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Abstract: We present a novel approach for the construction of interior solutions for the Kerr
metric, extending J. Ovalle’s foundational work through ellipsoidal coordinate transfor-
mations. By deriving a physically plausible interior solution that smoothly matches the
Kerr exterior metric, we analyze the energy conditions across various rotation parameters.
Our findings reveal anisotropic fluid properties and energy condition behaviors in specific
space-time regions, providing insights into the strong-field regime of rotating black holes.
The proposed solution offers a more realistic description of rotating black hole interiors,
with implications for understanding compact astrophysical objects.

Keywords: general relativity; kerr interior metric; kerr metric; schwarzschild interior
metric; schwarzschild metric

1. Introduction
The Einstein field equations find their quintessential solution in the Schwarzschild

metric, which delineates the spacetime curvature around a static, spherically symmet-
ric black hole devoid of charge. While the external Schwarzschild geometry has been
thoroughly analyzed and validated by observational evidence [1], the internal structure
presents a more nuanced picture. The interior solution, formulated through the Tolman-
Oppenheimer-Volkoff (TOV) equations [2,3], models the black hole’s internal composition
as a perfect fluid sphere under hydrostatic equilibrium. However, this idealized representa-
tion, while mathematically elegant, falls short of capturing the dynamic nature of rotating
celestial objects.

A transformative breakthrough emerged with the formulation of the Kerr metric,
which revolutionized our understanding of rotating black holes [4]. This mathematical
framework has proven instrumental in explaining various astrophysical observations,
from the behavior of matter in accretion flows [5–7] to the detection and characterization
of gravitational radiation [8,9]. Nevertheless, the internal geometry of Kerr black holes
remains one of the most profound unsolved problems in classical general relativity. A
comprehensive understanding of the interior region of a rotating black hole could provide
crucial insights into fundamental questions about gravity, spacetime, and the nature of
singularities. This knowledge could also have implications for astrophysical phenomena
such as black hole mergers and the formation of supermassive black holes.

Several significant approaches have been proposed to address this mathematical chal-
lenge. A notable recent contribution comes from J.L. Hernández-Pastora and L. Herrera [10],
who developed a methodology predicated on the assumption that boundary conditions
of the exterior metric can be utilized to derive the corresponding interior solution. Alter-
native approaches in the literature have focused on developing algorithmic methods to
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construct interior solutions for axially symmetric mass distributions. The Newman-Janis
algorithm [11] has demonstrated particular utility in this context [12,13]. However, these
solutions typically yield expressions of such mathematical complexity that they prove im-
practical for subsequent analytical applications. Furthermore, a common limitation of these
solutions is their dependence on arbitrary functions of both radial and polar coordinates [13],
rendering them ineffective for quantitative predictions of stellar characteristics.

Our investigation builds upon the foundational work of J. Ovalle [14], who pioneered
the exploration of alternative Schwarzschild black hole interior geometries beyond con-
ventional point mass approximations. His approach established novel frameworks for
both initial collapse conditions and viable alternatives to classical singularities. These
formulations, when extended to cosmological applications, generate analytically tractable
Kantowski-Sachs universes, effectively bridging the gap between black hole physics and
cosmological modeling [15]. Through the implementation of advanced mathematical
methodologies and building upon these fundamental insights, we propose a more sophisti-
cated and physically realistic description of rotating black hole interiors.

In this study we introduce a novel approach to construct Kerr interior solutions, build-
ing upon previous work on ellipsoidal coordinate transformations [16,17]. Our method
starts with a static, spherically symmetric seed metric and systematically generalizes it to
an axisymmetric, rotating configuration. The resulting interior solution seamlessly matches
the exterior Kerr metric at the horizon radius.

We aim to construct an interior solution that: (i) preserves the Kerr exterior, (ii) is
characterized by a single free parameter M, (iii) avoids exotic matter and additional
geometric structures near the horizon, and (iv) ensures finite tidal forces everywhere. Such
a solution would provide valuable insights into the process of gravitational collapse, the
formation of rotating black holes, and the nature of singularities.

This paper is organized as follows. Section 2 reviews the interior black hole solution
proposed by J. Ovalle. Section 3 introduces the method of ellipsoidal coordinate trans-
formation and derives the static Kerr metric. Section 4 presents a detailed analysis of
the generalized interior solution of the Kerr metric and its physical properties. Section 5
investigates the energy-momentum tensor and the associated energy conditions. Section 6
presents a discussion and future perspectives. Throughout this paper, we use geometric
units where c = G = 1, κ = 8πG.

2. Black Hole with Integrable Singularity
In pure general relativity, the Schwarzschild metric [1] is the unique spherically

symmetric black hole solution without a cosmological constant:

ds2 = − f (r)dt2 +
dr2

f (r)
+ r2(dθ2 + sin2 θdϕ2), (1)

where
f (r) = 1 − 2M

r
, 0 < r ≤ ∞. (2)

The singularity at r = 0 corresponds to a point-like mass, while the coordinate singularity at
r = 2M ≡ h defines the event horizon. Inside the horizon, f (r) becomes negative, causing
a coordinate transformation between the radial and temporal coordinates. This reveals the
dynamic nature of the inner region, where causal structure is dramatically altered.

The exterior region (r > h) of the Schwarzschild black hole is well-established and
supported by observations. It describes a static, asymptotically flat spacetime sourced
by a compact, dark configuration of radius h. However, observers in this region cannot
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access the interior structure, as the event horizon at r = h prevents the transmission of
information to the exterior.

