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Abstract: Solar flares are significant occurrences in solar physics, impacting space weather and
terrestrial technologies. Accurate classification of solar flares is essential for predicting space weather
and minimizing potential disruptions to communication, navigation, and power systems. This study
addresses the challenge of selecting the most relevant features from multivariate time-series data,
specifically focusing on solar flares. We employ methods such as Mutual Information (MI), Minimum
Redundancy Maximum Relevance (mRMR), and Euclidean Distance to identify key features for
classification. Recognizing the performance variability of different feature selection techniques, we
introduce an ensemble approach to compute feature weights. By combining outputs from multiple
methods, our ensemble method provides a more comprehensive understanding of the importance
of features. Our results show that the ensemble approach significantly improves classification
performance, achieving values 0.15 higher in True Skill Statistic (TSS) values compared to individual
feature selection methods. Additionally, our method offers valuable insights into the underlying
physical processes of solar flares, leading to more effective space weather forecasting and enhanced
mitigation strategies for communication, navigation, and power system disruptions.

Keywords: solar flares; MVTS data; feature selection; time-series classification; mutual information;
random forest

1. Introduction

Space weather refers to the environmental conditions in space as influenced by the
Sun and the solar wind. These conditions can significantly impact technological systems
and human activities on Earth and in space. One of the primary drivers of space weather
is solar flares, which are sudden bursts of electromagnetic radiation emanating from the
Sun’s surface. Solar flares can be observationally defined as a brightening of any emission
across the electromagnetic spectrum occurring from minutes to hours. Most manifestations
appear to be secondary responses to the initial energy release process, converting magnetic
energy into particle energy, heat, waves, and motion [1]. Solar flares occur when magnetic
energy that has built up in the solar atmosphere is suddenly released, causing a brightening
in extreme ultraviolet (EUV) and X-ray emissions. These events can last a few minutes to
several hours [2].

Solar flares play a crucial role in space weather and are often accompanied by coronal
mass ejections (CMEs), which are large expulsions of plasma and the magnetic field from
the Sun’s corona [3]. When these flares and CMEs interact with the Earth’s magnetic
field, they can induce geomagnetic storms characterized by disturbances in the Earth’s
magnetosphere. These disturbances lead to various space weather phenomena such as
auroras, disruptions in communication systems, and impacts on power grids [2]. The Sun’s
magnetic activity, which drives solar flares and CMEs, can produce severe disturbances
in the upper atmosphere and near-Earth space environment. Strong auroral currents
induced by these disturbances can disrupt and damage modern electric power grids and
contribute to the corrosion of oil and gas pipelines. Magnetic-storm-driven ionospheric
density disturbances can interfere with high-frequency (HF) radio communications and
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navigation signals from Global Positioning System (GPS) satellites. During severe polar
cap absorption (PCA) events, HF communications along transpolar aviation routes can be
completely blacked out, necessitating aircraft to be diverted to lower latitudes. Additionally,
the exposure of spacecraft to energetic particles during solar energetic particle events and
radiation belt enhancements can cause temporary operational anomalies, damage critical
electronics, degrade solar arrays, and impair optical systems such as imagers and star
trackers [4–6].

A historical example of the profound impact of space weather is the Carrington
event in 1859. This event is often regarded as the most significant space weather event
recorded. Triggered by a massive solar flare observed by Richard Carrington and Richard
Hodgson, it led to a significant geomagnetic storm that induced strong currents in telegraph
systems worldwide, causing widespread communication disruptions [7]. A few years after
Carrington and Hodgson’s observations, the Sun was studied extensively in the hydrogen
H line originating in the chromosphere, and reports of flares became much more frequent
but also bewilderingly complex [8]. A 2008 report by the National Research Council
concluded that a solar superstorm similar to the 1859 Carrington event could cripple the
entire US power grid for months, resulting in economic damages estimated between 1 to
2 trillion dollars [4].

Given the potential impacts of space weather, the development of reliable solar flare
prediction models is crucial. However, the relationship between the photospheric and
coronal magnetic fields during a solar flare is not fully understood. Flare prediction has thus
far relied predominantly on classifiers that attempt to automatically find such relationships
rather than purely theoretical considerations [9]. Machine learning, mainly supervised
classifiers, has been employed to predict flares by identifying patterns in the magnetic field
data. These linear or nonlinear classifiers attempt to segregate active regions into those
likely to produce flares and those that are not, based on their magnetic characteristics [9].
Additionally, the goal is to predict, days in advance, the onset time, intensity, and duration
of geomagnetic storms on Earth. These storms are characterized by a sudden injection of
particles into the magnetosphere, causing a significant disturbance in the Earth’s magnetic
field. The major contributor to intense geomagnetic storms is not solar flares, as commonly
believed, but coronal mass ejections (CMEs) [3].

