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Abstract: It has long been debated whether gamma-ray bursts (GRBs) could serve as
potential sources of ultra-high-energy cosmic rays (UHECRs). In this study, we consider
GRBs as sources of UHECR injection with an injection index of α = 2 and propagate them
through the extragalactic magnetic field within the framework of CRPropa 3. The baryon
loading factor fCR is taken into account to quantify the rate of UHECR energy injection.
In the benchmark case with a jet opening angle of θj = 1◦ and fCR = 1, we find that both
high- and low-luminosity populations contribute to less than 10% of the UHECR spectrum.
The most constrained scenario suggests fCR ≤ 15, indicating that GRBs are less efficient in
producing the all-sky UHECR intensity. The high-energy diffuse neutrinos and gamma rays
resulting from interactions between UHECRs from GRBs and extragalactic background
photons do not dominate the observations of Fermi-LAT or IceCube.

Keywords: UHECR; cosmogenic neutrino; GRB; multimessenger astronomy

1. Introduction
As the most violent and energetic phenomena in gamma-ray bands, gamma-ray

bursts (GRBs) have long been considered as one of the potential accelerators of ultra-high-
energy cosmic rays (UHECRs) [1–3]. Those with a long duration can be classified into
high-luminosity (HL) and low-luminosity (LL) categories based on whether the isotropic
peak luminosity Lp exceeds 1049 erg/s. Recent data sets from the Auger Observatory
suggest a light-to-heavy composition for the primary mass of UHECRs in the energy
range of 2 × 1018 − 3 × 1019 eV, with a possible proton component fraction of 10% above
3 × 1019 eV [4]. For LL GRBs, heavy compositions can survive more easily and account
for the spectrum of UHECRs with an energy injection rate Q ∼ 1044 erg Mpc−3yr−1 [5,6].
For HL GRBs, they have a lower local rate and a higher energy budget with a potential
proton-dominated outflow, as photodisintegration near the acceleration site occurs due to a
high effective optical depth τA,γ > 1.

The diffuse neutrinos can be produced when UHECRs are launched or ejected in
regions with dense photons or protons (e.g., jet base or the accretion disk). Neutrinos and
gamma rays can also be produced by hadronuclear (pp) or photohadronic (pγ) interactions
when UHECRs propagate in the photon fields of the extragalactic background light (EBL)
and cosmic microwave background (CMB).
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The energy scale of the isotropic diffuse gamma-ray background (IGRB), diffuse
neutrinos, and UHECRs are comparable, at ∼ 1044 − 1045 erg Mpc−3y−1 [7]. Although a
common origin for these cosmic radiations is possible, the intensity of IGRB appears to be
lower than the neutrino-associated hadronic flux, suggesting the presence of a population
of UHECR accelerators that are opaque to gamma rays [8] (e.g., choked jets in GRBs or
AGN). Cross-correlations between high-energy gamma rays from GRBs detected by the
Fermi Large Area Telescope (LAT) and UHECRs detected by the Telescope Array and Auger
have shown no significant correlation [9]. The stack analysis of the correlation between
gamma rays from GRBs and IceCube TeV-PeV neutrinos also found no significance [10].
Additionally, for the brightest GRB of all time, GRB 221009A, no evidence of neutrino
emission was found [11]. However, we cannot yet exclude the possibility that GRBs
UHECRs could dominate the all-sky intensity of diffuse gamma rays, neutrinos, and cosmic
rays. In this work, we use Monte Carlo simulations within the framework of CRPropa
3 to estimate the potential multi-messenger contribution of the propagation process of
GRBs UHECRs.

This paper is organised as follows: Section 2 introduces the UHECR propagating con-
figuration. Section 3 depicts our synthetic GRB samples and energy scale. The calculations,
robustness analysis, and conclusions are described in Section 4. The ΛCDM cold dark uni-
verse is adopted in this work assuming cosmological parameters with Ωm = 0.3, ΩΛ = 0.7
and H0 = 71 km s−1Mpc−1 .

