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Abstract: The physical origin of the Blazhko effect (BL), a phenomenon of a single or
multiple periodic modulation(s) of the light curve, is under debate. Efficiently identifying
and characterizing the BL is essential in understanding its origins and accounting for its
effect on numerous applications of RRabs in the era of large time-domain surveys. In
this study, we make use of Resnet 34, a well-known convolutional neural network (CNN)
architecture, to identify RRab stars with BL from phased light curves collected from OGLE.
Using reliably classified RRabs from frequency analysis to train, validate, and test our
model, we show that our CNN method reaches accuracies up to 94%. We then applied
our CNN method to some additional RRabs located in the Magellanic Cloud (MC) and the
Galactic Bulge (GB), leading to the discovery of 113 and 2496 BL candidates, respectively.
The identification accuracy for the MC Sample is estimated to be 91% after cross-matching
the CNN classification results with those from frequency analysis. Similarly, the light-curve
parameters of these classified BL/non-BL candidates by our CNN method from the GB
region resemble those observed in the literature, confirming the reliability of our CNN
classifications. Our CNN method is subject to issues related to light-curve quality and
sampling, but its overall reliance on light-curve quality is comparable to that of frequency
analysis. Furthermore, we find that BL modulation could be primarily characterized by
variations in light-curve structure.

Keywords: stars: variables; RR Lyrae methods; data analysis techniques; photometric

1. Introduction
RR Lyrae stars (RRLs) are relatively old and low-mass stars that show regular light

variations. Most of their periods and amplitudes vary in the range from 0.2 to 1 day [1]
and 0.2 to 2.0 mag in the V band [2], respectively. RRLs can be roughly classified into
three main subclasses based on the shapes of their light curves [1]: RRab (rapid increase
followed by slow decrease), RRc (similar to sine curve), and RRd (double-mode pulsating).
RRLs have been applied well to study various aspects of astrophysics. To begin with,
RRLs can be used as standard candles. For instance, Oliveira et al. [3] made use of the
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Period–Luminosity–Metallicity relation for RRL stars to estimate distances to six globular
clusters. RRLs have also been used to map galactic structure [4].

Because of their many useful applications, RRLs have been intensively identified and
studied in various large time-domain surveys. The analysis of observation data from the
Massive Compact Halo Objects project [5] led to the discovery of ∼10,000 RR Lyrae stars
from monitoring the fields of Magellanic Clouds (MC), the Galactic Bulge (GB), and the
Sgr dwarf galaxy. In the observations of the past two decades, the Optical Gravitational
Lensing Experiment project (OGLE, [6–8]) discovered 126,146 RRLs stars in total from
the Galactic Disc/Gulge and MC sky areas. Numerous RR Lyrae stars have also been
extensively discovered during surveys such as the Catalina sky survey [9], ASAS [10], Pan-
STARRS1 [11], and LINEAR [12]. More recently, Gaia has identified a total of 271,779 RRLs
from the whole sky during data release 3 (GDR3, [13]). More RR Lyrae stars are expected
to be identified by the Legacy Survey of Space and Time (LSST, [14]).

Some RRab stars are known to display the Blazhko (BL) effect, characterized by
modulations in their periods, pulsation amplitudes, light-curve shapes, and radial ve-
locities [15,16]. Many interesting characteristics of BL stars have been revealed in the
literature, for example, high incidence rate [17], high modulation [18], high likelihood of
strongly asymmetric sidelobes in the frequency spectra [19], large range of modulation
timescales [20], period-doubling [21], and chaotic/stochastic effects [22]. BL stars usu-
ally show light variations, with amplitude ranging from a few hundredths of magnitude
(e.g., 0.015 mag for KIC 11125706 [23]) to more than 0.5 mag (e.g., XY Eri or SZ Hya [24]). Such
light-curve variations can be also identified through an analysis of frequency spectra [25–27].

Despite many light-curve features that have been revealed for BL stars, their physical
origins remain unknown. Nevertheless, these light-curve characteristics could provide
insights into the modulation mechanisms and impose additional constraints on existing
models. Studies by Gillet [28] and Gillet and Fokin [29] proposed that the BL effect might
be induced by the shockwave phenomenon based on spectroscopic observations of some
BL stars. They proposed that the existence of a secondary shock could lead to modulations
of the light curves. Recent studies by Jurcsik et al. [30,31] found that BL stars showed
limited modulations in near-infrared bands and that the light-curve modulations tend to
depend on the modulated temperature. This provides evidence that the BL effect is related
to the outer layers of the stars. After evaluating the existing models, Kolláth [32] concluded
that Buchler and Kolláth [16]’s fundamental to 9th overtone, or 9:2 resonance hypothesis,
shows the fewest conflicts with the observations.

BL stars are commonly identified through their distinct characteristics of frequency
spectra. The frequency spectra of BL stars are characterized by equidistant side peaks,
i.e., fBL around the fundamental pulsation frequency (dubbed as f0). Meanwhile, if the BL
star also shows amplitude modulation, then fBL could appear on its own in the range of
∼0.0001 to 0.2 [c/d]1 [33,34]. Normally, BL samples can be identified by first estimating the
basic pulsation frequency ( f0) and then searching for side peaks in the residual frequency
spectrum after pre-whitening f0. RRab stars can be identified as a BL subclass if the side
peaks of their light curves have a significant signal-to-noise ratio (S/N). Several studies
have adopted different definitions of significance, perhaps depending on their light curves’
quality for identification [25–27,35].

With the increase in the total number of RRLs identified in recent surveys, large
population studies on the characteristics of BL stars now become feasible. More importantly,
such studies could act as a guide for understanding the origin of BL effects theoretically.
However, since manual inspection is required throughout the classification process, it is
extremely time-consuming to identify the RRLs with BL effects from a large sample using
frequency analysis [25–27]. Hence, we propose to use the deep learning method to improve
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the efficiency of identifying RRLs with the BL effect. We adopt a convolutional neural
network (CNN): a deep learning algorithm that has been mainly used for analysis tasks such
as classification, segmentation, and detection [36]. CNNs have been successfully employed
in many astronomical applications, such as the classification of stellar spectra [37], detection
of solar flares [38], etc.

