limit in (17). Using (20) in (17), we have:

EBS[S◦] =
1

16πG
lim

Ω◦→0

∮
Ω=Ω◦

[
2Ω + Ω−1 θ(n)θ(ℓ))

]
d2V . (21)

By adding and subtracting 2θ(n) in the integrand and rearranging the terms, we obtain

EBS[S◦] =
1

16πG
lim

Ω◦→0

∮
Ω=Ω◦

[
2(θ(n) + Ω) + Ω−1θ(n)(−2Ω + θ(ℓ))

]
d2V

=
1

8πG
lim

Ω◦→0

∮
Ω=Ω◦

(θ(n) + Ω)d2V , (22)

where, in the last step, we used the fact that the second term in the integrand of the first equa-
tion vanishes in the limit because of the fall-off conditions in (19): the term θ(n) (−2Ω + θ(ℓ))
is O(Ω4), and the limit of Ω−2d2V is well-defined (and equals the volume element of the
unit 2-sphere). The final expression shows that it is possible to determine the Bondi–Sachs
energy EBS[S◦] using a single geometrical field: the expansion θ(n) of the inward pointing
null normal na. This will pave the way for the thought experiment to measure EBS[S◦].

We will conclude by providing physical intuition as to why the angular average
of (θ(n) + Ω) can be thought of as the total energy of the isolated system. Recall that
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coordinates (u, Ω, θ, φ) are chosen using properties of the physical metric gab. In particular,
u = u◦ is a null hypersurface N◦, and r◦ = Ω−1

◦ is the area-radius of 2-spheres S given
by u = u◦, r = r◦, both w.r.t. gab. Now, using the limiting values of components of gab in
these coordinates, one can obtain a Minkowski metric g̊ab in the asymptotic region of the
spacetime to which gab approaches as Ω → 0. One can easily check that N◦ is a null surface
and S is 2-sphere with area radius r◦, also w.r.t. the Minkowski metric g̊ab. The two metrics
gab and g̊ab share the vector field ℓa but the ingoing normal n̊a defined by g̊ab differs from
na. In particular, the expansion θ̊(n̊) of n̊a w.r.t. g̊ab is just −Ω. Therefore, the integrand
in (22) can also be understood as the difference between the physical expansion and the
corresponding expansion in the flat background,

EBS[S◦] =
1

8πG
lim

Ω◦→0

∮
Ω=Ω◦

(θ(n) − θ̊(n̊))d2V. (23)

The Bondi–Sachs energy EBS[S◦] is given by the angular average of the ‘extra’ null
expansion caused by the curvature in gab over and above that in flat space, in the limit Ω → 0.
It is this physical manifestation of the total energy in the isolated system that is captured by
expression (22). Note also that the 2-sphere integral of θ(n) by itself diverges in the limit: the
‘flat spacetime subtraction’ makes it finite. Remarkably, this subtraction is automatically
supplied by the codimension-2 Gauss–Codazzi Equation (16).

Remark 1.

(i) Recall that the 2-spheres Ω = Ω◦ in (17) and (22) lie on the u = u◦ null hypersurface N◦.
While ℓa is tangential to N◦, na is transverse to it. Although θ(n) involves the derivative of
na, it is sufficient to specify na just on N◦: thanks to the projector q̃ab —the metric on the
2-spheres— in the definition θ(n) = q̃ab∇anb of the expansion, θ(n) is insensitive to the way
in which na is extended away from N◦.

(ii) Since θ(n) < 0, the convergence |θ(n)(r◦)| of ingoing null rays decreases as EBS increases, at
fixed r◦ in the asymptotic region. For example, in the Schwarzschild solution representing a
star, the convergence is given by |θ(n)(r◦)| = 1

r◦ (1 −
2GM

r◦ ), which decreases as M increases.
This may seem counter-intuitive because one would expect that a larger mass would result
in a larger convergence of inward-pointing null rays. Note, however, that the larger the
mass, the larger the proper spatial separation between the surface of the star and the surface
r = r◦. Therefore, comparing values of |θ(n)| at fixed area-radius r can be misleading. A
more appropriate way to compare the convergence of rays in different spacetimes is to use the
Kretschmann scalar as a benchmark, namely compare |θ(n)(r1)| in the asymptotic region of
the first space–time, and |θ(n)(r2)| in the second, such that the space–time curvature on the 2-
sphere r = r1 in the first space–time and r = r2 in the second is the same. In the Schwarzschild
example, one evaluates |θ(n)| with mass M1 on a 2-sphere r = r1 and with mass M2 on a
2-sphere r = r2 such that M1/r3