Feature selection for multivariate time-series (MVTS) classification is essential in
handling high-dimensional datasets, such as those used for solar flare class prediction.
Feature selection is critical in managing MVTS data, as it helps identify the most relevant
features while removing redundant or irrelevant ones. Several methods have been proposed
for effective feature selection. Mutual Information (MI) is one such method, known for its
ability to measure the mutual dependence between variables. MI helps identify features that
maximize the information shared with the target variable, enhancing classification results.
Studies have shown that MI-based feature selection significantly improves the accuracy
and effectiveness of classification models in solar flare class prediction [10]. Another
effective method is Minimum Redundancy Maximum Relevance (mRMR), which balances
the relevance and redundancy of features by selecting those that have the maximum
relevance to the target variable while ensuring minimal redundancy among the selected
features. This approach has proven effective in improving classification performance for
time-series data, as it enhances the diversity and relevance of the selected features, thereby
boosting the model’s ability to classify solar flares [11] accurately. Additionally, Euclidean
Distance is used to rank features based on their separability. This method evaluates the
distance between features to determine their importance, with higher distances ranked
higher. By focusing on these highly separable features, the method improves classification
results while reducing computational load. This approach has been particularly effective in
high-dimensional datasets like those used for solar flare class prediction [12].

Various classifiers have been applied to the solar flare class prediction task, each offer-
ing unique strengths. Rocket and MiniRocket classifiers have shown significant promise in
handling MVTS data. MiniRocket, in particular, has demonstrated superior performance
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compared to other classifiers like Long Short-Term Memory (LSTM), Fast Time-Series Clas-
sification with Symbolic Representations (Mr-SEQL), Support Vector Machine (SVM), and
Canonical Interval Forest (CIF). Experimental findings indicate substantial improvements
in the True Skill Statistic (TSS) and Heidke Skill Score (HSS2), highlighting the classifier’s
capability to manage MVTS data complexities and improve space weather prediction
results [13]. Random Forest is another classifier known for its robustness and ability to
handle high-dimensional data effectively. It manages feature selection outputs efficiently
and provides reliable classification results for solar flare occurrences. This ensemble learn-
ing method is valuable in space weather prediction due to its consistent performance and
adaptability to various datasets [14,15].

Comparative studies underscore the effectiveness of different feature selection meth-
ods and classifiers [16]. For instance, research using the MiniRocket classifier for the
SWAN-SF dataset showed consistent improvement in classification results over other clas-
sifiers, emphasizing the importance of excluding less significant flare classes (e.g., B- and
C-class flares) to maximize performance [13]. Additionally, feature subset selection meth-
ods like MI, mRMR, and Euclidean Distance have been shown to outperform traditional
methods such as Recursive Feature Elimination (RFE) and Fisher Criterion (FC) in terms of
classification performance and computational efficiency [17,18].

This study introduces a novel ensemble feature selection method that combines Mutual
Information, mRMR, and Euclidean Distance with classifiers such as MiniRocket, Rocket,
and Random Forest. Our approach leverages consecutive data partitions to maintain
temporal continuity, ensuring that the models are trained and tested in a manner that
closely mimics real-world scenarios. This is the first attempt to perform feature selection
without employing sampling techniques, thereby representing real-world scenarios more
accurately. Through this methodology, we aim to provide a robust and comprehensive
evaluation of the feature selection methods and classifiers, addressing the variability and
uncertainty in the data.

2. Dataset

The Space-Weather ANalytics for Solar Flares (SWAN-SF) is an open access, compre-
hensive multivariate time-series dataset [19]. This dataset primarily utilizes data from
the Solar Dynamics Observatory Helioseismic and Magnetic Imager (SDO/HMI) Active
Region Patches (SHARPs) [20], managed by the Joint Science Operations Center (JSOC).
It also includes Geostationary Operational Environmental Satellite (GOES) flare records,
enhanced with additional data from Hinode-XRT to ensure precise flare location verifica-
tion. Spanning from 1 May 2010 to 31 August 2018, the dataset is meticulously curated
to provide high-quality inputs essential for solar flare prediction. Available through Har-
vard Dataverse [21], it comprises 4098 instances, each featuring 51 time-series parameters
recorded at 12 min intervals. Of these, 24 parameters specifically relate to magnetic fields,
crucial for understanding and predicting solar flare activities due to their significant role in
magnetic reconnection processes [2]. Since solar flares are considered magnetic phenomena,
accurately forecasting and classifying flares relies on the selection of appropriate magnetic
field properties and prediction methods [22–27]. We focus on these 24 magnetic parameters,
as shown in Table 1.