Moreover, the CNN method has also been widely applied to detect variables or
transients. For example, Mahabal et al. [39] applied this method to classify variable stars
based on their light curves, while studies such as Teachey and Kipping [40] applied a CNN
to identify pro-moon objects. Davies et al. [41] used this method to identify gravitational
lensing events. This method has been also used to identify exoplanets from the TESS data
with great performance [42,43]. Notably, refs. [44,45] make use of CNNs to classify different
types of variable stars based on OGLE data and achieved good results.

In this study, we make use of the identification results proposed by Prudil and Skarka [26]
(hereafter, PS17) on samples collected from the GB region and folded OGLE light curves to
train our model. This CNN model is then applied to additional sets of GB and MC Sam-
ples to test the performance of the model. More specifically, frequency analysis methods
used by Skarka [25], Skarka et al. [27], and PS17 [26] are applied to the new MC Sample to
cross-validate the performance of the model. Given the large number of RRLs identified
by OGLE, many new BL stars located in MC and GB could be classified by our model. We
then examined these newly BL-classified RRL samples statistically to better understand
the differences between BL and nBL stars, which could serve as clues to understanding the
physical origin of the BL effect.

This paper is organized as follows. We describe the data selection process and cut-offs
used for sample identification presented in Section 2. Then, in Section 3, we describe how
we build, train, and test our model. We discuss the performance and limitations of our
identification model in Sections 4 and 5. We summarize in Section 6.

2. Data
In this study, all of our RR Lyrae are classified by the OGLE sky survey [6–8], a long-

term survey project, with the main goal of hunting for gravitational microlensing events
and understanding stellar variabilities in the Milky Way, LMC, and SMC. In 2014, 2016,
and 2019, the OGLE-IV survey published the V- and I-band photometric data of RR Lyrae
stars discovered in the GB and MC fields, with data going back to 1996 [6–8].

We adopt the classified BL/nBL sources from PS17 [26] as our data set to train our
CNN model. Given that all of these well-classified sources are located in the Galactic Bulge,
we label all of them as GB Sample 1. Our GB Sample 1 (or PS17 [26] sample) consists of
3341 RRab stars with BL effects and 4845 without BL effects (nBL). To classify these sources,
PS17 [26] make use of the frequency analysis method based on light curves obtained from
the OGLE survey. We ignore all the samples labeled as blending by PS17 [26] for all our
future analyses to avoid the impacts of these blending sources on our model. We then
randomly divided the GB Sample 1 into the modeling set, the validation set, and the test set
with a ratio of 7:2:1 to train, validate, and test our model for both BL and nBL samples. This
ratio ensures that there is enough sample for the CNN model to learn the characteristics of
BL/nBL effects while leaving a moderate amount of sample to quantify the performance of
the model.

In addition, we select two groups of targets (i.e., MC Sample and GB Sample 2) from
OGLE located in the Magellanic Clouds and the Bulge to further discuss the performance
of our model and understand the characteristics of the BL effect. All of the sources from
MC Sample data are drawn from the Magellanic Clouds. We use the MC Sample primarily
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to further evaluate the performance of our model, especially on samples with degraded
light curves, to identify possible biases and limitations of the model.

Meanwhile, with the release of some additional data as part of OGLE-IV [8], many
targets that are not included in PS17 [26]’s analysis due to various quality cut-offs now
become good enough to identify the BL effect in this study. Consequently, we constructed a
new data set (i.e., GB Sample 2) based on the updated data sources to further study the
characteristics of the BL effect. We would like to stress that GB Sample 1 and GB Sample 2
are purely independent, namely, none of the samples from GB Sample 1 are included in GB
Sample 2.

Following PS17 [26], Skarka [25], and Skarka et al. [27], we use similar cut-offs to
eliminate stars that either are too faint or contain fewer epochs per light curve. For the GB
Sample 2, the selection criteria include the following:

1. The mean I-band magnitudes are smaller than 18 mags;
2. There are more than 350 data points in the light curve of each star.

These cut-offs are almost identical to the ones introduced by PS17 [26], with the
exception that PS17 [26] discarded samples with fewer than 400 epochs in their study.
These selection criteria yield 8123 stars for the GB Sample 2 out of the total 40,476 stars
from [8]. For the MC Sample, however, we include additional selection criteria along
with the above two. This is because the light curves of the stars from the MC have worse
quality than the GB sample, and the photometry of some stars suffers obvious blending
effects. The additional criteria are suggested by Jacyszyn-Dobrzeniecka et al. [46] and
Soszyński et al. [7], as follows:

1. Mean magnitude error is smaller than 0.025 mag;
2. Amplitude of the light curve must be larger than 0.20 mag;
3. Amplitude of the light curve must be greater than −5 log10(period)− 1.

Finally, a total of 290 out of 34,229 RRabs pass our selection criteria and can be labeled
as the MC Sample. It is worth mentioning that some of our brightest stars selected for
the MC Sample might be foreground. However, since the MC Sample is used to test the
performance of our CNN method, we do not expect any impact on our results from these
foreground stars. Also, note that only the I-band light curves are used for further evaluation
because of better sampling in this band. A summary of the composition of the three groups
of samples used in our analysis is shown in Figure 1. We also included the distribution of
photometric errors and data sampling of the light curves for the three groups of samples
in Figure 1 for further reference. Upon the visual inspection of Figure 1, we note that GB
Sample 1 has significantly more data points per light curve (i.e., N = 1914) in comparison
with the other two data sets, i.e., GB Sample 2 (with N = 624) and the MC Sample (with
N = 471).
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Figure 1. A summary of our selected samples used in this study. Top Left: a general view of the
composition of the three groups of targets that we selected. Bottom Left: The uncertainty distribution
for our sample that is brighter than 18 mag. Right: The number of data points in each light curve for
our samples.