1 = M2/r3
2. Then, one finds that the convergence increases

with the Schwarzschild mass, just as one would intuitively expect.

3.3. The Thought Experiment

Equation (22) is the null infinity analog of Equation (9) that was tailored to spatial
infinity. Just as the thought experiment for the ADM energy is based on (9), the one to
measure the Bondi–Sachs energy will be based on (22). That is, the desired experiment will
provide a measurement of the average of (θ(n) + Ω) over angles, in the limit Ω → 0.

To explain the idea behind the thought experiment, let us first set it up in Minkowski
space (M, g̊ab). Although this case is physically trivial since EBS vanishes, the exercise
provides a convenient starting point to set the stage. Consider a large, static, round material
sphere S of radius r◦ in the asymptotic region of (M, g̊ab) (as in Section 2, S is chosen to
be a test body whose effect on the gravitational field is negligible). Its 4-velocity vector
field τa will be the restriction to S of a unit time-translation Killing field ta adapted to the
rest frame of S . Let us illuminate S at time t = t◦, where t is the time measured in the rest
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frame of S . There will be two light fronts, an outgoing one that expands and the ingoing
one that contracts. The null-sheet spanned by the expanding light front, N◦, will intersect
I + at some cross-section S◦ (which, incidentally, will be shear-free since S is round). Our
thought experiment to determine EBS[S◦] involves two measured quantities. The first is the
area AS = 4πr2

◦ of the material 2-sphere S , which is also the area A(t◦) of both light fronts
at time t◦. The second will result from a set of measurements of the area A(t◦ + ϵ) of the
ingoing light front at instants to + ϵ in the rest frame of S . That area will be 4π(r◦ − ϵ)2 so
the rate of change in area w.r.t. t will be Ȧ(t◦) = − 2

r◦ A(t◦) ≡ −2Ω◦ A(t◦). (Figure 1) This
is our second measured quantity which can be obtained, for instance, by a distribution of
light sensors in a small neighborhood of S inside it.

<latexit sha1_base64="9eaVk9QHsPkvbp4uDr+7FJzzn3o="></latexit>

I +

<latexit sha1_base64="MhrSD+/mAYv/Seea2qDJ7xeJ15s="></latexit>⌧

t = ε

t = 0

<latexit sha1_base64="MhrSD+/mAYv/Seea2qDJ7xeJ15s="></latexit>⌧t = 0

t = ε

<latexit sha1_base64="Ar/RvElE7B0iUl9Ph5StQ48FRSo="></latexit>u0

<latexit sha1_base64="9eaVk9QHsPkvbp4uDr+7FJzzn3o="></latexit>

I +

<latexit sha1_base64="dwX2ArU0CiLkrXjT2EcNNYAISt0="></latexit>u = u�

Figure 1. Left Panel: Minkowski space. At time t=0, we illuminate a static 2-sphere S with a large
radius r◦. The figure shows the world tube of the 2-sphere (in blue) and the light front tangential to
the ingoing null normal na to S . At t=0, the area of this light front is 4πr2

◦ and at t=ϵ it would shrink
to 4π(r◦ − ϵ)2. These measurements of areas of the ingoing light fronts provide the average (over
angles) of the expansion θ̊(n) at time t= 0. Right Panel: A generic asymptotically flat space–time.
Again the 2-sphere S in the asymptotic region of space–time is illuminated at an initial instant. The
outgoing light-front, representing a retarded instant of time u = u◦, intersects I + at a cross-section
S◦. At instants ϵ later we measure the areas of the ingoing light front. These two measurements
provide us the observed value of the average of θ(n)(r◦) over angles. By repeating the experiment
for a family of 2-spheres on the outgoing light front N◦, in the limit, we obtain the value of the
Bondi–Sachs energy associated with the cross-section S◦ of I + via Equation (22).