2. Propagation with CRPROPA 3
To understand how UHECRs obtain nonthermal energy from GRBs, two leading

scenarios are magnetic reconnection [12] and shock acceleration [13], both of which predict
that UHECRs can be accelerated to energies up to 1020 eV. Diffuse neutrinos and gamma
rays can be produced when these extremely energetic nuclei propagate through the cosmo-
logical photon field. For a nuclei with primary mass A and charge Z, the dominate photo-
hadronic processes are photopion production (e.g., p + γbg → p + π0, p + γbg → n + π+),
Bethe–Heitler pair production (A

Z X + γbg →A
Z X + e+ + e−) and photodisintegration

(A
Z X + γbg →A−1

Z X + n,AZ X + γbg →A−1
Z−1 X + p). The induced charged pion will decay into

a muon and a neutrino, while gamma rays result from neutral pion decay. UHECRs are
deflected by the extragalactic magnetic field (EMGF) before reaching Earth. The average
deflection angle is given by [14]

δ ≈ 0.9◦Z
(

100EeV
E

)√
lc

Mpc

√
D

10Mpc

(
B

nG

)
(1)

for first order highly magnetized voids (B ∼ nG), where E/Z is the rigidity of UHECR that
travel a distance of D, lc (equals 1 Mpc is accepted in this work) is the coherence length,
and B is the RMS magnetic field strength.

To simulate the interaction and deflection of UHECRs, we utilize the framework of CR-
Propa 3.2 to randomly propagate UHECRs [15]. The photohadronic interactions mentioned
earlier are all included. For the secondary electromagnetic (EM) particles, an EM cascade
can be induced with energy loss processes such as pair production, including double and
triple pair production, and inverse-Compton scattering. We use the EBL model of Gilmore
et al. [16], and the universal radio background model of Protheroe and Biermann [17] in
this work. Similar to Das et al. [18], the EM cascade is managed by a numerical method
named DINT in CRPropa 3 to reduce the calculation time. We select an observed sphere
around the Earth with a radius of 1 Mpc to avoid the apparent deflection in the inner space.
All UHECRs and secondary particles that reach the observed sphere are recorded. For GRB
221009A, 107 protons with an energy spectrum dN/dE = E−2 between 0.1 EeV–100 EeV
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are injected at the location z = 0.151 (on the X axis) with an initial direction (−1,0,0),
and the arrival location on the observed sphere is plotted in Figure 1. After deflection by
the extragalactic magnetic field and interactions, only one-tenth of the protons reach the
observed sphere for a simulated minimal energy of 0.1 EeV.
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Figure 1. The spatial distribution of arriving UHECRs on the observed sphere. The initial direction of
UHECR injection is opposite to the x axis.

After presuming the magnetic field configuration with B ∼ 10−5 nG [19] and
lc = 1 Mpc for a random turbulent EGMF with Kolmogorov power spectrum, we need the
redshift and baryon energy information to simulate all GRBs hadronic samples with an
injection spectrum dN/dE = E−2 between 0.1 EeV and 100 EeV.

The redshift interval (0,5] is divided into 50 bins with a bin width of 0.1, and the total
observed spectrum is processed by weighting the redshift distribution.

3. Simulation Data Set
The distribution of the isotropic peak luminosity L of GRBs is generally described

by the luminosity function ϕ(L). The local burst rate is observationally related to the
parameters of ϕ(L) after considering the threshold and exposure of the correspond detector.
The number of GRBs per unit time in the interval [z, z + dz] and [L, L + dL] is given by

dN
dtdzdL

=
RGRB(z)

1 + z
dV(z)

dz
ϕ(L) (2)

where RGRB(z) is the event rate in units of Gpc−3yr−1 at redshift z, dV/dz = 4πcD2
L(z)/[H(z)

(1 + z)2] is the comoving volume element, while H(z) = H0[Ωm(1 + z)3 + ΩΛ]
1/2 is the

Hubble parameter. The luminosity function ϕ(L) is normalized to 1 and is widely adopted
as a broken power law

ϕ(L) =
A

log10(L)


(

L
Lc

)a
, Llower ≤ L ≤ Lc,(

L
Lc

)b
, Lc ≤ L ≤ Lupper.