3. Method of Identifying BL Effect
BL effect is commonly identified through frequency analysis, but this study aimed

to show that stars with the BL effect could be identified more effectively through CNN
algorithms. Past studies such as Skarka [25] made use of manual procedures to hunt
for BL peaks in the frequency spectra and the residuals, while, in recent years, semi-
automatic procedures have been adopted by studies such as PS17 [26]. More specifically,
the identification procedure from PS17 [26] involves the automatic removal of the first
10 harmonics and manual search for significant peaks near the main pulsation frequency
( f0) and 2 f0 in the residuals using Period04 [47]. Stars with peaks having 3.5 S/N near
the main pulsation frequency ( f0) and 2 f0 are labeled as BL stars. Meanwhile, if a star
shows no sign of modulation, it is labeled as nBL. However, they noted that the labeling
results might be affected by different instrumental effects due to the limitations of ground-
based observations.

Prudil et al. [48] (hereafter, P19) showed that the BL effect can be identified through
machine learning algorithms. They quantified the performance of their classifiers by using
accuracy (ACC) and area under the receiver operating curve (AUC), and their definitions
can be found as follows:

1. Sensitivity/True Positive Rate (TPR): the ratio between the number predicted as posi-
tive by the classifiers and that determined based on ground truth (i.e., the frequency
analysis in our context);
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2. Specificity/True Negative Rate (TNR): the ratio between the number predicted as neg-
ative by the classifiers and that determined based on ground truth (i.e., the frequency
analysis in our context);

3. ACC: the ratio between all the true values to the whole sample, and the equation can
be shown below:

ACC =
TPR + TNR

TPR + TNR + FPR + FNR
. (1)

TPR, TNR, FPR, and FNR denote the True Positive rate, True Negative rate, False
Positive rate, and False Negative rate, respectively;

4. AUC: The area under the receiving operating curve (ROC). The ROC curve, standing
for the receiver operating characteristic, is used to assess the performance of a binary
classifier at different thresholds. Usually, AUC ranges from 0.5 to 1.0, and higher
values represent better performance.

Among all the identification models developed by P19 [48], Multi-Layer Perceptron
(MLP) exhibited the highest accuracy of 87.3%. MLPs, however, suffer from the issue of
over-fitting due to their fully connected structure between adjacent layers, which further
limits their performance during classifications. As an alternative to MLP, we propose to
use the CNN algorithm, which has a more sophisticated network structure, to identify BL
effects more accurately. In contrast to MLP, the CNN method is less likely to overlearn
certain characteristics, making it a more reliable method for identifying BL candidates.

In general, models with more layers perform better during training since more layers
allow the model to extract and combine features more effectively. In reality, as the depth of
the network structure increases, if the gradients at any layer become extremely small, it
becomes nearly impossible to propagate the gradients to the final layers. This results in
either very slow learning or no learning at all.

Such issues are known as gradient vanishing, which have been found to limit the
performance of the network during classification tasks [49]. To ensure that our network
contains enough layers to fully characterize the properties of the BL effect while avoiding
the issues of gradient vanishing as much as possible, we choose ResNet 34 as our classifi-
cation model [50]. ResNet circumvents depth-related performance degradation through
skip connections, which allow neural networks to increase the number of layers without
suffering from gradient vanishing problems. ResNet-34 comprises 34 layers in total, in-
cluding convolutional layers, batch normalization layers, ReLU activation functions, and
max pooling layers. The ResNet architecture has been widely adopted for tasks such as
image classification due to its remarkable robustness across diverse applications. It is worth
mentioning that we do not make any modifications to the original ResNet 34 architecture.

Regarding the data set for the training, compared to the parametric spaces used by
P19 [48], we believe that images of the phased light curves represent light curve properties
better since could represent more features of BL stars compared with simple grids of light
curve parameters. We present some typical phased light curves of the BL stars and nBL
stars from our modelling set or PS17 [26] in Figure 2.

3.1. Network Training
3.1.1. Preprocessing

Before training the network, we apply five additional procedures to clean and normal-
ize our data set. Firstly, we fold each light curve based on its fundamental pulsation period
determined from Soszyński et al. [6–8]. We then apply a 10th-order Fourier fit to remove
points that are 0.35 mag away from the best-fit light curve. The given threshold ensures
scattering caused by the BL effect will not be removed, while outliers will be removed, as
they might have an impact on the training.
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Figure 2. Top row (BL stars) from left to right: OGLE-BLG-RRLYR-00162, OGLE-BLG-RRLYR-
00184, OGLE-BLG-RRLYR-00197. Bottom row (nBL stars) from left to right: OGLE-BLG-RRLYR-
00183, OGLE-BLG-RRLYR-00199, and OGLE-BLG-RRLYR-00208. The period is adopted from
Soszyński et al. [7]. A major distinction between BL stars and nBL sources is the large dispersion near
the peak of the light curve, reflecting both the period and amplitude variation due to the BL effect.

Once this is completed, we normalize each phased light curve by subtracting the
median of the light curve. We then plot the phased light curve in a frame with fixed axis
coordinates. More specifically, we first plot the images in a fixed axis of [0, 1]× [−0.6, 0.6]
for phase and amplitude, respectively. We then convert the output to an image using
matplotlib plt.plot function with the total dots per inches (dpi) set to 300 and the size of
each point on the plot to be 2 point squared.

3.1.2. Processing

For this study, we adopt the Pytorch python package [51] for our network training. We
adopted 3 different configurations of batch size (32, 64, and 128) along with 2 configurations
for lr (1 × 10−2 and 1 × 10−3) and momentum (0 and 0.9) for hyperparamter tuning.

For each iteration during the training (i.e., batch), the loss is calculated from forward-
propagating the training samples using the cross-entropy loss function (CEL, as defined in
Equation (2)).

H(p, q) = −
n

∑
i=1

p(xi) log(q(xi)) (2)

where n stands for number of classes (in our case n = 2), p(x) stands for the actual
distribution, and q(x) stands for the predicted distribution. CEL can be used to evaluate the
differences between the actual distribution and the predicted distribution. Before initiating
the back-propagation process, the outputs is first adjusted by the learning rate (which is
initially set to 0.001) profile. Then, during the back-propagation process, each neuron is
adjusted by taking partial derivatives.