To relate the observed quantities A and Ȧ to the mathematical quantity θ(n) that
determines EBS[S◦] via (22), we just have to use the definition of the expansion θ(n). Since S
is round, we have: θ(n)(t◦) =

Ȧ
2A (t◦).

6 Hence, the Bondi–Sachs energy (22) can be expressed
in terms of observed quantities as

EBS[S◦] =
1

8πG
lim

Ω◦→0

∮
Ω=Ω◦

( Ȧ
2A

+ Ω
)

d2V . (24)

As expected, EBS[S◦] vanishes because for a round 2-sphere of radius r◦ in Minkowski
space, θn(t◦) = −1/r◦, whence Ȧ(t◦)/2A(t◦) = −Ω◦. In fact, this implies that the right
side of (24) vanishes already at Ω = Ω◦, even before taking the limit. This simplification
occurs because we chose S to be a round sphere. With an arbitrary 2-sphere, the integral
vanishes only in the limit.

We can now consider general space–times (M, gab) satisfying the Bondi–Sachs asymp-
totic conditions. Each of these space–times admits a chart (u, Ω, θ, φ) in the asymptotic
region in which the metric components satisfy (18). Choose a large, material 2-sphere S
of area–radius r◦, illuminate it instantaneously at t = t◦ and, as before, denote by N◦ the
outgoing light sheet that intersects I + at a cross-section S◦. Now, S will generically not be
round and S◦ will not be shear-free.

The Bondi–Sachs ansatz provides a foliation of N◦ by 2-spheres (labeled by their area
radius r), which is preserved by the 1-parameter family of diffeomorphisms generated
by the null normal ℓa to N◦. It also equips each of these 2-spheres with a future directed,
ingoing null normal na satisfying naℓbgab = −1. Using these vector fields let us introduce a
unit time-like null normal τa to the family of 2-spheres via τa = ℓa/2 + na, and a space-like
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unit normal ρa = ℓa/2 − na, which is also orthogonal to τa. Since ℓa∂a = ∂r = −Ω2∂Ω,
ℓa vanishes in the limit to I + along N◦. Hence, we have limΩ→0(τ

a − na) = 0. Now, the
limit to I + of na yields the restriction to S◦ of a Bondi–Sachs time-translation. Thus, the
vector field τa we defined is the restriction to N◦ of an asymptotic BMS time-translation.
The 2-sphere S follows the integral curves of this asymptotically static Killing field; it is as
‘static’ as it can be in asymptotic region of the given curved space–time.

As in the case of Minkowski space, the idea is to measure areas of the contracting
light fronts and compute Ȧ/2A at time t◦. (Here and in what follows ‘dot’ refers to the
directional derivative along τa.) Since na = 1

2 (τ
a − ρa), and the 4-velocity of S is given by

τa, in the rest frame of S , the contracting light front moves inward along −ρa. Therefore,
it follows from the definition of θ(n) that

∮
S θ(n)d

2V = 1
2 Ȧ. Consequently, from the first

equation in (22) we have:

EBS[S◦] =
1

8πG
lim

Ω◦→0

∮
Ω=Ω◦

[
(

Ȧ
2A

+ Ω) + Ω−1θ(n)(−2Ω + θ(ℓ))
]

d2V . (25)

The Bondi–Sachs fall-off conditions (19) on θ(n) and θ(ℓ) imply that θ(n)(−2Ω + θ(ℓ)) is
O(Ω4) but, in contrast to the situation in Minkowski space for round 2-spheres, generically,
it is non-zero for Ω = Ω◦ ̸= 0. Therefore, the integral in (25) only provides an approximate
value of EBS before taking the limit. To obtain the exact value we need to use a limiting
procedure by introducing a sequence of material 2-spheres S(rn) of larger and larger areas
that lie in the r = const. foliation of the null sheet N◦, with 4-velocities aligned with the
asymptotic time-translation defined by τa. In the limit Ω → 0, the integral in (25) provides
the Bondi–Sachs energy EBS[S◦]. This operational method to measure the Bondi–Sachs
energy relies on the fact that it is possible to express EBS[S◦] solely in terms of θ(n), in the
limit Ω → 0.