(3)

where a and b are the lower and upper index, respectively, and Lc is the break luminosity.
In this work, we adopt the luminosity function of HL GRB populations, with the best value
of fit, Llower = 1050erg s−1, Lupper = 1054erg s−1, Lc = 1052.5±0.2erg s−1, a = −0.17+0.1

−0.2,
b = −1.44+0.6

−0.3. The burst rate following the empirical broken power law (EBPL) form is
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RGRB(z) = ρ0(1 + z)n1 , z ≤ z1,
(1 + z1)

n1−n2(1 + z)n2 , z ≥ z1,

where the local event rate ρ0 is fixed by Fermi-LAT observation and the empirical parame-
ters n1 = 2.1, n2 = −1.4, z1 = 3.1 [20]. The validity of all parameter values has been tested
by Yao et al. [21], who concluded that the star formation rate is not favoured. The redshift
distribution of our model samples is shown in Figure 2.
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Figure 2. The redshift distribution of our GRB samples for one year of detection. The blue line
indicates the EBPL model rate multiplied by a factor of 10−2 for clarity. The red line represents the
predicted annual detection of GRBs, accounting for detection effects.

If we consider LL GRBs as a distinct subgroup compared with HL GRBs, they exhibit
a wider jet opening angle ≳ 30◦ and a significantly higher local burst rate than the latter.
Referring to Liang et al. [22], LL GRBs have a local burst rate of ρLL

0 ∼ 325+352
−177 Gpc−3yr−1

with the star formation rate model [23]

RGRB(z) = 23ρ0
e3.4z

e3.4z + 22
. (4)

The Fermi-GBM Gamma-Ray Burst Spectral Catalog [24] analyzed the gamma-ray
energy emission Efl,iso on the extend band of 1 keV–10 MeV for 135 GRBs, and the long
GRBs were picked and fitted using a Gaussian log10(Efl,iso/erg) = 52.9 ± 0.7. Assuming
Eγ,iso as a representation of the total leptonic emission for GRBs, the total baryon energy of
HL GRBs is estimated as Ep,iso = fCREγ,iso. The factor fCR denotes the baryon loading factor
as the traditional definition, which describes the ratio of leptonic and baryonic acceleration
energy. The baryon loading factor is model-dependent (for different acceleration sites) and
observation-constrained. For instance, the neutrino observation implies fCR ≲ 4 for GRB
221009A [10]. A high-energy cut is implemented to prevent overestimation resulting from
the high-energy portion of the Gaussian distribution, which exceeds the observation of
the most energetic GRB 160625B with Efl,iso = 5 × 1054 erg. In the calculation of the total
hadronic emission energy scale, the assumption that fCR = 1 is set in the following analysis.

All of the simulated GRBs are considered EeV proton sources, with an injection spec-
trum of dN/dE = E−2 in the energy band of 0.1–100 EeV. All the EeV protons are launched
in the jet cone, interacted by background photons, and deflected by the extragalactic mag-
netic field. In Section 4, we calculate the diffuse cosmic ray flux on the observed sphere to
determine the contribution to UHECRs. The secondary neutrinos are propagated in 1D
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with solid angle correction, while the DINT algorithm is involved for secondary gamma
rays from the hadronic interaction as a potential contributor of IGRB.

4. Result
4.1. Calculation of All-Sky Isotropic Emission

UHECRs are propagated by Monte Carlo simulation within the framework of CRPropa
3.2 and are captured by the observed sphere. Over a time duration ∆T equivalent to one
year and an observed area of 4πD2

0 (D0 = 1 Mpc), we calculate the observed UHECRs
spectrum. Denoting the burst rate in one year as a dimensionless function of redshift z as
Φ(z) = RGRB(z)

1+z
dV
dz , the spectrum of UHECRs can be obtained by

dN
dE

=
∫ ∫ dN(E, Ep, z)

dE
dG(Ep, z)

dEp
dEpdz (5)

where dN(E, Ep, z) is the differential number of particles with energy in the interval (E,
E+dE) from a burst with hadronic energy Ep at redshift z, and G(Ep, z) is the normalized
Gaussian (to burst rate Φ(z)) introduced in Section 3. For the same UHECR injection
spectrum, the intensity of the observed spectral energy distribution is proportional to the
total injection energy, which means

∫ dN(E, Ep, z)
dE

dG(Ep, z)
dEp

dEp ∝
∫

Ep
dG(Ep, z)

dEp
dEp

=
〈

Ep
〉
Φ(z).