As the loss consistently decreases with each epoch iteration, the learning rates is then
dynamically adjusted using the ExponentialLR learning rate scheduler in conjunction with
Stochastic Gradient Descent (SGD) as the optimizer. Continuously applying the validation
set during training allowed us to detect any possible issues with the model’s structure or
hyperparameters. For example, if the ACC of the validation set does not increase with time
or the loss starts to diverge, we can simply terminate the training and adjust the parameters
before the training process ends, known as early stopping.

We note that a combination of 50 epochs, a batch size of 32, a momentum of 0.9,
and an lr of 1 × 10−3 yields the best performance. The bottom panel of Figure 3 shows
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the validation curve for our model with optimized hyperparameters. The validation
performance peaked at the 30th epoch, achieving an overall validation accuracy of ∼95%.
Subsequently, the model trained at the 30th epoch is then used for all our future analyses.
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Figure 3. The testing and training results. A normalized confusion matrix for the test set (top left).
The vertical axis (Labeled) stands for the results labeled by frequency spectra, while the horizontal axis
(Predicted) stands for the results predicted by our CNN model. The receiver operating characteristic
curve (ROC) and AUC for our model (top right), and the ROC curve and AUC for a random classifier
and a perfect classifier are drawn and labeled for comparison. The area under the ROC curve for the
perfect classifier (plotted in green) and the random classifier (plotted in red) is 1.0 and 0.5, respectively.
The training curves are attached at the bottom.

3.1.3. Testing

After the training process, we test the performance of the model using the test set.
More specifically, we first apply the model to the images of phased light curves from
the test set. Then, we normalize the outputs based on the Softmax function, as given in
Equation (3):

PBL =
exp(OBL)

exp(OBL) + exp(OnBL)
(3)

where PBL represent the possibility of being BL stars, and OBL and OnBL represents the
output for labels BL and nBL, respectively. Stars with PBL greater than 0.5 are classified
as BL candidates and vice versa. We then compare the classification results with those
obtained from frequency analysis to determine the performance of the model. These results
are discussed in detail in Section 4.1. A flow chart of the procedures that we used to train
the model can be found in Figure 4.
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Figure 4. The training process for our model (for our entire data set). The captions on the right
indicate the stage to which the training belongs (consistent with the subsections in 3.1 Network
training) Soszyński et al. [6].

4. Results
4.1. The Test Set Results

The test set consists of 819 stars in total, as determined based on the 7:2:1 split per-
formed in Section 2. Our model is then evaluated by constructing a confusion matrix using
the sources in the test set. Based on the confusion matrix, we first determine that the ACC
parameter for our model is 94%. Therefore, given that the results of the training process
are satisfactory, we believe there is no need to adjust the hyperparameters to re-train the
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model. This conclusion finds support in our training curve, presented in the lower panel of
Figure 3.

Regarding the test set, we find that the estimated TNR (=0.96) is higher than or
comparable to the TPR (=0.91). The phase curves of sources mislabeled by our CNN model
are then examined in greater detail. A notable observation is that a significant portion of
these mislabeled sources exhibit either noisy phase curves or low pulsation amplitudes
(i.e., amplitude < 0.3 mag). The presence of noisy phase curves may challenge the model,
as it may struggle to discern genuine BL pulsation within the noise. Additionally, given that
only a minority of RRab stars demonstrate small pulsation amplitudes, it is probable that
the model under-learns the differences between BL and nBL stars in these cases. Meanwhile,
a very small fraction of the sources that are marked as nBL by PS17 and labeled as BL by
our model exhibit clear BL modulation in their phase curves and frequency spectra. Likely,
some of the sources from PS17 [26] with under-detected BL peaks were recovered with the
release of more data in 2019.

We then evaluate our model based on the receiver operating curve and use it to
compute the area under the curve statistic (AUC) (as given in Figure 3, top right panel). The
estimated AUC for our model based on the test set is 0.98, indicating significant differences
in the phased light curves for those with and without the BL effect. We apply the MLP
model developed by them in P19 [48] to our samples from the test set for further comparison.
The results are given in Table 1. Note that the estimated AUC and ACC parameters for the
MLP model are slightly higher than those given by P19 [48]. Such differences may have
originated from the random shuffle process performed during preprocessing, potentially
resulting in our test set comprising distinct samples compared to those from P19 [48]. By
comparing the testing results using our test set, we note that our CNN model is 10% more
sensitive in detecting BL effects compared with MLP developed by P19 [48] (i.e., our TPR is
10% higher).

Table 1. A comparison of the model parameters for test set and MC Sample. Note that the definitions
for ACC and AUC are provided in Section 3, while the definitions for TPR and TNR are given in
Section 4.1.

Sample Study ACC AUC TPR TNR

Test set This study 0.94 0.98 0.91 0.96
- P19 [48] 0.88 0.94 0.81 0.92
- Frequency analysis 1.00 1.00 1.00 1.00

MC
Sample This study 0.91 0.97 0.85 0.97

- P19 [48] 0.86 0.91 0.80 0.88
- Frequency analysis 1.00 1.00 1.00 1.00

4.2. MC Sample

Among 290 stars in the MC Sample, 113 and 177 stars are classified as BL and nBL
candidates by our CNN model, respectively. The classification results are provided in
Table 2.

Then, we re-classify our MC Sample using the method suggested by PS17 [26] to
further evaluate the performance of our model. Following the procedures suggested by
PS17 [26], we first pre-whiten the main pulsation frequency ( f0) along with its first 10 har-
monics and search for the existence of significant side peaks in the range of f0 ± 0.3[c/d]
in the residuals. Then, we classify our samples into different subgroups based on the
position and amplitude of the peaks in the frequency spectra. Note that the qualities of
the phased light curve from the MC Sample are not as good as those from GB Sample 1
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because of fewer data points (as shown in Figure 1). Consequently, it might be difficult
to determine whether these BL candidates are modulated or not when they have fewer
significant side peaks (3.5 S/N) in the frequency spectra. Thus, we classify stars with fewer
significant side peaks as BL candidates or cBL stars. Also, those with unresolved peaks
(closer than 1.5/time span to f0) are labeled as period changing (PC). Also, we reject some
stars that showed irregular and weird modulations on the phased light curves (labeled as
Rejection). We believe that these stars might suffer from blending effects or instrumental
effects. A detailed description of the four subgroups can be found below:

1. BL: There is at least one resolved strong peak, with the amplitude variation having
S/N above 4, observed in the range of f0 − 0.3[c/d] and f0 + 0.3[c/d];

2. nBL: The peak S/N is less than 3.5, observed in the range of f0 − 0.3[c/d] and
f0 + 0.3[c/d];

3. cBL & PC: Amplitude in the range of 3.5 S/N to 4 S/N and frequency the range of
f0 − 0.3[c/d] and f0 + 0.3[c/d] on the frequency spectra. Stars with peaks greater than
4 S/N but not resolved are labeled as cBL & PC as well;

4. Rejection (REJ): Stars show uncanny modulation, likely due to their poor light-
curve quality.

Table 2. The Classification results for the MC Sample. The full table is provided along with the
published version2. A portion is shown here for guidance regarding its formatting.