Remark 2. 1. Generically, the null rays emanated from a 2-sphere S in the space–time interior
encounter caustics. This is true even in the Schwarzschild space–time if S is not chosen to be a
round 2-sphere. However, in our analysis, the material 2-spheres S always lie in the asymptotic
region. Therefore, the expanding null geodesics will not encounter any caustics, and the light-fronts
N will be smooth. The contracting null rays will generically encounter them once they leave the
asymptotic region. But since we only need their expansion θ(n) on N , these caustics are not relevant
for our analysis.

2. The integral in (17) for finite Ω◦ (i.e., before taking the limit) is sometimes referred to
as Hawking’s quasi-local mass because this expression appears in a parenthetical remark (after
Equation (8.1)) in [24]. However, it is more appropriate to refer to it as quasi-local energy, since
even in the limit Ω◦ → 0, what it yields is the Bondi–Sachs energy EBS associated with the BMS
time-translation defined by na at I +, rather than the Bondi–Sachs mass. One can choose Bondi
coordinates (u, r, θ, φ) so that ∂u|I + = na∂a|I + is any desired BMS time-translation at I + and
the result would yield the corresponding Bondi energy, which would vary with the choice of na; it
would equal the Bondi–Sachs mass only if the Bondi–Sachs 3-momentum in the rest frame defined
by na|I + vanishes. This was indeed the case in Hawking’s paper [24], whose goal was to extend
the Bondi–Sachs framework to study gravitational waves on a dust-filled Friedmann–Lemaître
space–times (with negative spatial curvature). In this case, there is a preferred rest framem and the
total energy defined in that frame is the same as the total mass. In asymptotically flat space–times,
on the other hand, we do not have a preferred rest frame and we need to distinguish mass and energy.
Therefore, in the asymptotically flat context, the integral in (17) is Hawking’s quasi-local energy.

This definition of energy has the advantage that it does not require separate normalizations
of ℓa and na; one only needs gab ℓ

anb = −1, and the rescaling freedom ℓa → λℓa; na → 1
λ na

is maintained. Could we have not used this ‘more invariant’ expression in a thought experi-
ment? The answer is in the negative: because its integrand contains a product θ(ℓ)θ(n), the
integral is not related to the change in area in any simple way. (If instead we had the product
(
∮

Ω=Ω◦
θ(ℓ)d

2V)× (
∮

Ω=Ω◦
θ(n)d

2V) of integrals, it would have had a simple operational mean-
ing: it would have been the product of rates of area change in the two directions. Then, we could
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have used that expression for the thought experiment.) Also, for the same reason, the expression (17)
cannot be directly used to construct a quantum operator representing the Bondi–Sachs energy. On
the other hand, as we discuss in Section 4, one can use (22) to promote (22) to an operator in loop
quantum gravity.

3. The passage from (17) to (22) introduces an asymmetry between ℓa and na: The expression (22)
of EBS involves only θ(n) and not θ(ℓ). Could we have perhaps obtained another expression that
involves only θ(ℓ)? Such an expression would also be well-suited for a thought experiment (and in
loop quantum gravity as well). Interestingly, this is not possible. Although the right side of (17)
is symmetric in θ(n) and θ(ℓ), in the passage to Equation (22), we made a crucial use of the fact
that they have different asymptotic behaviors (see (19)). The fact that there is no term O( 1

r2 ) in the
asymptotic expansion of θ(ℓ) was used crucially to remove it in the final expression (22). And this
asymmetry in the asymptotic behavior of the two expansions can, in turn, be traced back to the fact
that, given the Bondi–Sachs expansion of the 4-metric, Einstein’s equations imply that the potential
term of the order O(Ω) in guΩ vanishes, and we have guΩ = Ω−2 + Ω(1) (see Equation (18)).