To further derive the interior black hole solution, which smoothly matches to the exterior
Schwarzschild black hole at the event horizon, we begin with the Hilbert-Einstein action

S =
∫ [

R
2κ

+LM

]√
−gd4x, (3)

where R is the scalar curvature and LM is a Lagrangian density representing ordinary
matter. The most general static, spherically symmetric metric can be expressed as

ds2 = −eΦ(r)
[

1 − 2m(r)
r

]
dt2 +

dr2

1 − 2m(r)
r

+ r2dΩ2,

dΩ2 = dθ2 + sin2θdϕ2,

(4)

where Φ(r) is a metric function and m(r) is the Misner-Sharp mass function, a tool to
describe black hole mass. It generalizes the Schwarzschild radius, accounting for mass,
energy, and angular momentum [18].

The Schwarzschild metric (1) is recovered by setting Φ(r) = 0 and m(r) = M for
r > 0, where M is the Arnowitt–Deser–Misner (ADM) mass associated with a point-like
singularity at r = 0. The coordinate singularity at r = 2M ≡ h corresponds to the event
horizon. To extend the Schwarzschild black hole within the Kerr-Schild class, we set
Φ(r) = 0 and introduce a mass function m(r) = M for r ≥ h, where M ≡ h/2 is the total
mass and h is the event horizon radius.

The line element (4) exhibits a crucial property: at the event horizon (r = h), the
time and radial terms exchange signs. This behavior arises from the specific form of the
Misner-Sharp mass function:

m(r) → m̄(r) =

µ(r), r ≥ h

r − µ(r), 0 ≤ r ≤ h
(5)

where µ(r) coincides with m(r) for r ≥ h, ensuring µ(h) = M. This mass transformation
leads to a sign flip in the scalar curvature:

R(r) → R̄ =

R(r), r ≥ h
4
r2 − R(r), 0 ≤ r ≤ h

(6)

By employing the mass transformation (5), the metric (4) can be decomposed into
two regions:

ds2 = −eΦ(r)F(r)dt2 +
dr2

F(r)
+ r2dΩ2, r ≥ h (7)

ds2 = eΦ(r)F(r)dt2 − dr2

F(r)
+ r2dΩ2, r ≤ h (8)

where

F(r) = 1 − 2µ(r)
r

≥ 0. (9)

A necessary condition for the metric (4) to represent a (singular) black hole is that the mass
function m(r) can be expressed in the form of Equation (5).
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For r > h, the LM = 0 in the Hilbert-Einstein action (3), which governs the dynamics.
In contrast, for 0 < r ≤ h, the Einstein field equations give rise to an anisotropic fluid
energy-momentum tensor:

Ta
b = diag[p1,−ϵ, p2, p3], (10)

where the energy density ϵ, radial pressure p1, and transverse pressure p2, p3 satisfy

ϵ =
2m′

κr2 , p1 = −2m′

κr2 ,

p2 = p3 = −m′′

κr
.

(11)

Here, m′ and m′′ denote the first and second derivatives of the mass function m(r) with
respect to the radial coordinate r, respectively. The negative radial pressure p1 acts as an
inward force, confining the matter within the black hole’s event horizon.

In the region 0 < r < h, the radial and temporal coordinates exchange roles. Notably,
the Einstein Equation (11) are linear in the mass function m(r), allowing for linear combina-
tions of solutions, a manifestation of gravitational decoupling [19,20]. Finally, if there exist
matter inside the black hole, that means Tab ̸= 0, the Bianchi identity leads to ∇aTab = 0,
we obtain

ϵ′ = −2
r
(p2 − p1). (12)

For a physically realistic stellar system, the density should monotonically decrease from
the center, i.e., ϵ′ < 0. According to Equation (12), this implies an anisotropic fluid with
p2 > p1. This pressure anisotropy counterbalances the inward pull due to the negative
energy gradient ϵ′ < 0, ensuring the stability of the configuration. The anisotropic nature
of the fluid is a consequence of the specific geometry of the spacetime and the underlying
field equations [21].

To ensure a smooth transition between the interior and exterior solutions, we impose
the Darmois matching conditions [22]. This requires the continuity of both the metric func-
tions and their first derivatives across the boundary surface. In the case of the Schwarzschild
metric (7), this implies the following matching conditions for the mass function:

m(h) = M, m′(h) = 0. (13)

From Equations (11) and (13), we see that the continuity of the mass function implies the
continuity of the energy density and radial pressure at the boundary:

ϵ(h) = p1(h) = 0. (14)

While the transverse pressures p2 and p3 may exhibit discontinuities across the bound-
ary, this does not necessarily imply a physical discontinuity in the matter distribution.
By considering a suitable coordinate transformation or a more appropriate description
of the matter content, it may be possible to reconcile the apparent discontinuity in the
transverse pressures.

Black holes can be classified as singular or regular. While regular black holes lack
singularities, they often exhibit an inner (Cauchy) horizon within the event horizon, leading
to potential issues like mass inflation and instability [23,24]. Between these two families,



Universe 2025, 11, 23 5 of 17

integrable black holes [25] can also be found, characterized by a singularity in the curvature
scalar R for the metric (8):

R =
2rm′′ + 4m′

r2 ̸= 0, 0 < r ≤ h. (15)

For a singularity to be integrable, ensuring finite tidal forces, R must be singular at most as
R ∼ 1/r2. Consequently, based on Equation (15), we demand

2rm′′ + 4m′ =
∞

∑
n=0

Cnrn, n ∈ N. (16)

The form of the right-hand side of Equation (16) is chosen to ensure that the singularity
in the curvature scalar R is integrable, leading to finite tidal forces. This is a necessary
condition for a physically reasonable spacetime. The specific form of the series solution
allows for a wide range of possible behaviors for the mass function m(r), subject to the
constraints imposed by the boundary conditions and the requirement of finite tidal forces.
From Equations (15) and (16), yields the mass function

m = M − Q2

2r
+

1
2

∞

∑
n=0

Cnrn+1

(n + 1)(n + 2)
. (17)

For 0 < r ≤ h, the integration constants M and Q correspond to the mass of the
Schwarzschild solution and a potential charge for the Reissner-Nordström geometry, respec-
tively. To simplify the analysis and focus on the essential features of the interior solution,
we restrict our attention to the uncharged case by setting Q = 0. This avoids the additional
complexities associated with charged black holes, such as the presence of Cauchy horizons.
This leaves us with two parameters: M and M.