OGLE ID RA (deg) Decl (deg) Mean I-Band Magnitude Prediction

OGLE-LMC-RRLYR-00455 70.155705 −70.050611 17.295 nBL
OGLE-LMC-RRLYR-00487 70.30854 −68.463278 16.87 nBL
OGLE-LMC-RRLYR-00732 71.202 −67.01375 17.443 nBL
OGLE-LMC-RRLYR-00733 71.206455 −67.851111 17.157 nBL
OGLE-LMC-RRLYR-00736 71.211255 −66.717361 15.765 nBL
OGLE-LMC-RRLYR-00773 71.33571 −69.834083 17.551 nBL
OGLE-LMC-RRLYR-00854 71.58459 −68.424889 13.353 BL
OGLE-LMC-RRLYR-00904 71.745255 −68.784778 14.85 nBL
OGLE-LMC-RRLYR-01047 72.14325 −70.110611 17.938 nBL
OGLE-LMC-RRLYR-01881 73.71342 −67.016972 16.506 nBL

... ... ... ... ...

Finally, we finalize the classification results by re-examining the phased light curve
for the BL and nBL subgroups to check for any signs of BL modulation, so that we could
avoid possible biases caused by the frequency analysis method. Meanwhile, note that a
few exceptions have been made during the classification process. Stars with no obvious
modulation on the phase curve but with only one significant peak (>4 S/N) around
2.005[c/d] on the residuals of the frequency spectra are labeled as nBL. These peaks can be
induced by various instrumental effects according to PS17 [26]. Some examples of cBL &
PC, nBL, and Rejection can be found in Figure 5.

In total, we find 120 BL samples, 137 nBL samples, 29 cBL & PC samples, and
4 Rejection samples from the frequency analysis. Then, we match our frequency analysis
results to our CNN results to determine the confusion matrix for the MC Sample, which is
found in Figure 6.

Similarly, we derive the ACC, AUC, TPR, and TNR parameters based on the confusion
matrix determined based on the MC Sample, and the results are listed in Table 1. For
comparison, we also apply the MLP developed by P19 [48] to the MC Sample to obtain the
above parameters. We provide these results in Table 1 as well.
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Figure 5. Phased light curves and frequency spectra for different classes that have been newly
introduced, including unresolved peak (cBL & PC), a peak greater than 3.5 S/N but smaller than
4 S/N (cBL), REJ, peaks around 2.005[c/d] (nBL), from left to right. The red and green horizontal
lines indicate 3.5 S/N and 4 S/N, respectively. Also, the red vertical line stands for f0. Note that the
frequency spectra included in the bottom row have been pre-whitened already. We excluded sources
(e.g., 25,077) with poor light-curve quality from our analysis. The significant peak near 2.005 [c/d] in
00733’s frequency spectra is likely due to instrumental effects (see text); therefore, we label it as an
nBL star.
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Figure 6. A normalized confusion matrix for the MC Sample. The vertical axis (Labeled) stands for
the results labeled by frequency spectra, while the horizontal axis (Predicted) stands for the results
predicted by our CNN model.

We note that all the parameters estimated from the MC Sample are lower than those
from the test set. We believe it is likely that the light curves of the sources that we included
in the test set have much better light-curve quality and sampling compared with those
from the MC Sample, as expected from Section 2.

These misclassified samples are subsequently subjected to careful examination as well.
Similar to the test set, these inaccurately classified test samples exhibit lower amplitudes or
noisier light curves in comparison to those classified correctly.

We also note that the BL stars from LMC and SMC have also been well-studied by
the Massive Compact Halo Object (MACHO) project [19]. The MACHO sample contains
6391 RR Lyrae stars, and 731 of them are identified as BL stars. Among the 23 stars that we
have in common, we recovered all the BL stars discovered by MACHO.

4.3. GB Sample 2

The classification result for our GB Sample 2 are provided in Table 3.
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Table 3. The classification results for the GB Sample 2. The full table is provided, along with the
published version See note 2 above. A portion is shown here for guidance regarding its formatting.

OGLE ID RA (deg) Decl (deg) Mean I-Band Magnitude Prediction

OGLE-BLG-RRLYR-00247 258.668625 −29.492833 15.846 nBL
OGLE-BLG-RRLYR-00253 258.69825 −29.442611 15.392 nBL
OGLE-BLG-RRLYR-00270 258.77592 −29.347194 16.666 BL
OGLE-BLG-RRLYR-00366 260.87466 −29.063778 16.683 BL
OGLE-BLG-RRLYR-00369 260.889585 −29.289778 16.16 nBL
OGLE-BLG-RRLYR-00372 260.899335 −29.370972 16.064 BL
OGLE-BLG-RRLYR-00375 260.90967 −29.4155 17.153 BL
OGLE-BLG-RRLYR-00376 260.91063 −29.203694 16.682 nBL
OGLE-BLG-RRLYR-00377 260.914455 −29.290694 16.292 nBL
OGLE-BLG-RRLYR-00381 260.92584 −29.247722 16.498 BL

... ... ... ... ...