Table 1. Magnetic field parameters.

Magnetic Parameters Description

ABSNJZH [28] Absolute value of the net current helicity

EPSX [29] Sum of x-component of normalized Lorentz force

EPSY [29] Sum of y-component of normalized Lorentz force

EPSZ [29] Sum of z-component of normalized Lorentz force
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Table 1. Cont.

Magnetic Parameters Description

MEANALP [30] Mean characteristic twist parameter, α

MEANGAM [28] Mean angle of field from radial

MEANGBH [28] Mean gradient of horizontal field

MEANGBT [28] Mean gradient of total field

MEANGBZ [28] Mean gradient of vertical field

MEANJZD [28] Mean vertical current density

MEANJZH [28] Mean current helicity (Bz contribution)

MEANPOT [31] Mean photospheric magnetic free energy

MEANSHR [31] Mean shear angle

R_VALUE [32] Sum of flux near polarity inversion line

SAVNCPP [28] Sum of the modulus of the net current per polarity

SHRGT45 [28] Fraction of Area with shear >45◦

TOTBSQ [29] Total magnitude of Lorentz force

TOTFX [29] Sum of x-component of Lorentz force

TOTFY [29] Sum of y-component of Lorentz force

TOTFZ [29] Sum of z-component of Lorentz force

TOTPOT [28] Total photospheric magnetic free energy density

TOTUSJH [28] Total unsigned current helicity

TOTUSJZ [28] Total unsigned vertical current

USFLUX [28] Total unsigned flux

When comparing the SWAN-SF dataset to other commonly used datasets, such as
those provided by the Space Weather Prediction Center (SWPC), SWAN-SF demonstrates a
higher number of flare detections. This is largely due to its integration of a broader range of
data sources and its ability to capture data at 12 min intervals. SWAN-SF utilizes a sliding
observation window of 12 h, shifting forward by one hour to capture the next data sample.
This technique ensures continuous tracking of solar flare activity and increases the dataset’s
flare detection rate by providing more granular observations [33]. Additionally, SWAN-
SF ensures accurate alignment of spatial and temporal data across multiple platforms,
minimizing the chances of duplicate entries. Each flare detection is cross-verified with data
from various observation platforms to ensure accuracy. The precise 12 min timestamps for
each data point enable detailed tracking and analysis of solar flare activity, improving the
dataset’s reliability and utility [2].

Solar flares in this dataset are classified into five categories: B, C, M, X, and FQ (Flare
Quiet). These classifications follow a logarithmic scale based on their peak X-ray flux:
A, B, C, M, and X. The GOES flare catalog provides comprehensive information for each
flare, including start, peak, and end times, GOES class, peak X-ray flux, spatial location
on the solar disk, and the associated NOAA active region (AR) number when available.
The Sun’s background X-ray radiation usually corresponds to A- or B-class flares, making
it challenging to capture all flares of these classes during high-activity phases of the solar
cycle. Conversely, C-, M-, and X-class flares are rarely missed, except during periods of
intense solar activity [2]. Flare Quiet (FQ) periods represent times when no significant
flaring activity is detected, serving as a control or baseline state against which flare activity
is contrasted. A-class flares are excluded from the SWAN-SF dataset due to significant
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detection challenges. Being the smallest and least intense, A-class flares often fall below
the detection threshold of the instruments used, particularly during periods of high solar
activity when background radiation levels are elevated. This exclusion is intentional to
ensure the dataset’s quality and reliability by avoiding the inclusion of undetected or
misclassified low-intensity events [2].

When the frequency of one class is significantly higher or lower than the others, the
data are considered imbalanced [34]. The SWAN-SF dataset exhibits a high degree of
imbalance, primarily due to the uneven frequency of flare classes. To address this and
ensure balanced representation, the dataset is strategically divided into five partitions, each
defined by specific time periods that contain a roughly equal number of significant flare
events, such as M- and X-class flares. These partitions correspond to different phases of
Solar Cycle 24, with the first partition covering the period from 1 May 2010 to 12 March
2012. The second extends from 2 March 2012 to 28 October 2013. The third spans from
17 October 2013 to 14 June 2014. The fourth is from 2 June 2014 to 18 March 2015, and
the fifth and final partition ranges from 7 March 2015 to 16 August 2018. This structured
partitioning aids in maintaining dataset balance, facilitating more effective training and
testing of the prediction models. Figure 1 illustrates the distribution of flare classes across
these partitions, highlighting the strategic data management employed.
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Figure 1. SWAN-SF flare class distribution.