The series (17) converges around r = h under condition M ≡ m(h) = h/2, but its
analyticity in the full domain 0 < r ≤ h remains to be determined. The Schwarzschild
metric is recovered by setting M = M ̸= 0 and Q = Cn = 0 for all n in Equation (17).
Other interior solutions have been explored in reference [14], with

M = Q = 0. (18)

These are determined by the total mass M and and a subset of non-zero Cn coefficients,
such that the exterior remains the Schwarzschild solution (7). From the mass function (11),
the energy density and pressures associated with these interior geometries are given by.

κϵ =
∞

∑
n=0

Cnrn−2

(n + 2)
= −κp1, (19)

κp2 = κp3 = −1
2

∞

∑
n=0

n
n + 2

Cnrn−2, (20)

for 0 < r ≤ h. We adopt J. Ovalle’s second solution as a seed metric, ensuring a smooth
transition between the interior and exterior regions at the horizon. This is achieved by
imposing the condition

m′′(h) = 0, (21)

which ensures continuity of the metric and its derivatives across the boundary.
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As a result of Equation (11), the tangential pressure p2, p3 is continuous at the horizon,
implying that ϵ = p1 = p2 = p3 = 0 at r = h. This ensures the continuity of the
energy-momentum tensor across the boundary surface:

Ta
b (h) = 0, (22)

which the mass function yields

m(r) = r − r3

h2 +
r4

2h3 . (23)

The line element is

ds2 =

[
1 − 2r2

h2 +
r3

h3

]
dt2 − dr2

1 − 2r2

h2 + r3

h3

+ r2dΩ2, (24)

for 0 < r ≤ h. A detailed derivation of mass function (23) can be provided in an Appendix A
for readers interested in the technical details. The source for the metric (24), which also
generate the outer Schwarzschild black hole, is given by

κϵ = −κp1 =
2

r2h3 (h − r)2(h + 2h),

κp2 = κp3 =
6
h3 (h − r),

(25)

which generating the Ricci scalar curvature

R =
4
r2

(
1 +

5r3

h3 − 6r2

h2

)
, (26)

for 0 < r ≤ h.
Other integrable black hole solutions, based on J. Ovalle’s mass functions, take the

polynomial form:
m(r) = r + Arl + Brn + Crp,

p ̸= n ̸= l > 1,
(27)

where A, B, and C are constants determined by the boundary conditions (13) and (21). A
selection of these solutions is presented in Table 1 [14].

Table 1. Interior solutions with mass function (27) satisfying m′(h) = m′′(h) = 0, with p > n > l > 1.

{l, n, p} m(r) = r + Arl + Brn + Crp ϵ > 0 Energy Condition

{3, 4, p} m(r) = r − r3

h2 +
r4

2h3 Yes Strong

{3, 7, 8} m(r) = r − 7r3

10h2 +
r7

2h6 − 3r8

10h7 Yes Strong

{4, 5, 6} m(r) = r − 5r4

2h3 +
3r5

h4 − r6

h5 Yes Strong

3. Derivation of the Kerr Metric Using Ellipsoid Orthogonal
Coordinate Transformations

To derive static, axisymmetric solutions, we begin with Minkowski spacetime in
Cartesian coordinates:

ds2 = −dt2 + dx2 + dy2 + dz2. (28)
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We then apply the following ellipsoidal coordinate transformations to Equation (28):

x →
(

r2 + a2
)1/2

sinθcosϕ,

y →
(

r2 + a2
)1/2

sinθsinϕ,

z → rcosθ,

t → t.

(29)

Here, a is the coordinate transformation parameter. The metric (28) in the new coordinate
system becomes

ds2 = −dt2 +
Σ

r2 + a2 dr2 + Σdθ2 + (r2 + a2)sin2θdϕ2, (30)

where Σ = r2 + a2cos2θ.
According to Chou’s research [17], metric (30) describes an empty ellipsoid spacetime

and can be rewritten in the following orthogonal form

ds2 = − r2 + a2

Σ

(
dt − asin2θdϕ

)2
+

Σ
r2 + a2 dr2 + Σdθ2 +

sin2θ

Σ

[
(r2 + a2)dϕ − adt

]2
. (31)

For derivation of the Kerr metric, we may use the following ellipsoid orthogonal ansatz:

ds2 = − f (r)
Σ

(
dt − asin2θdϕ

)2
+

Σ
f (r)

dr2 + Σdθ2 +
sin2θ

Σ

[
(r2 + a2)dϕ − adt

]2
. (32)

Here, f is a function of r, and a is a constant. The Kerr metric can be directly derived from
the ellipsoidal symmetry. The metric tensor from the proposed ansatz (32) is given by

gµν =


− f (r)−a2sin2θ

Σ 0 0 ( f (r)−r2−a2)asin2θ

Σ
0 Σ

f (r) 0 0

0 0 Σ 0
( f (r)−r2−a2)asin2θ

Σ 0 0 [(r2+a2)2− f (r)a2sin2θ]sin2θ

Σ

. (33)

To solve the Einstein field equations, we calculate the Christoffel symbols and the Ricci
curvature tensor of metric (33). The non-zero components of the Ricci tensor are given by.