4. As we saw in Section 2, tidal acceleration is a natural tool to provide an operational
meaning to the ADM energy. However, as we saw, in the presence of gravitational waves at I +,
the tidal acceleration fails to capture the full content of the Bondi–Sachs energy EBS. We were
led to use instead the expansion θ(n) of inward pointing null rays. A natural question then is:
Could we not use θ(n) also to give an operational meaning to EADM? If so, we would be able to
use the same thought experiment to measure EADM and EBS; in the first case, we would let the
expanding 2-spheres S approach i◦ along a Cauchy surface, and in the second case, consider a family
of 2-spheres that approaches a cross-section of I +.7 Interestingly, as we explain below, the answer
is in the negative.

Since the basic identity (16) that led us to the expression (22) of EBS in terms of θ(n) holds for
all 2-spheres, we can indeed use it for the family of 2-spheres with increasing radii that lie in the
asymptotic region of a Cauchy surface. However, the situation at spatial infinity is different from that
at null infinity in two aspects. First, since the integrand of EADM in (8) involves only a component of
the weyl tensor, which can be rewritten as Cabcdnaℓbncℓd; it does not contain the shear terms that are
present in the expression (14) of EBS. Therefore, the identity (16) implies that the integrand r ra

◦rb
◦ Eab

in the expression (8) of the ADM energy can be rewritten as σ
(ℓ)
ab σab

(n) −
1
2
(

2R̃ + θ(ℓ)θ(n)
)
: in

contrast to the analogous integrand of the Bondi–Sachs energy, we now have products of the two
shears, in addition to the product of the two expansions. Also, now the fall-offs of the shear and
expansion of ℓa turn out to be the same as their analogs for na. Therefore, even in the limit r → ∞
we are left with both shears and both expansions in the expression of EADM. As a consequence—in
contrast to EBS EADM cannot be expressed purely in terms of θ(n). This discussion brings out the
subtle nature of the structure at spatial infinity i◦; it distinguishes limits obtained by approaching
i◦ directly along space-like directions and those obtained by first going to I + and then approaching
i◦ along null directions [26].

5. One may ask why we focused on thought experiments. It is because our primary pur-
pose is to bring out the global nature of the notion of ‘total energy of an isolated system’. These
experiments are well beyond the reach of today’s technology precisely for that reason: they face
squarely the fact that the expressions of energy require an integral over an entire 2-sphere worth
of measurements, and they are valid only at leading order in the asymptotically flat expansion. Of
course, if one is interested in approximation and not exact expressions, then one could envisage
using a sphere small enough to be accessible experimentally, while being large enough for the
curvature effects of the gravitational system inside to be small enough, all the while neglecting
the influence from the outside gravitational system, its gravitational waves and potentials affect-
ing the interior and the back-reaction of the experiment. One would need to be able to control
all of these effects in order to estimate the corrections to the formula and know the validity of
the approximation. Only then will the procedure be applicable to real experiments.

4. Discussion

The total energy–momentum PADM
a , and the 4-momentum PBS

a that is left over after
allowing for radiation to escape to infinity until a retarded instant of time are basic observ-
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ables of fundamental importance for isolated systems in general relativity [4,10,11]. But,
as emphasized in Section 1, they are also surprisingly subtle. First, since the gravitational
field itself contributes to energy–momentum in general relativity, the ADM 4-momentum
PADM

a is a global concept defined at spatial infinity. This is in striking contrast to Newtonian
gravity, where one can extract the total mass by calculating the flux of the gradient of the
Newtonian potential across any finite 2-sphere outside the sources. Second, even when
matter sources, e.g., a Maxwell field, extend all the way to infinity, PADM

a and PBS
a can be

expressed as 2-sphere integrals, and the integrand consists only of gravitational fields; matter
fields do not appear.