Data Pre-Processing

For this study, the SWAN-SF dataset has been restructured into a binary class format.
Major flare classes that are significant enough to impact space weather, specifically M and
X classes, are consolidated into a single category labeled as ‘1’, indicating the presence of
active flare events. Concurrently, less intense B and C class flares, along with Flare Quiet
(FQ) periods, are grouped under the label ‘0’, representing minor flare instances, as shown
in Figure 2.

This conversion is necessary to address the significant class imbalance and improve
model performance. As noted by He et al. [35], class imbalance poses a challenge in machine
learning by making it difficult for the model to learn effectively from underrepresented
classes. In the original multiclass setup, the disparity between the frequent B- and C-class
flares and the rarer M- and X-class flares made it challenging for the model to accurately
distinguish between them, potentially leading to biased predictions. By converting to
binary classification, the model focuses on the fundamental distinction between major flare
and minor flare events, simplifying the classification task and enabling more reliable and
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interpretable results [36]. In our refined approach, B and C class flares, as well as Flare
Quiet (FQ) periods, are categorized as ‘Minor Flares’ events to prevent the misclassification
of less intense flares as significant events. Only M- and X-class flares, known for their
intensity and reliable detection, are classified as ‘Major Flare’ events. This methodical
segregation helps maintain the integrity of our predictions by ensuring they are based on
robust and accurately detected flare activities.

1 2 3 4 5
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40,000

60,000

80,000
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Figure 2. SWAN-SF flare class distribution after binary conversion.

Data Imputation: The Fast Pearson Correlation-based K-nearest neighbors (FPCKNN)
imputation method was employed to address any missing values in the dataset. FPCKNN
is based on the K-nearest neighbors (KNNs) imputation, which fills in missing data by
considering the values of the nearest neighbors [37]. This method ensures that the imputed
values are consistent with the surrounding data points, preserving the integrity of the
dataset for further analysis.

Normalization: The normalization of the dataset is performed using the Log, Square
root, Box–Cox, Z-score, and MinMax (LSBZM) normalization method. This technique
involves multiple steps: log transformation, square root transformation, Box–Cox trans-
formation, z-score normalization, and min-max normalization. These steps are applied
based on the skewness and standard deviation of each feature in the dataset [37]. The entire
processed dataset is available at [38]. The comprehensive normalization process ensures
that the data are appropriately scaled and transformed, which is crucial for improving the
performance of the classifiers.

3. Methodology

The goal is to improve solar flare classification by utilizing feature selection methods
and classifiers, integrating them into an ensemble approach, as shown in Figure 3. The
methodology involves four key steps—baseline feature selection, classifier training and
evaluation, and ensemble feature weight calculation—as outlined in Algorithm 1.
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Figure 3. Ensemble architecture.

Algorithm 1 Feature Weight Calculation

1: Input:
2: D: Dataset with n features
3: M: Set of feature selection methods {m1, m2, . . . , mk}
4: C: Set of classifiers {c1, c2, . . . , cl}
5: Output: W f : Calculated Feature Weights
6: Step 1: Apply Feature Selection and Classification
7: for each m ∈ M do
8: Fr ← m(D)
9: for each c ∈ C do

10: for each subset Sm ⊆ Fr do
11: TSSm,c,Sm ← TSS(c(Sm))
12: end for
13: end for
14: end for
15: Step 2: Calculate Method-Classifier Weights
16: for each (m, c) ∈ M× C do
17: Wm,c ← Median({TSSm,c,Sm})
18: end for
19: Step 3: Calculate Feature Score
20: for each feature f ∈ D do
21: Initialize W f [ f ]← 0
22: for each (m, c) ∈ M× C do
23: TSSm,c

f ← Median({TSSm,c,Sm | f ∈ Sm})
24: end for
25: end for
26: for each feature f ∈ D do
27: W f [ f ]← ∑(m,c)∈M×C(TSSm,c

f ×Wm,c)

28: end for
29: Step 4: Sort and Return Feature Weights
30: W f ← Sort(W f , descending)
31: return W f
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3.1. Baseline Feature Selection Methods

1. Mutual Information (MI): MI measures the mutual dependence between two variables,
indicating how much information one variable contains about the other. For feature
Xi and target variable Y, MI is defined as follows:

I(Xi; Y) = ∑
xi∈Xi

∑
y∈Y

p(xi, y) log
(

p(xi, y)
p(xi)p(y)

)

where p(xi, y) is the joint probability distribution of Xi and Y, and p(xi) and p(y) are
the marginal probability distributions.