R00 =
1

2Σ3 f 2

{
Σ f 3 f ′′ + 2 f 2

[
−r f ′(a2sin2θ + f ) + f 2 − 2 f a2cos2θ + a2sin2θ(r2 − a2)

]}
, (34)

R11 =
1

2Σ f 4

[
− f 3Σ f ′′ + 2 f 3(a2cos2θ + a2 + f ′r − f )

]
, (35)

R22 =
− f ′r + r2 − a2 + f

Σ
, (36)

R03 = R30 =
asin2θ

2Σ3 f 2 {Σ f 3 f ′′ − 2 f 2
[
r(r2 + a2 + f ) f ′ − f 2 + (a2cos2θ − r2) f + a4 − r4

]
}, (37)

R33 =
−1

2Σ3 f 2 {−a2 f 3(−sin2θΣ f ′′ − 2 f 2((a2sin2θ f + (r2 + a2)2)))r f ′

−a2sin2θ f 2 + (−a4cos4θ − 2a2r2 − r4) f + (a2 − r2)(r2 + a2)2}.
(38)
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There are second-order differential terms involving f and trigonometric functions. By
setting R22 = 0, we obtain a simpler first-order differential equation for the metric function
f . This simplification allows us to solve the Einstein field equations (Rab = 0):

− f ′r + r2 − a2 + f = 0. (39)

The solution to Equation (39) is given by:

f (r) = r2 + C1r + a2. (40)

Imposing asymptotic flatness condition, i.e., f (r)
Σ approaches the Schwarzschild metric

1 − 2M
r as r → ∞, yields C1 = −2M. Substituting this into Equation (40), we find that

Rab = 0. Finally, an ellipsoidal coordinate transformation and an orthogonal metric ansatz
lead to the Kerr metric:

ds2 = −∆K+

Σ

(
dt − asin2θdϕ

)2
+

Σ
∆K+

Σdθ2 +
sin2θ

Σ

[
(r2 + a2)dϕ − adt

]2
, (41)

where Σ = r2 + a2cos2θ, ∆K+ = r2 − 2Mr + a2.
The M, J, and a, denote the mass, angular momentum, and rotation parameters, which

are defined as a = J/Mc, respectively.

4. Generalization to Kerr Interior Solution
The metric (41) can be transformed into the more familiar Boyer-Lindquist coordinates

(t, r, θ, ϕ) through a coordinate redefinition and gauge transformation [26]. The resulting
metric is given by:

ds2 = −(1 − 2Mr
Σ

)dt2 +
Σ

∆K+
dr2 − 4Mrasin2θ

Σ
dtdϕ + Σdθ2 +

[
(r2 + a2) +

2Mra2sin2θ

Σ

]
sin2θdϕ2. (42)

Building upon J. Ovalle’s spherically symmetric black hole solution (24), we generalize the
spherically symmetric solution by introducing a radial mass function M̃ ≡ m(r). For r ≥ h,
m(r) = M ≡ h/2. This allows for a more flexible description of the interior spacetime,
while preserving the asymptotic behavior of the Kerr metric. The mass function m(r) is
subject to the following boundary conditions at the horizon:

m(h) = M, m′(h) = 0, m′′(h) = 0. (43)

These conditions ensure a smooth transition between the interior and exterior solutions. As
a result, we arrive at a Kerr interior solution:

ds2 =− (1 − 2m(r)r
Σ

)dt2 − 4m(r)ra sin2 θ

Σ
dtdϕ +

Σ
∆K−

dr2

+ Σdθ2 +

[
(r2 + a2) +

2m(r)r
Σ

a2 sin2 θ

]
sin2 θdϕ2,

(44)

where Σ = r2 + a2cos2θ, ∆K− = r2 − 2m(r)r + a2, for 0 < r ≤ h.
When r ≥ h, the mass function m(r) = M becomes constant, and the metric (44) reduces
to the exterior Kerr metric in Boyer-Lindquist coordinates. The energy-momentum tensor
vanishes in this region, Tab(r)|r≥h = 0. Therefore, the metric is asymptotically flat beyond
the horizon.
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The existence of a Killing horizon is closely related to the presence of a Killing vector
field that becomes null on the horizon. A regular null hypersurface r = rh defined by
∆K−|r=rh = 0 is a Killing horizon associated with the Killing vector ξµ = (1, 0, 0, a

(r2
h+a2)

):

rh = M±
√
M2 − a2 = M(1 ±

√
1 − a∗2), (45)

where a∗ ≡ a
M is a dimensionless spin parameter, therefore 0 ≤ a∗ ≤ 1. The dimensionless

spin parameter a∗ can be expressed in terms of fundamental constants as:

a∗ =
a
M = (

J
cM )(

GM
c2 )−1 =

Jc
GM2 . (46)

This expression clarifies the relationship between the dimensionless spin parameter a∗ and
the physical parameters of the black hole, namely its angular momentum J, mass M, and
fundamental constants G and c. By analyzing the Killing vectors of the interior solution (44),
we can gain valuable insights into its symmetries and the nature of the horizon, thereby
enhancing our understanding of the geometrical and dynamical properties of the Kerr
interior solution.