For sources that we included in GB Sample 2, 2496 of them are classified as BL
candidates by our CNN, with a rate of 31%. We notice that this rate is lower than that found
by PS17 [26] using GB samples from the OGLE-IV survey (i.e., 40%). One of the possible
explanations is that GB Sample 2 has fewer points per light curve in comparison with GB
Sample 1. When the light curve is relatively poorly sampled, the BL modulations are more
likely to be covered by noise. The possible impact of the sampling of the light curve is
discussed further in Section 5. It is worth noting that the incidence rate of the modulated
stars from OGLE observations is much lower than that from the Kepler K2 mission [52],
who have suggested that the occurrence rate of BL modulation can reach up to ∼90%,
perhaps due to their higher-quality light curves obtained from the Kepler mission. The
occurrence rate of the BL effect using light curves obtained from ground-based observations
seems to range from 10% to 60%. Previous studies indicate that the rate of BL stars seems to
be extremely high in the galactic field, in a range from 31% [25] to 60% [53]. The rates found
from the M3 and Galactic Gulge are about 50% [30] and 40.3% PS17 [26], respectively. Their
estimated rates are derived from the data taken by a Schmidt telescope from the Konkoly
Observatory and OGLE-IV survey, respectively. The fraction of BL stars is found to be 37%
in NGC6362 [35] and 69% in NGC5024 [54], respectively. In comparison, the LMC tends to
show an extremely low rate of BL stars, with a fraction of only 10% [19,55]. For the SMC,
the BL fraction is about 20% [56,57]. The lower fraction of BL stars in LMC and SMC is
perhaps related to their relatively low-quality light curves. See Kovacs [17] for a summary
of the occurrence rate in different environments. It is also worth mentioning that a portion
of stars from our GB Sample 2 could be misclassified by our CNN, resulting in a relatively
high or low occurrence rate. Similarly, we found that roughly 16% of the stars from GB
Sample 2 are classified differently by our CNN compared with their MLP.

Considering that the characteristics of BL stars in the GB region were previously well-
studied by PS17 [26], we thus compare the distribution of various light-curve parameters
for labeled BL and nBL samples between GB Samples 1 & 2. Regarding the GB Sample 2
data set, we make use of the classification result determined from both the MLP model
developed by P19 [48] and the ones determined by our CNN model for comparison.

4.3.1. Period–Amplitude Relations

Figure 7 presents the period and amplitude distributions of BL/nBL stars categorized
by our CNN method and P19 [48]. We then apply a Kolmogorov–Smirnov test (KS-test) to
further examine if they follow the same distribution. We denote the following:
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• p1,C: the p-value of the KS-test of GB Sample 1 and GB Sample 2 using the CNN’s
classification result;

• pC,M: KS-test p-value between the CNN and MLP classification results on GB
Sample 2.

For this, we compare the period and amplitude distributions classified based on our
CNN to the ones discovered by P19 [48] and PS17 [26] for BL and nBL sources separately.
Quite surprisingly, we determined, for both BL and nBL sources, classifications using CNN
and frequency analysis could yield similar amplitude distributions (i.e., p1,C > 0.999). We
observe a similar resemblance for the distribution of period for BL/nBL samples classified
by CNN and MLP as well (i.e., pC,M > 0.999).

However, from Figure 7, we note that there are ∼5% BL stars (∼10% nBL stars) with
an amplitude of less than 0.2 mag in GB Sample 2. Based on our CNN’s classification, the
differences in distribution between these low-amplitude BL and nBL samples are similar to
those with higher amplitudes. However, as discussed in [7], those samples with smaller
amplitudes might suffer from blending effects.
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Figure 7. A comparison between the distribution of BL/nBL stars on the Bailey diagram based on
various classification methods. Top: GB Sample 2 classified by our CNN model. Bottom left: GB
Sample 1 classified based on frequency analysis techniques. Bottom right: GB Sample 2 classified by
the MLP developed by P19 [48]. Note that density stands for the distribution after normalization.
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4.3.2. Fourier Parameters

We then make use of Fourier parameters to further characterize the differences between
our GB Sample 1 and GB Sample 2. Fourier parameters R21 and R31 stand for amplitude
ratios between the 2nd and 1st components and 3rd and 1st, respectively. Meanwhile,
ϕ21 and ϕ31 denote the phase differences between the 2nd and 1st and the 3rd and 1st
components, respectively. The Fourier parameters for GB Sample 1 and GB Sample 2 are
taken from Soszyński et al. [6] and Soszyński et al. [7], respectively. Calculations of these
parameters are based on Equation (4),

m(t) = A0 +
n

∑
i=1

Ai cos
(

2πi
(t − t0)

P
+ ϕi

)
(4)

where ϕi and Ai represent phase and amplitude, respectively, and n is the degree of the fit,
while P stands for the pulsation period. Simon and Lee [58] define the relevant parameters
as Ri1 = Ai

A1
and ϕi1 = ϕi − iϕ1.

We present the distribution of R21, R31 and ϕ21, ϕ31 for GB Sample 1 from PS17 [26]
and GB Sample 2 in Figures 8 and 9, respectively. For GB Sample 2, nBL stars tend to
have slightly higher R21, R31, consistent with the trend seen in GB Sample 1 PS17 [26].
Figures 8 and 9 reveal that the distributions of BL and nBL stars in the Fourier parameter
space using our CNN classification algorithm are similar for GB Sample 1 and GB Sample 2.
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Figure 8. A comparison between the distribution of BL/nBL stars on R21 − R31 diagram based
on various classification techniques. Top: GB Sample 2 classified by our CNN model. Bottom
left: GB Sample 1 classified based on frequency analysis technique. Bottom right: GB Sample 2
classified by the MLP method developed by P19 [48]. Note that the density stands for the distribution
after normalization.
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We then apply a KS-test to test the resemblance between the distribution of Fourier
parameters using labeling results from different techniques. We find that the values of p1,C
derived for BL and nBL subsamples are both greater than 0.999 for all Fourier parameters,
indicating that classifications using CNN and frequency analysis yield similar distributions
of Fourier parameters. Such a trend is also found for both BL and nBL subclasses labeled by
the CNN and MLP techniques (pC,M > 0.999). Following P19 [48], we examine the R31–ϕ31

distribution for GB Sample 2 and MC Sample as well. We present the results in Figure 10.
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Figure 9. A comparison between the distribution of BL/nBL stars on ϕ21 − ϕ31 diagram from various
classification techniques. Top: GB Sample 2 classified by our CNN model. Bottom left: GB Sample 1
classified based on frequency analysis techniques. Bottom right: GB Sample 2 classified by the MLP
method developed by P19 [48]. Note that the density stands for the distribution after normalization.