2. Minimum Redundancy Maximum Relevance (mRMR): mRMR aims to select features
with high relevance with the target variable and low redundancy among themselves.
For a feature subset S, mRMR is defined as follows:

max
Xi∈S

I(Xi; Y)− 1
|S| ∑

Xj∈S
I(Xi; Xj)


where I(Xi; Y) is the relevance of feature Xi to the target Y, and I(Xi; Xj) is the
redundancy between features Xi and Xj.

3. Euclidean Distance: This method selects features based on the Euclidean Distance
between feature vectors in the feature space, aiming to maximize the separation
between different classes. The Euclidean Distance between two points X and Y in an
n-dimensional space is given by the following:

d(X, Y) =

√
n

∑
i=1

(Xi −Yi)2

3.2. Classifier Training and Evaluation

The selected features are utilized to train and evaluate three classifiers: MINIROCKET,
ROCKET, and Random Forest. Each was chosen for its distinct advantages in handling
the challenges of solar flare classification, particularly in the context of large-scale, imbal-
anced datasets.

MINIROCKET and ROCKET: MINIROCKET and ROCKET are advanced time-series
classifiers that leverage convolutional kernel transformations to capture and process com-
plex temporal patterns in the data effectively. MINIROCKET, a streamlined variant of
ROCKET, is designed for efficiency, allowing it to handle large datasets with minimal
computational overhead while maintaining high accuracy. These classifiers have demon-
strated superior performance compared to traditional neural networks, such as LSTM [39],
particularly in solar flare prediction tasks where rapid processing and accuracy are criti-
cal [13]. The ability of these classifiers to operate without extensive pre-processing, such
as normalization or balancing of class distributions, further enhances their suitability for
this study.

Random Forest: Random Forest is an ensemble learning method that constructs
multiple decision trees during training, aggregating their outputs to improve prediction ac-
curacy and robustness. This method is particularly effective in handling high-dimensional
data and modeling complex interactions between features. Random Forest’s resistance
to overfitting, especially in imbalanced datasets, makes it a reliable choice for solar flare
classification. Additionally, it provides valuable insights into feature importance, helping
to identify which solar magnetic parameters are most predictive of flare events [14]. This
interpretability, combined with its strong performance across various classification tasks,
justifies its inclusion in the ensemble of classifiers used in this study.
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3.3. Evaluation Metric

Selecting the appropriate evaluation metric is crucial in assessing classifier perfor-
mance, mainly when dealing with highly imbalanced datasets. Traditional metrics such as
accuracy often fail to provide a meaningful evaluation in these contexts because they tend
to disproportionately reflect the performance on the majority class, leading to potentially
misleading conclusions about a model’s effectiveness. In the case of solar flare classification,
where flare events are rare compared to minor flare events, accuracy can overestimate a
model’s performance by emphasizing its ability to correctly classify the dominant minor
flare class while ignoring its shortcomings in identifying the minority flare class. This
necessitates using more robust metrics that offer a balanced evaluation of both positive and
negative predictions.

The True Skill Statistic (TSS) is particularly well-suited for such scenarios, as it in-
tegrates Sensitivity (true positive rate) and Specificity (true negative rate) into a single,
coherent measure. TSS is calculated as follows:

TSS = Sensitivity + Specificity− 1

TSS =
TP

TP + FN
− FP

FP + TN
where TP is the number of true positives, FN is the number of false negatives, FP is the
number of false positives, and TN is the number of true negatives.

The primary strength of TSS lies in its independence from the base rate, ensuring that
the metric remains consistent regardless of the class distribution within the dataset [40,41].
This property makes TSS a reliable choice for evaluating model performance in imbalanced
datasets, such as those used in solar flare prediction, where the accurate identification
of rare events is critical. In contrast, while valuable for understanding the performance
on the positive class, metrics like Precision and Recall do not account for the correct
classification of negative cases, potentially leading to an incomplete assessment of the
model’s overall performance [35]. The F1-score, which balances Precision and Recall,
similarly fails to consider the negative class, making it less suitable in highly imbalanced
scenarios. The Heidke Skill Score (HSS), although comprehensive in considering the entire
confusion matrix, is sensitive to the underlying class distribution, which can result in biased
evaluations when the dataset is skewed [42]. Consequently, TSS is favored for its ability to
provide a more accurate, stable, and interpretable assessment of classifier performance in
environments where rare and common event detection is crucial.

3.4. Ensemble Feature Weight Calculation

The ensemble method aims to enhance the robustness of solar flare classification by
integrating multiple feature selection techniques and classifiers. The feature weights are
calculated using the following formula:

W f = ∑
(m,c)∈M×C

Wmc × TSSmc
f

where W f is the final weight of feature f . Wmc is the median TSS score for the method-
classifier combination mc across all subsets. TSSmc

f is the median TSS score for feature f
within the method-classifier combination mc across the subsets where feature f is present.