Gürses and Gürsey demonstrated that the corresponding matter field in general
relativity can be interpreted as an anisotropic fluid, which belongs to the Hawking-Ellis
type I class [27]. In the coordinate system (44), a Killing horizon r = rh appears as a
coordinate singularity. To circumvent this issue, we analyze the Gürses-Gürsey spacetime
of Equation (44) in Doran coordinates (η, r, θ, ψ) [28]:

ds2 =− dη2 + Σdθ2 + (r2 + a2)sin2θdψ2

+
Σ

r2 + a2

{
dr +

√
2m(r)r(r2 + a2)

Σ
(dη − asin2θdψ)2

}2

,
(47)

which is obtained from Equation (44) through the following coordinate transformations:

dt = dη −
√

2m(r)r(r2 + a2)

∆K−
dr,

dϕ = dψ − a
∆K−

√
2m(r)r
r2 + a2 dr.

(48)

Unlike Boyer-Lindquist coordinates, Killing horizons are not coordinate singularities in
Doran coordinates. In the limit of vanishing mass, m(r) → 0, both metrics (44) and (47)
exhibit flat Minkowski space in oblate spheroidal coordinates.

By substituting the mass function (23) into the metric (47) and (48), we arrive at the
explicit form of the Kerr interior solution in Doran coordinates, which provides a valuable
tool for studying the properties of rotating black holes:

ds2 = −dη2 + Σdθ2 + (r2 + a2)sin2θdψ2

+
Σ

r2 + a2

dr +

√
2(r − r3

h2 +
r4

2h3 )r(r2 + a2)

Σ
(dη − asin2θdψ)2


2

.
(49)

To further investigate the properties of the singularity, we calculated curvature invari-
ants. Curvature invariants, such as the Ricci scalar (R) and the Kretschmann scalar
(K = RabcdRabcd), are scalar quantities constructed from the Riemann tensor. The
Kretschmann scalar, in particular, provides a measure of the spacetime curvature and
can be used to identify regions of high curvature, such as singularities [29]:
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R = gabRab =
4(h − r)(h2 + hr − 5r2)

h3Σ
,

K = RabcdRabcd =
1

h6Σ

[
Acos8θ + Bcos6θ + Ccos4θ + Dcos2θ + E

]
,

A = 16a8(h − r)2(h2 + hr − 5r2)2,

B = −288r2a6(h6 − 13
3

h4r2 +
17
6

h3r3 +
2
3

r4h2 +
4
3

r5h − 35
24

r6),

C = 928r4a4(h6 − 49
29

h4r2 +
37
58

h3r3 +
33
29

r4h2 − 47
29

r5h +
169
232

r6),

D = −288r6a2(h6 − 1
9

h4r2 − 1
6

h3r3 − 4
3

r4h2 +
22
9

r5h − 29
24

r6),

E = 16r8(h6 − 2h4r2 + h3r3 + 6r4h2 − 10r5h +
19
4

r6).

(50)

For the Kerr interior solution, where h ̸= 0, the condition Σ = 0 defines a scalar polynomial
singularity. Geometrically, this singularity corresponds to a ring located in the equatorial
plane with a radius of a, analogous to the ring singularity in the exterior Kerr spacetime.
Importantly, the Kretschmann scalar does not vanish at r = h, indicating that the singularity
at the boundary radius is not a coordinate singularity.

Following the classification of curvature invariants proposed by Carminati and McLe-
naghan [30], we have analyzed a broader set of invariants, including those related to the
Weyl tensor and the Ricci tensor, following the approach of Geheniau and Debever [31–33].
This comprehensive analysis, detailed in Appendix B, provides deeper insights into the
nature and structure of the singularity within the Kerr interior solution.

Our innovative application of ellipsoid coordinate transformations has enabled us
to derive an exact, analytic extension of the Kerr exterior solution to the interior region,
thereby circumventing the limitations imposed by coordinate singularities.

5. Energy Momentum Tensor and Energy Conditions
The energy conditions—strong (SEC), weak (WEC), dominant (DEC), and null (NEC)—

impose physically reasonable constraints on matter fields, underpinning key results in
general relativity, such as the black hole area theorem [34] and Penrose’s singularity
theorem [35]. When constructing spacetime models, these conditions can be used to as-
sess the validity of the energy-momentum tensor derived from the gravitational field
equations [36–38].

In general spacetimes, the natural basis associated with the coordinate system may not
be the most suitable for straightforward application of the energy condition inequalities.
To address this, we introduce a natural orthonormal basis of one-forms, E(0), E(1), E(2), E(3),
in the spacetime described by metric (47), following the approach outlined in [39]. This
orthonormal basis, defined as:

E(0)
µ dxµ = −η,

E(1)
µ dxµ =

√
Σ

r2 + a2

{
dr +

√
2m(r)r(r2 + a2)

Σ
(dη − asin2θdψ)2

}
,

E(2)
µ dxµ =

√
Σdθ,

E(3)
µ dxµ =

√
r2 + a2sinθdψ,

(51)

where η(a)(b) = gµνE(a)
µ E(b)

ν = diag{−1, 0, 0, 0}. We then project the Einstein tensor Ga
b onto

this orthonormal basis (51):
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G(a)
(b) = Ga

b E(a)
µ Eν

(b),

G(a)(b) = GabE(a)
µ E(b)

ν .
(52)

The non-zero orthonormal components of the tensor G(a)
(b) are

G(0)
(0) =

1
Σ3

[
−rm′′Σa2sin2θ + 2m′(r4 + a2r2 − a4sin2θcos2θ)

]
,

G(1)
(1) = −2m′r2

Σ2 ,

G(2)
(2) = − (rm′′Σ + 2m′a2cos2θ)