Being 2-sphere integrals, PBS
a and PADM

a are global in angles. For the time-dependent
Bondi–Sachs 4-momentum, this is not surprising because one can envisage gravitational
radiation beamed only at a small solid angle. If this occurs, it is intuitively clear that
knowledge of fields in the complement of that solid angle will not suffice to determine the
PBS

a that is left over after the passage of the burst of that gravitational wave. However, the
global nature in angles is less intuitive for PADM

a . Indeed, in stationary space–times, one
routinely determines the ADM mass from orbits of satellites around the central body that
sense the gravitational field along curves that constitute only a set of zero measure in the
2-sphere spanned by all angles. But as the Carlotto–Schoen gluing construction [1] vividly
demonstrates, this cannot be done more generally because orbits can lie in a flat region of
space–time even when the total ADM mass is non-zero. These subtle features could not
have been foreseen before the advent of global methods in general relativity because they
go against intuition derived from properties of energy–momentum in non-gravitational
field theories as well as Newtonian gravity.

It is not surprising, then, that expressions of PADM
a and PBS

a were first obtained by
mathematical considerations rather than physical expectations about the notion of energy–
momentum. PADM

a was first introduced using Hamiltonian methods [4,5], and PBS
a from

the asymptotic behavior of solutions to Einstein’s equations and Bianchi identities that
provided useful mathematical balance laws between certain 2-sphere ‘charge-integrals’
and ‘3-surface fluxes’ [10,11]. Confidence in the physical interpretation of the 2-sphere
charge integrals was significantly enhanced by the positive energy theorems [5,14–17] in
both regimes. However, from their expressions (2) and (14) themselves, it is far from being
obvious why these 2-sphere integrals should have the physical connotations of energy.

Therefore, in Section 2.2, we first recast the expression (2) of the ADM energy in terms
of 4-dimensional curvature using Einstein’s equations, and showed that it is directly related
to the tidal acceleration of test particles (spread on two nearby concentric spheres) caused
by the space–time curvature produced by a massive central body. While the nature of
gravity undergoes a profound transformation in the passage from Newtonian gravity to
general relativity, the notion of tidal acceleration remains intact. Thus, one can say that tidal
accelerations capture the very essence of what the total gravitational energy does. In Section 2.3,
we provided a thought experiment to measure the ADM energy using tidal acceleration,
thereby providing an operational meaning of EADM. This experiment was based on the
expression (9) of the ADM energy in terms of the 4-d Riemann tensor. To arrive at this
expression, we recast EADM as a 2-sphere integral (8) involving the electric part of the Weyl
tensor and the integral (6) in terms of the 3-d Ricci tensor. These expressions are of interest
in their own right. For example, as we already noted, the Carlotto–Schoen analysis begins
with (6), and the expression (8) is used in relating the ADM and Bondi–Sachs 4-momenta
in space–times that are asymptotically flat in both regimes [26]. It also provides us with
4-momenta at I in the presence of a negative cosmological constant [27].

In Section 3, we turned to the Bondi–Sachs energy EBS. In the absence of gravitational
waves, EBS is conserved, and one can again use the thought experiment of Section 2 to
measure it [19]. But in the presence of gravitational waves, this strategy fails to capture the
full content of EBS. Therefore, following the same strategy as in Section 2, in Section 3.2,
we first recast the expression (14) of EBS in a form (22) that directly captures a physical
effect induced by EBS: it dictates the (angular average of the) convergence |θ(n)| of ingoing
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null rays in the asymptotic region. In Section 3.3, we provided a protocol to determine
the angular average of |θ(n)| by measuring areas of suitably chosen successive converging
light fronts. The result is a thought experiment to measure EBS. It is rather remarkable
that while the expression (22) depends only on θ(n), it manages to capture not only the
‘Coulombic part’ of the Weyl tensor (the first term in the integrand of (14)), but also on the
precise radiative term that enters the expression of the Bondi–Sachs energy (the second
term in (14)), and nothing else. From a physical standpoint, then, the Bondi–Sachs energy
EBS manifests itself in the excess in the convergence of ingoing light rays, over and above
that which is already present in Minkowski space–time. One can take this as the defining
property of the ‘left-over energy at a retarded instant of time’. The fact that this property
refers only to space–time geometry ‘explains’ the absence of matter fields in the expression
of EBS.