This method is designed to result in a more robust and generalizable model by balanc-
ing the contributions of diverse methods and classifiers. It achieves this by calculating the
TSS for each method-classifier combination across various feature subsets, with the median
TSS serving as the weight for each combination. This median captures consistent perfor-
mance and reduces the influence of outliers. For individual features, the TSS is calculated
specifically for subsets where the feature is present, and the median TSS of these subsets
is taken as the feature score. By multiplying the feature score by the method-classifier
weight, the final feature weight is derived, prioritizing features identified by more reliable



Universe 2024, 10, 373 10 of 17

combinations. This method is designed to result in a more robust and generalizable model
by balancing the contributions of diverse methods and classifiers, potentially leading to
improved performance on unseen data.The detailed algorithm for calculating the feature
weights is as shown in Algorithm 1.

4. Experiments

The SWAN-SF dataset is partitioned into five consecutive sections, with a systematic
training and testing strategy. Initially, Partition 1 is used for training, while Partition 2
serves as the testing set. In the next iteration, Partition 2 becomes the training set, and
Partition 3 is used for testing. This process continues sequentially, with Partition 3 used
for training and Partition 4 for testing, followed by Partition 4 for training and Partition 5
for testing.

The rationale for this experimental setup is that using consecutive partitions maintains
the natural order of the data, which is crucial in time-series analysis, as past events often
influence future outcomes. Training on one partition and testing on the next ensures that
the model learns to forecast future values based on the most relevant preceding information,
closely replicating real-world scenarios where future data points succeed past ones.

Testing on the subsequent partition evaluates the model’s robustness to new, unseen
conditions. This approach checks the model’s ability to adapt to changing situations it has
not encountered during training, providing a substantial measure of its generalization to
new data.

This method reflects the practical use of models in real-time applications. In many real-
world scenarios, models are trained on historical data and are expected to make predictions
on future data. By structuring experiments in this way, the model’s performance offers a
realistic estimate of its effectiveness in operational environments.

To ensure stability and standardize the results, we conducted hold-out validation on
each experiment five times. The outcomes of these validations were averaged to obtain a
mean result. Subsequently, the results from all the experiments were combined based on
the length of the subset for each classifier, as shown in Figure 4. This aggregation provided
a comprehensive evaluation of the feature selection methods across different partitions,
ensuring that the final results are robust and accurately reflect the model’s performance
over the entire dataset.

SWAN-SF Data

P1 P2 P3 P4 P5

Exp1 Exp2 Exp3 Exp4

Final Results

Figure 4. Experiment structure.

5. Results

The performance of the classifiers (MINIROCKET, ROCKET, and Random Forest)
combined with different feature selection methods (Mutual Information, mRMR, Euclidean
Distance, and Ensemble) was evaluated using the TSS metric. The mean TSS values were
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calculated for each feature selection method and classifier. It is important to note that the
TSS values used to calculate the mean are not normally distributed.

ROCKET: The performance of the ROCKET classifier, evaluated using the TSS metric,
is depicted in Figure 5. The results indicate that the ensemble feature selection method con-
sistently outperforms the individual methods (Mutual Information, mRMR, and Euclidean
Distance) across different feature subset lengths.
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Figure 5. Comparison of TSS mean values across different feature subset lengths for different feature
selection methods using the Rocket classifier.

Upon closer examination, we observe that the ensemble method shows a notable
improvement in TSS values for feature subset lengths ranging from 10 to 15. This suggests
that the optimal subset range for the ROCKET classifier lies within 10 to 15 features. This
range is significant because it balances complexity and simplicity, both too complex to
cause overfitting and too simple to result in underfitting.

For the baseline methods, while there is a decline in the performance curves after ten
features, we observe an interesting trend. After 19 features, there is an increase in the TSS
values again. This indicates that while the performance initially drops due to potential
noise and redundancy, including additional features beyond a certain point might capture
some previously missed relevant information, improving classification performance.

However, the ensemble method clearly declines performance after 15 features. This
highlights that including too many features beyond this point introduces unnecessary
complexity and noise, which negatively impacts the classifier’s performance. Therefore,
the feature subset length of 10 to 15 is optimal for achieving high classification accuracy
with the ROCKET classifier using the ensemble method.

Random Forest Classifier: The performance of the Random Forest classifier, evaluated
using the TSS metric, is depicted in Figure 6. The results indicate that the ensemble feature
selection method consistently outperforms the individual methods (Mutual Information,
mRMR, and Euclidean Distance) across different feature subset lengths.