(6)

To simplify the problem, a top-hat jet is considered with a benchmark jet opening
angle θj = 1◦. The distribution weighted UHECR injection energy is

〈
Ep,iso

〉
= 3 × 1053 erg

and
〈

Ep
〉
=

〈
Ep,iso

〉 1−cos
θj
2

2 . The value of
〈

Ep
〉

can be increased by a factor of 2 if the high
energy cut on Eγ,iso is removed. Then, the observed flux is

ν fν =
∫ 1

4πD2
0

E2dN(E, z)
dE

Φ(z)|Ep=⟨Ep⟩dz (7)

The distribution of the UHECR energy injection rate on a certain redshift in Equation (7)
is simplified by the average injection energy described by Equation (6). Given that the
UHECR energy injection rate is outlined by the right-hand term of Equation (6), the
energy scales of PeV neutrinos and cascade-induced gamma rays are also validated. The
electromagnetic (EM) cascade and neutrino production are simulated in one dimension,
with nearly all the total energy of the EM cascade being transformed into gamma-ray
energy. The conversion of gamma-rays and neutrinos involves multiplying by the effective
geometry factor that describes the ratio of the solid angle of the observed sphere occupied
by the GRB jet. The diffuse gamma ray and neutrinos spectrum takes the expression of

ν fν =
∫ 1 − cosθi

4πD2
0(1 − cos

θj
2 )

E2
γ

dN(Eγ, z)
dEγ

dQ̃(z)
dz

dz (8)

for a cone isotropic emission, where θi is the half opening angle of the observed sphere
corresponding to the injection site sin θi = 1 Mpc/DL(z), DL(z) is the luminosity distance
on redshift z, and Q̃(z) is the gamma ray or neutrinos energy injection rate normalized to
the UHECR energy injection rate.
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4.2. Hadronic Mutimessenger Contribution from HL GRBs

The baryon loading factor fCR is connected to the acceleration mechanism and the
launch site. For the internal shock model, the lepton and proton are simultaneously
accelerated at the internal shock radius. The fCR can be as large as the part of internal
energy converted into electrons fCR = 1/ϵe = 10. Meanwhile, for dissipative photosphere
models and magnetic dissipation models, a lower fCR is expected [25]. The best constraint
from the highest neutrino signal expectation GRB 221009A is fCR ≲ 3 as the function of
Lorentz factor for the neutron–proton collision scenario [10]. The solid colorful line shows
the isotropic gamma rays, neutrinos, and UHECRs spectrum from the propagation of
simulated GRB EeV protons in Figure 3 for the fCR = 1 case. The dash and dotted line
represent a higher value of fCR of 10 for certain models’ prediction and 26 for the purpose
to fit the UHECRs spectrum, respectively.
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Figure 3. Multimessenger contribution from HL GRB populations. Solid lines denote the diffuse
gamma rays, neutrinos, and cosmic ray protons from the propagation of GRB UHECRs with a baryon
loading factor fCR = 1. The dash line and dotted line are from the UHECR propagation with fCR = 10
and fCR = 26. The spectrum of isotropic diffuse gamma ray background deducted by the foreground
model A from Fermi−LAT is taken from Ackermann et al. [26], the diffuse neutrinos and UHECRs
are taken from The IceCube Collaboration [27] and Halim et al. [4], respectively.