It is noteworthy that the hook structure observed among the nBL samples from P19 [48]
has also been observed in GB Sample 2 and MC Sample. These findings from light-curve
characteristics directly suggested that our CNN-based classifications for GB Sample 2 are
reliable and can be used well in future studies.
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Figure 10. A comparison between the distribution of nBL stars on R31–ϕ31 diagram from GB Sample 1
(classified from frequency analysis), GB Sample 2 (classified by our CNN), and MC Sample (classified
by our CNN). Note that density stands for the distribution after normalization.

5. Discussion
Our analysis from the test set, GB Sample 2, and the MC Sample confirm that the

CNN method can identify the BL subclass from RRab samples effectively. Therefore, we
believe that our model can be used well in identifying the BL candidates from a large
amount of RRab light curves. In comparison with the traditionally used frequency analysis
method and the MLP method developed by P19 [48], our CNN method can be more reliable
(e.g., with up to 10% increase in sensitivity) and efficient when dealing with larger data sets.

On the other hand, our results from Section 4 suggested that the identification quality
for the MC Sample is lower than the test set. Thus, we further discuss the possible reasons
that might lead to this difference.

Firstly, we examine the distribution of light-curve parameters between correctly and
incorrectly classified samples for GB Sample 2 and the MC Sample. Meanwhile, we cross-
match our BL samples from the test set with those from Skarka et al. [59] to obtain an
estimate of the Blazhko frequencies and study its impact on our classification quality.

We find no significant differences between subsamples labeled incorrectly and those
labeled correctly based on Figure 11. However, for the incorrectly classified sample, we
find an outlier peak at the higher end of the PeriodBL distribution. We note that the peak is
caused by only two stars, which could be due to the effect of a small number of statistics.
On the other hand, it could be the case that, since PeriodBL is longer, the light curve covers
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fewer BL cycles within its coverage period and, therefore, PeriodBL is less significant in the
frequency space and is, hence, harder to identify.
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Figure 11. A comparison between the distribution of samples classified correctly and incorrectly by
our CNN method. Note that the density stands for the distribution after normalization. Note that the
PeriodBL is taken from Skarka et al. [59]

Then, we calculate a Spearman correlation coefficient with its associated p-value be-
tween the PBL from Equation (3) and light-curve parameters, including period, amplitude,
Fourier parameters, number of data points, and median magnitude error for each light
curve. The Spearman correlation coefficient (Rs) is calculated as follows:

Rs =
cov(R(X), R(Y))

σR(X)σR(Y)
(5)

where R(Xi), R(Yi) are the rank variables of the associated variables Xi and Yi, cov(R(X), R(Y))
is the co-variance of the rank variables, and σR(X) and σR(Y) are the standard deviations for
the rank variables. The results of the calculations are shown in Figure 12.

An analysis of Figure 12 reveals that the Spearman correlation coefficient p derived
for the MC Sample is much larger than those derived for the other two data sets, perhaps
due to limited sample size. The p-values of all the parameters derived on the base of the
test set and GB Sample 2 are smaller than 0.01, while the typical p-value is greater than 0.1
for the MC Sample.

It is noteworthy that the PBL parameter seems to have moderately negative depen-
dence on R21 and R31 for all of the three data sets, indicating that the nBL sample tends
to have larger R21 and R31 values. This is consistent with the trends shown in Figure 8.
Both Jurcsik [60] and PS17 [26] observed similar trends using samples from Messier 3 (M3),
Galactic Disk, and Galactic Bulge.

We observe some weak impact of amplitude on our results for GB Sample 2 but not
for the MC Sample and the test set. We believe that this weak negative correlation might be
a consequence of the blended stars, as discussed in Section 4.3.1. We also observed some
weak correlations between PBL and ϕ31 for GB Sample 2 and the test set, while no notable
trend has been observed for the MC Sample.

We also notice that the number of epochs for each light curve is negatively correlated
with PBL for the MC Sample. This indicates that, in the MC Sample, the stars that have
been classified as nBL tend to have more points per light curve than those identified as BL
stars. Note, however, that we have not observed such a trend in GB Sample 2 and the test
set. The reason for this might be that GB Sample 2 and the test set have more data points
per light curve, so such a correlation is not apparent. Meanwhile, the correlation between
the number of epochs per light curve and PBL for the MC Sample has an extremely high p-
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value for the correlation test (i.e., 0.37), indicating that this result might not be generalizable
to other data sets. On the other hand, we observe an opposite trend in the test set. This
perhaps reflects the fact that BL stars with more epochs per light curve can be detected
more easily. Similar trends have also been observed by PS17 [26]. Figure 3 suggested that
stars with fewer data points tend to have higher noise levels in the frequency spectra.
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Figure 12. Spearman correlation coefficient derived for each parameter that we investigated. The
parameters are labeled on the y-axis, while the values on the x-axis represent the associated Spearman
correlation coefficients.

However, the disparity between the MC Sample and the test set, particularly in terms
of the PBL–number of epochs correlation, which suggests a potentially weaker performance
of the model on data sets with fewer epochs per light curve. This discrepancy may be
attributed to overfitting, where the model is trained predominantly on light curves with
more epochs compared to those present in the MC Sample. To further understand how the
number of epochs could impact the performance of our model, we examine how accuracy
(ACC) varies with changes in the number of epochs for all our test samples together (i.e.,
MC sample + test set). More specifically, we partition the epochs into multiple bins and
calculate the ACC within each bin using data from the test/validation set and the MC
sample. Inspecting Figure 13, we observe a decrease in performance when we decrease the
number of epochs, from a typical test set accuracy ( 95%) to typical ACCs from the MC
Sample (91%). The bins exhibiting lower performance predominantly originated from the
MC Sample, hence offering a plausible explanation for the decline in performance within
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the MC sample. This observed decline in performance could potentially limit our model’s
ability to detect BL effects from samples with inferior light-curve quality.
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Figure 13. Number of epochs vs. ACC for our test samples. Please note that the transparency of the
dots has been adjusted to correspond with the number of samples contained within each bin.