Upon closer examination, we observe that the ensemble method shows a notable
improvement in TSS values for feature subset lengths ranging from 9 to 15. This suggests
that the optimal subset range for the Random Forest classifier lies within 9 to 15 features.
This range is significant because it balances complexity and simplicity.
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Figure 6. Comparison of TSS mean values across different feature subset lengths for different feature
selection methods using the Random Forest classifier.

For the ensemble method, performance clearly declines after 15 features, indicating
that including too many features beyond this point introduces unnecessary complexity
and noise, which negatively impacts the classifier’s performance. In contrast, for the
baseline methods (mRMR and Mutual Information), the performance curves increase after
15 features. This suggests that additional features may capture relevant information that is
not apparent, leading to improved classification performance.

MINIROCKET Classifier: The performance of the MINIROCKET classifier, evaluated
using the TSS metric, is depicted in Figure 7. Unlike the ROCKET and Random Forest
classifiers, the ensemble feature selection method does not consistently outperform the indi-
vidual methods (Mutual Information, mRMR, and Euclidean Distance) for MINIROCKET.
Instead, the Euclidean Distance method shows better performance across feature subset
lengths ranging from 10 to 15.
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Figure 7. Comparison of TSS mean values across different feature subset lengths for different feature
selection methods using the MINIROCKET classifier.

Despite the overall effectiveness of the ensemble method with ROCKET and Ran-
dom Forest, MINIROCKET achieved a similar performance using the Euclidean Distance
method, demonstrating its unique suitability for this classifier. The Euclidean Distance
method calculates the straight-line distance between data points in a multi-dimensional
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space, effectively identifying and prioritizing the most relevant features for classification.
When comparing the best results from each classifier in Figure 8, Random Forest produced
the highest overall performance, followed by MINIROCKET, and then ROCKET. Notably,
the Euclidean Distance method using MINIROCKET outperformed the ensemble method
used with ROCKET, illustrating that even though MINIROCKET did not excel with the
more complex ensemble method, it still delivered superior results, highlighting the poten-
tial advantages of a more straightforward feature selection strategy in specific scenarios.
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Figure 8. Comparison of mean TSS values across feature subset lengths for best feature selection
methods by classifier.

To provide a comprehensive comparison of the feature selection methods across
different classifiers, a win–loss heat map was employed, as depicted in Figure 9. This heat
map illustrates the number of times each feature selection method (Mutual Information,
mRMR, Euclidean Distance, and Ensemble) outperformed the others across the three
classifiers (MINIROCKET, ROCKET, and Random Forest). Each cell in the heat map
represents the count of wins and losses for a specific feature selection method against
another method for a given classifier, with darker shades indicating a higher count of wins.
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Figure 9. Pairwise comparison of wins and losses among feature selection methods across different
classifiers (MiniRocket, Rocket, Random Forest).

For the MINIROCKET classifier, the Euclidean Distance method showed the highest
count of wins, suggesting its effectiveness in capturing relevant features for this classifier.
In contrast, the ensemble method had relatively fewer wins for MINIROCKET, indicating
it may not be as suitable for this specific classifier. For the ROCKET and Random Forest
classifier, the ensemble method demonstrated the highest count of wins, showcasing its
ability to enhance classification accuracy by effectively selecting relevant features.
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As shown in Figure 9, the win–loss heat map highlights the relative performance
consistency of each feature selection method across different classifiers. The ensemble
method consistently showed a high count of wins across the ROCKET and Random Forest
classifiers but less for MINIROCKET. The Euclidean Distance method demonstrated high
variability, performing well for MINIROCKET but less consistently for the other classifiers.
This comparative analysis underscores the strengths and weaknesses of each method,
guiding future research in selecting appropriate feature selection techniques based on the
classifier and dataset characteristics.

6. Discussion

The ensemble approach involves calculating feature weights based on TSS values
obtained from classifiers. While this methodology theoretically enhances classifier per-
formance, the practical outcomes vary. Empirically, ROCKET and Random Forest show
improved performance with the ensemble-enhanced feature set. ROCKET’s architecture,
characterized by random convolutional kernels, and Random Forest’s ensemble of decision
trees effectively utilize diverse and comprehensive features. This allows for capturing a
wide array of patterns and making more accurate splits, thereby enhancing classification
accuracy and stability. Conversely, MINIROCKET, which employs a small, fixed set of
convolutional kernels optimized for efficiency, encounters difficulties with the complexity
introduced by the ensemble method. The fixed and deterministic nature of MINIROCKET’s
kernels might limit its ability to adapt to the varied and enriched feature set, resulting
in suboptimal performance. These findings indicate that the practical efficacy of the en-
semble approach is significantly influenced by the classifiers’ intrinsic adaptability and
architectural design.