Σ2 ,

G(3)
(3) = − 1

Σ3

[
rm′′Σ(a2 + r2) + 2a2m′((r2 + a2)cos2θ − r2sin2θ)

]
,

G(3)
(0) =

asinθ
√

r2 + a2

Σ3

[
rm′′Σ − 2m′(r2 − a2cos2θ)

]
,

(53)

where a prime denotes differentiation with respect to r. To provide an alternative and
more concise form of Einstein tenors (47), we introduce a new set of basis one-forms
Ẽ(0)

µ , Ẽ(1)
µ , Ẽ(2)

µ , Ẽ(3)
µ obtained through a local Lorentz transformation on the plane spanned

by E(0)
µ and E(3)

µ :

Ẽ(0)
µ = coshαE(0)

µ − sinhαE(3)
µ ,

Ẽ(3)
µ = −sinhαE(0)

µ + coshαE(3)
µ ,

(54)

with

coshα =

√
r2 + a2

Σ
, sinhα = − asinθ√

Σ
. (55)

This Lorentz transformation, parameterized by the boost parameter α, diagonalizes the
Einstein tensor, simplifying the analysis of the energy conditions. The non-zero components
of G̃(a)

(b) = G(a)
(b) Ẽ(a)

µ Ẽν
(b) with respect to the new basis one-forms are:

G̃(0)
(0) =

2r2m′

Σ2 , G̃(1)
(1) = −2r2m′

Σ2 ,

G̃(2)
(2) = G̃(3)

(3) = − rm′′Σ + 2a2m′cos2θ

Σ2 .
(56)

Therefore, the corresponding energy-momentum tensor Tab = Gab/κ of Equation (47) in
general relativity is of Hawking-Ellis type I, and its orthonormal components are given by:

ϵ = −p1 =
2r2m′

κΣ2 ,

p2 = p3 = − rm′′Σ + 2m′a2cos2θ

κΣ2 ,
(57)

where κ = 8πG, G is the gravitational constant. Equation (57) gives

ϵ + p1 = 0, ϵ − p1 =
4r2m′

κΣ2 ,

ϵ + p2 = ϵ + p3 =
2m′(r2 − a2cos2θ)− rm′′Σ

κΣ2 ,

ϵ − p2 = ϵ − p3 =
rm′′ + 2m′

κΣ
,

ϵ + p1 + p2 + p3 = −2rm′′Σ + 4m′a2cos2θ

κΣ2 .

(58)
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Therefore, for the corresponding energy-momentum tensor in the Gürses and Gürsey
spacetime (47) in general relativity, equivalent expressions of the standard energy conditions
are given by

NEC: ϵ + pµ ≥ 0 for µ = 1, 2, 3, equivalent to 2m′(r2 − a2cos2θ)− rm′′Σ ≥ 0,
WEC: ϵ ≥ 0 in addition to NEC, equivalent to m′ ≥ 0 in addition to NEC,
DEC: ϵ − pµ ≥ 0 for µ = 1, 2, 3, in addition to WEC, equivalent to rm′′ + 2m′ ≥ 0 in

addition to WEC,
SEC: ϵ + p1 + p2 + p3 ≥ 0 in addition to NEC, equivalent to rm′′Σ + 2m′a2cos2θ ≤ 0

in addition to NEC.
By substituting the mass function derived in Equation (23) into the energy conditions,

we obtain explicit expressions for the weak, dominant, and null energy conditions for our
proposed Kerr interior solution in Doran coordinates (49). These coordinate-dependent
expressions provide crucial constraints on the physical viability of the interior solution,
particularly near the central region where classical singularities typically arise. To sim-
plify the numerical calculations, we consider the case where θ = 0, π/2 (i.e., cosθ = 1, 0
respectively); and the black hole is maximally rotating, with a = M = h/2. Under these
conditions, the inequalities reduce to:

ϵ : 2(h+2r)(h−r)2r2

h3κΣ2 ≥ 0.

NEC: −(h−r)2(h2+hr−5r2)2a2cos2θ+2r2(h3−r3)
h3 ≥ 0.

WEC: (h−r)2(h+2r)
h3 ≥ 0 in addition to NEC.

DEC: 2(h−r)(h2+hr−5r2)
h3 ≥ 0 in addition to WEC.

SEC: 2((h2+hr−5r2)a2cos2θ−3r4)(h−r)
h3 ≤ 0 in addition to NEC.

The Kerr interior solution we derived, supported by an anisotropic fluid, exhibits a
positive matter density. For a maximally rotating black hole with θ = π/2, the SEC, WEC,
and NEC are satisfied throughout the interior (0 < r ≤ h). The DEC holds in the core and
at the boundary (0 < r ≤ ∼0.558h and r = h). For θ = 0, the SEC, WEC, and NEC are valid
in the outer region of the interior (∼0.443h ≤ r ≤ h), while the DEC is satisfied in a specific
inner region and at the boundary (∼0.352h < r ≤ ∼0.558h and r = h). These findings
highlight the consistency of our solution with classical energy conditions in various regions
of the spacetime.

Our novel approach has enabled us to systematically extend a wide class of static,
spherically symmetric interior solutions to the Kerr spacetime. The resulting axisymmetric
Kerr interior solutions, which seamlessly join onto the Kerr metric, offer a more realistic
description of rotating astrophysical objects. The detailed analysis of matter density and
energy conditions tabulated in Table 2, highlights the versatility and robustness of our method.

Table 2. Kerr interior solutions with mass function (27) satisfying m′(h) = m′′(h) = 0, with
p > n > l > 1. For energy condition, maximally rotating a = M.