Generally speaking, the extragalactic gamma-ray background including point sources
are supposed to be dominated by blazars [28]. Star-forming galaxies account for the
majority of IGRB [29]. The secondary gamma rays from the EM cascade induced by
proton propagation contribute two orders of magnitude less than the intensity of the
IGRB, even if the energy injection rate satisfies the requirement for the all-sky UHECR
spectrum, implying a leptonic origin for astrophysical sources. To dominate the intensity of
UHECR, the escaped protons from HL GRBs should satisfy a maximal energy injection of
Qp ∼ 3.5 × 1045erg Mpc−3yr−1 corresponding to fCR = 26 at redshift z = 2. The defection
of the simulated 100 EeV protons is due to the minimal burst radius that exceeds the GZK
radius, which is about 100 Mpc for 100 EeV protons. Beyond the end of the energy band
in the simulation, the Auger composition analysis showed a mixed-heavy composition
was dominant [4]. The proton composition of HL GRBs could hardly explain the UHECR
spectrum. The all-flavor neutrinos spectrum is also plotted in Figure 3. The detection of EeV
neutrinos from the propagation of UHECRs is consistent with observations from IceCube.
If we consider EeV neutrinos as an extension of PeV neutrinos, the overall diffuse neutrino
flux seems to surpass the index of Γ = 2.5 observed for PeV neutrinos [30], which argues
against a baryon loading factor greater than 1.8. Our findings suggest that the assumption
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that IGRB originates from the propagation of UHECRs that have escaped from GRBs or
sources with GRB-like evolution should be disregarded.

4.3. Hadronic Mutimessenger for the LL GRB Case

The nature of LL GRBs is still unclear. Their lower gamma-ray luminosity, perhaps
caused by the lower bulk Lorentz factors of the outflow [31], or a wider even quasi-spherical
jet. The off-beam LL GRBs seems to be associated with 10% of Type Ic supernovae (e.g.,
GRB 980425 and GRB130427A [32–34]). Up to date, the most complete LL GRB burst energy
samples suggest the emission energy Eiso ∼ 1051 − 1052 erg [35]. The lower gamma-ray
luminosity makes the photon environment more transparent for ultra-high energy nuclei,
with an effective optical depth of fAγ < 1 at a loading site r ∼ 108 cm [6]. We take the total
cosmic ray nuclei energy EN = 1051,1052 erg temporarily for the Si-F 1 presupernova model
composition of Zhang et al. [6] and calculate the nuclei propagation spectrum, which is
shown in Figure 4.
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Figure 4. UHECRs after propagation from LL (blue line) and HL GRBs (black line). For LL
GRBs hadronic emission, the Si−R 1 composition of Zhang et al. [6] is applied with a rigidity-
dependent injection spectrum dN/dE = (E/Z)−2, and the results of total cosmic ray nuclei energy
of EN = 1051 erg and EN = 1052 erg are marked in solid and dash lines. The observed UHECRs
spectrum of HL GRBs with fCR = 10 and fCR = 26 marked by black solid and dash lines.

The nuclei seem to fit badly with the UHECR all-particle spectrum. The main difference
bewteen this work and the Si-R 1 model of Zhang et al. [6] is the injection spectrum of the
escaped nuclei from GRBs. The latter used a delta-like function to estimate the escaped
nuclei energy spectrum. If we assume a power law proton production rate with an index of
s and exponential cut at pm(χ) as a function of dynamical evolution χ of the accelerator,
the time-integrated spectrum in momentum space can be given by [36]:

Nesc(p) ∝
p1−sK(p−1

m (p))
p−1

m (p)[dpm/dχ]|
χ=p−1

m (p)

, (9)

where K(χ) is the local emission rate of the proton production at χ. If both K(χ) and
pm(χ) follow the power law forms with index β and −α, then the time-integrated spec-
trum also follows the power law form, Nesc ∝ p−sesc , and the index of the escaping par-
ticles is sesc = s + β/α. Here, we suppose the index of sesc = 2 in the analysis. The
UHECR spectrum might be fitted well using a harder power law index of 1.5, as sug-
gested by Zhang et al. [6]. For a nuclei energy injection rate of 2.4 × 1044 erg Mpc−3yr−1

corresponding to EN = 1051 erg, the contributions of the diffuse gamma ray and neu-
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trinos towards the background intensity are an more order of magnitude lower, similar
to the HL scenario. Our results imply a comparable nuclei energy injection rate to that
of Zhang et al. [6], which demands a injection rate of 3.6 × 1044 erg Mpc−3yr−1. However,
the role of LL GRBs is still not determined by direct evidence due to the limit observation
and unclear physical mechanism.