In Section 1, we emphasized that it is hard to see why the original expressions (2)
and (14) of EADM and EBS have the connotations of energy. But these are the expressions
used, e.g., in the LIGO-Virgo analyses that provide us with the parameters that label
the compact binaries, including the initial ADM masses of the progenitors and the final
Bondi–Sachs mass of the remnant. Thus, there is a clear sense in which PADM

a and PBS
a

have been measured for compact coalescing binaries. But these measurements do not
shed any light on the ‘operational meaning’ of EADM and EBS because these analyses
begin by assuming that (2) and (14) have the interpretation that is assigned to them; the
question of why they have this connotation is not an issue they are concerned with. For their
purposes, it suffices to just assume that they do. Put differently, the expressions (2) and (14)
provide parameters that serve as labels along with other ‘intrinsic parameters’—the spins of
progenitors, eccentricity, and orientation of their orbit—as well as 4 ‘extrinsic parameters’
that characterize the location of the source with respect to the detector. For each set of
values for these 10 intrinsic and 4 extrinsic parameters, the waveform models provide the
time-dependent strain that detectors should see. Comparing these theoretical waveforms
with the observed strains, one finds the best-fit values for the entire set of parameters (as
well as the corresponding posterior probability distributions). Thus, one does not directly
measure the masses. The goal of the LIGO-Virgo analysis is to find the joint best-fit values
(together with error bars) since this is the output that characterizes the binary and provides
us with the detailed picture of its coalescence. In this paper, the focus is on a narrow but
rather fundamental issue as to why the expressions in (2) and (14) have the connotations
they carry. Our thought experiment provides a direct measurement of these quantities and,
as a consequence, explains why they have this connotation. Our goal is different and much
more modest.

Finally, it is our hope that the expression (22) of EBS in terms of θ(n) will be useful in
future investigations, especially in non-perturbative quantum gravity. We will conclude
with a summary of the main ideas. Recall first that I ± provide a natural arena to construct
Hilbert spaces of states to investigate gravitational scattering in a non-perturbative setting
of the so-called ‘Asymptotic Quantization Program’ (AQP) [28]. In recent years, these
asymptotic Hilbert spaces have been used very effectively to analyze the relation between
infrared issues in the AQP and Weinberg’s ‘soft theorems’ in perturbative quantum gravity
(see [29] for a summary). However, so far, the problem of defining the quantum operator
ÊBS[S◦] corresponding to Bondi–Sachs energy has remained open. The essential difficulty
has been that the original AQP and the subsequent work are focused on the radiative
aspects of the gravitational field, while the standard expression (14) of EBS involves a
Coulombic field as well. There is no operator on the asymptotic Hilbert spaces representing
these fields. (This is a deeper conceptual problem, in addition to the mathematical issues
associated with the regularization of products of operator-valued distributions involving
radiative fields).

The ongoing work on null surfaces in loop quantum gravity (LQG) has opened exciting
possibilities for analyzing various non-perturbative features of dynamics (see, e.g., [30–38]).
In particular, when combined with our expression (22) of EBS, they provide a path to
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define the Bondi–Sachs energy operator ÊBS[S◦]. There are well-defined operators on the
LQG Hilbert space—in particular, the area operator—that capture ‘non-radiative’ degrees
of freedom and, therefore, have no counterparts in Hilbert spaces used in perturbative
treatments, nor those that feature in the AQP. Since the only dynamical variable that
features in our expression (22) of EBS is θ(n), and since it refers to the rate of change of the
areas of 2-spheres, one can hope to define the operator ÊBS on the LQG Hilbert space. This
task would be facilitated by restricting oneself to asymptotically flat space–times at the
outset, and getting rid of ‘gauge diffeomorphisms’, i.e., those, which are asymptotically
identical, by fixing the equivalence class of Bondi–Sachs charts discussed in Section 3,
where any two are related by a BMS diffeomorphism, i.e., an asymptotic symmetry. One
would introduce area operators associated with 2-spheres u = u◦ and r = r◦ and define the
required operator ÊBS using the operator analog of Equation (24).