{l, n, p} m(r) = r + Arl + Brn + Crp ϵ > 0 Energy Condition Energy Condition
(θ = 0) (θ = π/2)

{3, 4, p} m(r) = r − r3

h2 +
r4

2h3 Yes SEC∗a, WEC∗b, NEC∗b SEC, WEC, NEC: Satisfied
DEC∗c DEC∗d

{3, 7, 8} m(r) = r − 7r3

10h2 +
r7

2h6 − 3r8

10h7 Yes SEC∗e, WEC∗ f , NEC∗ f SEC, WEC, NEC: Satisfied
DEC∗g DEC∗h

{4, 5, 6} m(r) = r − 5r4

2h3 +
3r5

h4 − r6

h5 Yes SEC∗i, WEC∗j, NEC∗j SEC, WEC, NEC: Satisfied
DEC: Violation DEC∗k

∗a: ∼0.443h < r ≤ h; ∗b: ∼0.352h < r ≤ h; ∗c: ∼0.352h < r ≤ ∼0.558h, r = h; ∗d: 0 < r ≤ ∼0.558h, r = h, ∗e: ∼0.436h < r ≤ h;

∗ f : ∼0.353h < r ≤ h; ∗g: ∼0.353h < r ≤ ∼0.368h, r = h; ∗h: 0 < r ≤ ∼0.368h, r = h, ∗i: ∼0.4218h < r ≤ h, ∗j: ∼0.347h < r ≤ h,

∗k: 0 < r ≤ ∼0.347h, r = h.
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6. Discussion
Building upon previous work on ellipsoidal coordinate transformations [16,17], we

have developed a novel approach to construct Kerr interior solutions. Our method starts
with a static, spherically symmetric seed metric and systematically generalizes it to an
axisymmetric, rotating configuration. The resulting interior solution seamlessly matches
the exterior Kerr metric at the event horizon. We have demonstrated that this approach can
yield physically meaningful interior solutions, albeit with anisotropic matter distributions
that deviate from the perfect fluid paradigm. This anisotropy, a natural consequence of the
rotating geometry, reflects the fundamental difference between radial and tangential pres-
sures, a feature intrinsically linked to the dragging of inertial frames in rotating spacetime.

The coordinate transformation at the horizon (r = h) is a standard technique in gen-
eral relativity, enabling a smooth connection between two distinct regions of spacetime.
In this case, the transformation effectively swaps the roles of the timelike and radial coor-
dinates across the horizon. This is analogous to the coordinate transformation between
Schwarzschild and Kruskal-Szekeres coordinates [40], which provides a global description
of the black hole spacetime by extending the Schwarzschild solution beyond the event
horizon. Crucially, this coordinate swap reflects the change in the causal structure of
spacetime across the horizon. Inside the horizon, the radial direction becomes timelike, im-
plying that motion towards the singularity is inevitable. This change in causal structure is a
fundamental characteristic of black holes and is essential for understanding their properties.

In addition, we have constructed a regular coordinate system for the Kerr metric
through a series of sophisticated transformations Equations (47) and (49). This coordinate
system not only eliminates coordinate singularities but also provides valuable geometric
insights into the spacetime structure near the horizon. This regular representation is crucial
for understanding the physical properties of the interior solution, particularly in regions
where traditional coordinate systems become pathological.

A key innovation in our approach lies in the introduction of a novel orthonormal
basis of one-forms. This carefully chosen basis, coupled with strategically applied local
Lorentz transformations, significantly simplifies the subsequent analysis. Specifically, these
transformations, parameterized by the boost parameter α defined in Equations (54) and (55),
diagonalize the Einstein tensor. This diagonalization effectively eliminates the off-diagonal
T03 component, leading to a more elegant and mathematically tractable representation of
the Einstein tensor.

Our comprehensive analysis of energy conditions for the Kerr interior solution reveals
nuanced behavior across different rotation scenarios. For a maximally rotating black hole
(a = M, a∗ = 1), most spacetime regions satisfy the strong (SEC), weak (WEC), and
null (NEC) energy conditions (with various l, n, p in Table 2). The solution, while not
representing a perfect fluid, captures the anisotropic nature of rotating black hole interiors
more authentically.

Critical insights emerge near the polar axis (θ = 0), where energy condition violations
can be attributed to the inner Cauchy horizon. Given that many neutron stars and black
holes are rapidly rotating and approaching extreme Kerr solutions, our proposed Kerr
interior solution provides a precise theoretical model for astrophysical scenarios, bridging
the gap between mathematical formalism and observable astronomical phenomena.

In conclusion, this work presents a novel approach to constructing Kerr interior solu-
tions. We have successfully derived an interior solution that: (i) preserves the Kerr exterior
spacetime, (ii) is characterized by a single free parameter, the total mass M, (iii) avoids
exotic matter and additional geometric structures near the horizon, and (iv) ensures finite
tidal forces throughout the interior region. This solution provides a physically meaningful
description of the interior region of a rotating black hole, demonstrating consistency with
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classical gravity in most regions of the spacetime, with violations of energy conditions
limited to specific regions near the inner Cauchy horizon. Our findings have significant
implications for understanding the formation and evolution of rotating black holes, particu-
larly in astrophysical scenarios involving rapidly rotating objects such as those observed in
active galactic nuclei and X-ray binaries. Future research can explore the stability of these
solutions, their impact on black hole thermodynamics, and their potential connections to
quantum gravity theories.
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Appendix A. Derivation an Inner Singular Black Hole Matching the
Schwarzschild Exterior