4.4. The Tightest Constraint from GeV Photons

For the potential GeV photon emission, the LAT observation consists of hadronic
emission and leptonic emission: FLAT = Fγ,Had + Fγ,e. The biggest constraint is
Fγ,Had < FLAT , which provides the upper limit of UHECR energy, presuming that the
total gamma-ray energy is from the EM cascade of hadronic emission. So, the hadronic
emission energy on the tLAT band (0.1–10 GeV) is

ELAT,H =
Eγ,iso

10

∫ 1 MeV
10 keV E dN

dE∫ 10 MeV
1 keV E dN

dE

, (10)

where 10 is the empirical relationship of fluence, and FGBM/FLAT ∼ 10 is the GBM flu-
ence on the 10 keV–1MeV band [37], and the second term on the right hand is 1/2 for a
photon spectrum dN/dE ∝ E−2. So, we can obtain the upper limit of the multimessenger
contribution for the condition Fγ,Had = FLAT in Figure 5.
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Figure 5. The same as Figure 2, but the gamma-ray energy scales is measured using Fγ,Had = FLAT .
See more details in the text.

It is observed that, under the most stringent constraint, protons originating from
gamma-ray bursts appear to play a subdominant role in contributing to Ultra-High Energy
Cosmic Rays (UHECRs) with a baryon loading factor of fCR = 15. This constraint should be
interpreted cautiously, as the value of fCR is notably higher than the predictions of various
GRB models. Additionally, the burst energy Eγ,iso is somewhat overestimated, given that
only bursts with measured redshifts are statistically included in the analysis.

4.5. The Robustness of the Analysis

It is important to note that the calculations discussed in the preceding sections as-
sume a narrow jet opening angle of θj = 1◦. It is crucial to highlight that our results are
not dependent on the jet opening angle due to the geometric relationship elucidated in
Section 4.1. The total energy flux of the secondary particles and UHECRs that we observe
is associated with the solid angle occupied by the observed sphere. Recently, a delay of
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400 GeV photon observed by Fermi-LAT has been reported, which is believed to be a
secondary EM cascade photon resulting from the propagation of UHECRs [38]. The delay
time corresponding to the strength of the intergalactic magnetic field is approximately
4 × 10−8 nG. We also conducted the simulation with an RMS magnetic field strength of
4 × 10−8 nG and discovered that the outcomes were consistent with previous analyses.
This consistency reinforces the robustness of our findings and supports the conclusions
drawn from the simulations.

To estimate the influence brought by nearby GRBs with a redshift of z < 0.1, we com-
pared the value of RGRB(z)(1−cosθi) on redshift z = 0.001 ∼ 4 Mpc and z = 1. The former
value of RGRB(z)(1−cosθi) is about an order of magnitude lower than the latter value,
demonstrating that the nearby GRBs are negligible compared with the whole samples.

5. Conclusions
The dominant sources of UHECRs are still uncertain. In this study, we conduct an

analysis to assess the potential role of GRB as an UHECRs injection source using CRPropa
3.2. Regardless of the specifics regarding the jet opening angle and EMGF, our findings
suggest that the Auger UHECR spectrum can be well-fitted by a composition consisting
purely of protons originating from HL GRBs with a baryon loading of fp = 26. This implies
an escape radius with approximately the size of the internal shock region. Our analysis
indicates that, even when assuming hadronic emission dominates the gamma-ray emission
in the LAT band, GRBs are not likely to be the main contributor to the all-sky UHECRs
intensity, even when overestimating the actual gamma-ray energy emission. If we consider
a power-law extension for EeV neutrinos, the baryon loading should be lower than 1.8. We
anticipate that observations and spectral measurements of EeV neutrinos and UHECRs
from GRBs in the future could validate or further constrain our analysis.
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