Consequently, one potential approach to enhance the model’s performance is to
incorporate more light curves with marginal BL modulations, corresponding to marginal
BL peaks in the frequency spectra. Nonetheless, such an augmentation must be approached
with caution, as many of these marginal BL cases might not truly be BL at all (refer to
PS17 [26]), potentially leading to further confusion within the model. It is worth noting
that, despite the diminished performance observed in our most degenerate test samples,
primarily from the MC sample, the ACC remains superior to the model constructed by
PS19, underscoring the robustness of our network architecture.

On the other hand, based on the source-by-source analysis, we note that the model
seems to struggle to classify sources with low amplitudes. These low-amplitude sources
may be under-represented in the data set, given that RRab stars typically exhibit higher
amplitudes. Therefore, as an improvement to this model, future studies could introduce
more low-amplitude sources in the data set for training to reinforce the existence of these
low-amplitude sources.

Notably, no significant correlation has been observed between PBL and other light-
curve parameters, such as ϕ31, ϕ21, mean I-band magnitude, and error, for each light curve
in both the MC Sample and GB Sample 2. These findings suggest that the introduced
cut-offs for mean magnitude, error, and number of data points may reduce the risk of
overfitting the model.

While we acknowledge that these cut-offs may introduce additional bias to our testing
results. For example, despite the observation that sources from the MC Sample tend to
have degenerate light curves compared to the other two data sets, these sources still pass
many of the cut-offs that we set to ensure reasonable data quality for identification. As a
result, the testing results derived based on these sources might be biased towards the better
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end. Furthermore, the plotting process may introduce additional biases into the training
procedure. Factors such as image resolution and the size of the plotted points can influence
how the data are visually represented. However, as shown in Figure 2, the current plotting
configuration still allows for a clear distinction between BL and nBL stars.

Recursive neural networks (RNNs) present a potential avenue for improving our
classification model even further. RNNs have demonstrated comparable or superior perfor-
mance to CNNs in handling time-series data and have been effectively applied to variable
star classification (e.g., [61]). However, incorporating RNNs would require additional
modifications to our data set, which we defer to future studies.

The >8000 more newly classified RRab stars across two different sky regions allow us
to provide insights into the physical origin of the Blazhko effect at a statistical significance
level. Hence, in the next series of papers, we aim to use statistical analysis combined with
the power of machine learning to answer questions, such as, Is there a physical difference
between BL and nBL stars? If so, which one differs by the most? Which light-curve
parameter can best represent the modulation induced by the BL effect? These questions
will be addressed in a forthcoming paper.

6. Summary
In this study, we develop a new method to identify the RRab samples with the Blazhko

effect. The identification model is built based on the classic CNN model, ResNet 34, without
any modifications to its original structure.

After dividing BL/nBL sources classified by frequency spectra from GB Sample 1 into
the training set, validation set, and test set with a ratio of 7:2:1, the model is trained to
identify BL stars. This training process involved using the training set with the help of the
validation set directly from diagrams of the phased light curves to train our CNN model.
Using the test set, we estimate that our model has an ACC of 0.935 and an AUC of 0.978.
As the pulsation period for each source is not taken into account in our training process,
the high ACC and AUC scores for our model further indicate that the BL modulation can
be well-characterized by light-curve structure without considering the period of pulsation.

We then apply our model to 290 stars from the MC Sample to present a further
evaluation of our identification model. After applying frequency analysis to the MC
Sample to obtain the true labels, we labeled 118 samples as BL and 137 samples as nBL
based on the criteria that we suggested in Section 4.2. Based on a crossmatch between
the results from frequency analysis and our CNN’s classification, we conclude that our
model has ACC and AUC values of 0.90 and 0.95, respectively, for the MC Sample. We
believe that the model parameters estimated from the MC Sample are lower compared
with those estimated from the test set. The Spearman analysis indicates that the difference
in light-curve quality between GB Samples 1 and 2 might be responsible for the differences
in model parameters.

Compared with traditionally used frequency analysis methods, our method can be
more efficient and faster in identifying RRab stars with the Blazhko effect from huge
data sets. More importantly, our model can understand the light-curve characteristics of
both BL and nBL objects better than the existing machine learning methods such as MLP,
with up to 10% more sensitivity in identifying BL stars. Additionally, we note that our
CNN’s identification quality could also be impacted by the sampling of the light curve.
However, its overall dependence on light-curve quality is comparable with those required
by frequency analysis according to our evaluation. We did not find significant differences
between correctly and incorrectly labeled samples for all the light-curve parameters that we
studied. Therefore, we believe that our model can be applied well in future large-variability
searches, to identify the BL stars faster and more accurately.
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We then apply our CNN model to the newly selected GB Sample 2. In total, we
identified 2615 BL candidates, with a rate of 32% out of 8123 stars from GB Sample 2. We
then apply a KS-test to GB Sample 1 and CNN-labeled GB Sample 2. This revealed that,
among all the light-curve characteristics that we discussed (period, amplitude, and Fourier
parameters), the distribution of BL and nBL samples from GB Sample 2 based on our CNN
labels matches that of GB Sample 1 with p > 0.999. Additionally, the differences between
BL and nBL samples of GB Sample 2 based on our CNN’s classification mostly resemble
those found for GB Sample 1 for both samples with both higher (i.e., A > 0.2) and lower
(i.e., A ≤ 0.2) amplitudes. However, we also noticed that our samples have comparably
smaller amplitudes relative to stars from GB Sample 1. This might be an indication that
some (∼10%) of our samples from GB Sample 2 suffer from the blending effect. Such an
amplitude-related bending effect has also been suggested by using the Spearman test. In
the future, these newly discovered BL candidates will be used to present a detailed analysis
of the light curve and physical differences between BL and nBL stars.
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Borucki, W.J.; et al. Does Kepler unveil the mystery of the Blazhko effect? First detection of period doubling in Kepler Blazhko
RR Lyrae stars. Mon. Not. R. Astron. Soc. 2010, 409, 1244–1252. [CrossRef]
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