We combine the mass function from Equations (17) and (18) to obatin

m(r) =
1
2

∞

∑
n=0

Cnrn+1

(n + 1)(n + 2)
, (A1)

for the interior region, 0 < h ≤ h, the series converges to m(h) = M = h/2 as r → h.
To ensure a smooth transition between the interior and exterior regions, we impose the
following matching conditions at the horizon:

m(h) = M, m′(h) = 0, m′′(h) = 0. (A2)

These conditions ensure the continuity of the metric and its derivatives across the boundary.
According to Equation (11), as a consequence, the tangential pressure p2, p3 is continuous
at the horizon, leading to ϵ = p1 = p2 = p3 = 0 at r = h. To obtain a black hole solution
with only M as a free parameter, we restrict the series in Equation (A1) to include only
three terms:

m(r) =
1
2

[
C0r
2

+
Cnrn+1

(n + 1)(n + 2)
+

Clrl+1

(l + 1)(l + 2)

]
; l > n > 1 ∈ N. (A3)

The three constants {C0, Cn, Cl} in Equation (A3) are determined by the conditions (A2). To
ensure a black hole solution and satisfy Equation (5), we find that C0 = 4. This constraint,
combined with the conditions on the indices n and l, leads to a unique solution:

m(r) = r − r3

h2 +
r4

2h3 . (A4)

Appendix B. Curvature Invariants of the Exact Kerr Interior Solution
In general relativity, the Carminati–McLenaghan invariants [30], classified by Gehe-

niau and Debever [31,32], constitute a set of 16 scalar curvature invariants derived from the
Riemann tensor. These invariants, which encompass polynomial, Cartan, and scalar types,
provide powerful tools for characterizing spacetime curvature. One of the most common
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applications of curvature invariants is to identify curvature singularities. In this work, we
employ these invariants to investigate the regularity of the exact Kerr interior solution (49).

The real Carminati–McLenaghan scalars are:

R ≡ Rj
j (Ricci scalar), (A5)

R1 ≡ 1
4

Sa
bSb

a, (A6)

R2 ≡ −1
8

Sa
bSb

c Sc
a, (A7)

R3 ≡ 1
16

Sa
bSb

c Sc
dSd

a , (A8)

M3 ≡ 1
16

SbcSe f (CabcdCae f d + C∗
abcdC∗ae f d), (A9)

M4 ≡ − 1
32

SagSe f Sc
d(C

db
ac Cbe f g + C∗db

ac C∗
be f g). (A10)

The complex Carminati–McLenaghan scalars are:

W1 ≡ 1
8
(Cabcd + iC∗

abcd)Cabcd, (A11)

W2 ≡ − 1
16

(Ccd
ab + iC∗cd

ab)C
e f
cd Cab

e f , (A12)

M1 ≡ 1
8

SabScd(Cacdb + iC∗
acdb), (A13)

M2 ≡ 1
16

SbcSe f (CabcdCae f d − C∗
abcdC∗ae f d) +

i
8

SbcSe f C∗
abcdCae f d, (A14)

M5 ≡ 1
32

ScdSe f (Caghb + iC∗aghb)(CacdbCge f h + C∗
acdbC∗

ge f h), (A15)

where the Weyl tensor (Cabcd), the traceless Ricci tensor (Sab) and the dual Weyl tensor
(C∗

ijkl) are defined by

Cijkl = Rijkl +
1
6

R(gikgjl − gil gjk)−
1
2
(gikRjl − gil Rjk − gjkRil + gjl Rjk), (A16)

Sab = Rab −
1
4

Rgab, (A17)

C∗
ijkl ≡

1
2

ϵklmnCmn
ij . (A18)

The real Carminati–McLenaghan invariants of the exact Kerr interior solution (49) are
calculated by

R =
4(h − r)(h2 + hr − 5r2)

h3Σ
, (A19)

R1 =
(h − r)2((h2 + hr − 5r2)a2cos2θ − h2r2 − r3h − r4)2

h6Σ4 , (A20)

R2 = 0, (A21)

R3 =
(h − r)4((h2 + hr − 5r2)a2cos2θ − h2r2 − r3h − r4)4

4h12Σ8 , (A22)

M3 =
4(Icos4θ + Jcos2θ + K)(h − r)2((h2 + hr − 5r2)a2cos2θ − h2r2 − r3h − r4)2

9h12Σ8 , (A23)

M4 = 0, (A24)
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where polynomial function I,J,K of r in M3 are

I = a4(h − r)2(h2 + hr − 5r2)2, (A25)

J = 14a2r2(h6 +
6
7

h4r2 − 31
14

h3r3 +
3
7

hr5 +
5

56
r6), (A26)

K = (h3 +
r3

2
)2r4. (A27)

In conclusion, we have performed a comprehensive analysis of curvature invariants
for the Kerr interior solution. We have calculated a subset of the Carminati-McLenaghan
invariants, including the Ricci scalar and the other real scalars. Our analysis reveals
that the remaining subset of curvature invariants, which are complex scalars, are highly
sophisticated and beyond the scope of this article. We observe a specific relationship

between the calculated invariants, namely R3 =
R2

1
4 . Furthermore, at the event horizon

(r = h), all calculated invariants vanish (R = R1 = R2 = R3 = M3 = M4 = 0), consistent
with the smooth matching to the exterior Kerr metric. The rotation axis presents a known
challenge for interior solutions, often leading to pathological behavior. This is reflected
in the singularities of the curvature invariants for Σ = 0, indicating the presence of a ring
singularity, as expected for the Kerr spacetime. This analysis provides valuable insights
into the nature and structure of the singularity within the Kerr interior solution and lays
the groundwork for further investigations into the properties of rotating black holes.
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