Presumably, ÊBS would have a discrete spectrum because area operators do. This
discreetness may play an important role in the analysis of black hole evaporation. For ex-
ample, the analysis of the (classically) exactly soluble Callen, Giddings, Harvey, Strominger
(CGHS) model in the mean-field approximation8 shows that there is a direct correlation
between EBS and the area of the dynamical horizon DH that evaporates [39]. Since the
area of the DH would be quantized in LQG, it stands to reason that EBS would also be
quantized. Evaporation of the DH could then be interpreted in detail as a process in which
quanta of the area of the DH are converted to energy quanta at infinity. The evaporation
process of the CGHS black hole has a rather mysterious feature that, irrespective of how
large the initial or ADM mass is, the Bondi–Sachs mass of the black hole at the end of the
semi-classical phase (beyond which the mean-field approximation cannot be trusted) has a
universal value. This could perhaps be ‘explained’ in LQG using the fact that there is an
area gap. For 4-d black holes of direct physical interest, one would like to study correlations
between observables at the evaporating DH and those at I +. The availability of operators
corresponding to the area of the DH and ÊBS would be very helpful in this respect. The
availability of ÊBS would also be useful in contexts that do not involve black holes, e.g.,
in the discussion of a possible ‘holographic nature’ of I + (see, in particular, [40]). These
analyses often assume that there is a well-defined operator ÊBS with certain properties. It
would be interesting to check whether or not these assumptions are satisfied by the LQG
operator, defined along the lines sketched above.
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Notes
1 In particular, this concern was explicitly voiced by Arthur Komar in the early 1980s during a discussion on asymptotic flatness

with AA and Peter Bergman.
2 The Bondi–Sachs energy–momentum flux Fa[R̂] through a 3-d region R̂ of I + does arise as the Hamiltonian generating Bondi–

Metzner–Sachs (BMS) translations on the phase space ΓR̂ consisting of radiative modes that reside in the region R̂ [12,13]. The
Bondi–Sachs 4-momentum aspect (a 2-form on I +) can then be obtained by a systematic ‘integration’ of the flux aspect (a
3-form on I +). But the resulting charge, PBS

a is not a generator of the BMS symmetry in any Hamiltonian framework that allows
gravitational waves, i.e., in which I + is a ‘leaky boundary’.

3 More precisely, one uses the fact that the 2-sphere integrals of the 2-divergence of vector fields r̊b r̊aCa
bc ˚̃qc

d and r̊b r̊cCa
bc ˚̃qad,

tangential to the r = r◦ 2-spheres, vanish by Stokes’ theorem.
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4 At spatial infinity, this precaution was unnecessary because one works with Cartesian charts of the flat 3-metric q̊ab to which the
physical metric qab approaches in the specified sense. But Cartesian coordinates are cumbersome to use in the approach to I +

along null hypersurfaces u=u◦.
5 The relative factor of 2 in the leading terms comes from the conventions: ℓa is normalized so that ℓa ∂a r = 1 and na is then

normalized by demanding ℓana = −1.
6 The factor of 2 arises because in Minkowski space, the Bondi–Sachs normalization conventions discussed in footnote 8 imply

na = 1
2 (t

a − r̂a), where ta is a unit time translation and the r̂a unit radial vector in the orthogonal spatial slice.
7 Of course if one uses the fact [25] that the ADM 4-momentum is the past limit of the Bondi–Sachs 4-momentum in space–times

that are asymptotically flat in both null and spatial directions, the answer is trivially in the affirmative. The question is whether
we can base a thought experiment using θ(n) to measure the ADM energy in space–times using asymptotic flatness only in
spatial directions.

8 In this approximation, one ignores the quantum fluctuations of geometry, i.e., the geometrical operators are replaced by their
expectation value, but retains those in matter. This is justified if we have a large number of matter fields (i.e., evaporation
channels) all coupled to a single gravitational field. The universality discussed below refers to the ADM and Bondi–Sachs masses
per evaporation channel.
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