The top 15 features selected through the ensemble method capture critical aspects of
solar magnetic field dynamics. Helicity-related features, such as ABSNJZH (absolute value
of the net current helicity), TOTUSJH (total unsigned current helicity), and MEANJZH
(mean current helicity, Bz contribution), are crucial in identifying regions with significant
magnetic twist and shear. According to Leka et al. [28], net current helicity is a significant
indicator of the magnetic complexity and twist within active regions. High helicity values
are associated with regions that have stored significant magnetic energy, making them more
likely to produce solar flares. This relationship is critical for understanding the potential
for flare activity, as regions with higher helicity are often sites of intense magnetic activity.

Magnetic free energy parameters, including TOTPOT (total photospheric magnetic
free energy density) and MEANPOT (mean photospheric magnetic free energy), quantify
the available magnetic energy in the photosphere. Schrijver et al. [32] states that higher
values in these features correlate with an increased likelihood of energy release events,
making them pivotal for reliable solar flare predictions. These features are essential for
assessing flare potential because they measure the stored magnetic energy in the solar
atmosphere. High magnetic free energy densities suggest that a significant amount of
energy is available for release, thus increasing the probability of flare occurrence.

Magnetic current and flux parameters such as SAVNCPP (sum of the modulus of the
net current per polarity), TOTUSJZ (total unsigned vertical current), and USFLUX (total
unsigned flux) identify regions with intense magnetic activity and stress, essential precur-
sors to flare initiation. The sum of flux near polarity inversion lines RVALUE is particularly
significant for identifying regions prone to magnetic reconnection, a fundamental process
in flare genesis. These features help pinpoint areas of high magnetic stress and potential
energy release. High values in these parameters indicate regions where the magnetic field
is highly complex and dynamic, often leading to solar flares.

The Lorentz force components (TOTFX, TOTFY, TOTFZ) and the total magnitude of
the Lorentz force (TOTBSQ), along with the sum of the z-component of normalized Lorentz
force (EPSZ), provide a comprehensive view of the forces acting within the magnetic field.
Fisher et al. [29] emphasize that these forces are critical in destabilizing the magnetic
configuration, facilitating the release of stored magnetic energy, which indicates flare
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triggers. Understanding the distribution and magnitude of the Lorentz force is crucial for
identifying regions where the magnetic field is likely to become unstable and release energy
in the form of flares.

Magnetic field topology parameters such as MEANALP (mean characteristic twist
parameter, α) and MEANGAM (mean angle of the field from radial) describe the con-
figuration and orientation of the magnetic field. High values of these parameters reflect
significant magnetic twists and inclinations, essential for understanding the buildup of
magnetic energy and the potential for reconnection events. The fraction of area with shear
more significant than 45 degrees (SHRGT45) identifies regions with significant shear, often
associated with magnetic instability and flare activity. Wang et al. [31] note that high
shear values indicate areas where the magnetic field lines are highly stressed and likely
to reconnect.

7. Conclusions

In this study, we developed an ensemble approach that integrates feature selection
methods and classifiers to improve solar flare classification. We employed feature selec-
tion techniques, including Mutual Information (MI), Minimum Redundancy Maximum
Relevance (mRMR), and Euclidean Distance, to identify the most relevant magnetic field
parameters from multivariate time-series data. These methods helped us reduce the di-
mensionality of the data and focus on the features most strongly correlated with solar
flare activity.

The ensemble approach was then applied, combining the outputs of these feature
selection methods with multiple classifiers ROCKET, MINIROCKET, and Random Forest.
By integrating the strengths of both the feature selection methods and the classifiers, we
were able to create a robust framework that leverages the unique capabilities of each
component. This approach allowed us to capture complex patterns in the data and improve
the overall predictive performance of the models.

Our results showed that this ensemble method significantly enhanced the accuracy
of solar flare classification. The ROCKET and Random Forest classifiers, in particular,
demonstrated substantial improvements in True Skill Statistic (TSS) values, reflecting their
ability to utilize the optimized feature sets effectively. MINIROCKET also benefited from
the ensemble approach, although its performance was slightly less notable due to its fixed
kernel structure.

In conclusion, this research has shown that an ensemble approach that incorporates
both feature selection methods and classifiers can significantly improve solar flare classifi-
cation accuracy. The methodologies developed in this study provide a solid foundation for
future research in space weather forecasting, offering a versatile and effective strategy for
enhancing predictive models in the face of complex and imbalanced datasets.
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