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Abstract: Within the framework of Rastall theory, we investigate the impact of charge on
the structural development of different types of spherically symmetric anisotropic stars. To
do so, we present modified field equations based upon the Finch–Skea metric potentials
expressed in terms of three parameters (A, B, C). These constants are determined using
suitable matching conditions and observational data for compact objects which include
Her X-1, SAX J 1808.4-3658, PSR J038-0842, LMC X-4 and SMC X-1. The equation of state
offered by the MIT bag model for quark–gluon plasma is used to investigate the inner
structure and other characteristics of these compact objects. For a fixed bag constant,
B = 60 MeV/fm3, and two sets of the Rastall and charge parameters, ζ = 0.255, 0.259
and Q̃ = 0.2, 0.7, respectively, we analyze the consistency of the matter variables in the
model and other physical parameters such as energy conditions, stellar mass, compactness,
and surface redshift. In addition, we assess the stability of the constructed model through
two different approaches. It is found that the obtained model is physically viable and stable.

Keywords: MIT bag model; Rastall theory; quark stars

PACS: 04.40.Dg; 04.40.-b; 04.50.Kd

1. Introduction
While general relativity (GR) has been extensively tested in weak gravitational fields,

its predictions in strong-field regimes, such as near black holes, remain an active area of
investigation and experimental verification [1,2]. Moreover, GR does not easily explain the
quicker speed at which the universe is claimed to expand with time, without postulating
the existence of dark matter and dark energy. Such problems, among many other factors,
call for alterations to the GR. There are two principal approaches to the modification of
GR. The first of these seeks to keep GR in its simplest form by adding extra terms to the
Lagrangian density that in turn changes the field equations, while the second approach
seeks to alter some of the basic principles of GR. The Rastall theory of gravitation belongs
to the second category. In this case, the configuration of the covariant divergence of the
stress–energy tensor is proportional to the divergence of the curvature scalar, R [3,4]. This
implies that one has to give up the classical notion of conservation of energy. Hence,
the Rastall theory exhibits a matter and geometry interaction that is not minimal in curved
spacetimes. Nevertheless, in flat spacetimes devoid of curvature, the energy–momentum
tensor obeys a conservation principle leading to the field equations being equivalent to
vacuum Einstein field equations.

Rastall gravity has been under scrutiny, particularly in relation to the criticism on
the non-conservation of the energy–momentum tensor [5,6]. Nonetheless, this so-called
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defect can be interpreted as an effect resulting from the curvature of spacetime or even net
energy production in specific systems. The discourse surrounding Rastall gravity is indeed
complex and multifaceted. We acknowledge the contrasting views presented by Visser [5]
and Golovnev [6], who argue that Rastall gravity is effectively a redefinition of the energy–
momentum tensor in GR. These arguments were accordingly countered by Darabi et al. [7],
who maintained that Rastall theory introduces a non-minimal coupling that distinguishes
it from GR. Visser claimed that from the Rastall energy–momentum tensor T̃ψχ, one can
always reconstruct the physical quantity Tψχ, and vice versa. We, however, do not agree
with his point because if this is the motivation for proving Rastall theory to be equivalent
to GR, then one can easily do this for other matter geometry coupled theories, in particular,
f (R, T) gravity, which was proposed through modifying the Einstein–Hilbert action. It is
thus not a valid point to say that GR and Rastall theory are equivalent to each other.

Another point often raised against the theory is its lack of a Lagrangian formulation,
despite the fact that in cosmology and astrophysics, it has given good results. Attempts to
construct a proper Lagrangian, as of now, have not been successful, thus creating uncertainty
regarding its viability. Notwithstanding these hindrances, the merits of Rastall theory are
clearly pronounced, as many theoretical and observational works have come up in recent
times [8–15]. The lack of a Lagrangian does not compromise the robustness of our results
within the current framework. The field equations used in this study are well defined, and
the solutions we derive are consistent with physical conditions such as energy conservation,
stability, and regularity at the stellar center. Moreover, by explicitly examining how Rastall
gravity modifies the structure of compact stars compared to GR, we demonstrate that the
theory retains significant predictive power despite its theoretical limitations.

We emphasize that many successful theories, including GR during its early develop-
ment, initially lacked a fully developed Lagrangian formulation but were later refined as
theoretical tools evolved. Similarly, our findings should be viewed as part of a broader
effort to explore the utility of Rastall gravity in astrophysical contexts, while recognizing
the need for further theoretical advancements. By providing physically viable and stable
models of compact stars, this work demonstrates the practical relevance of Rastall gravity
even within its current formulation, underscoring its potential as a stepping stone toward
more comprehensive theories. Additionally, the concept of modified gravitational theories
that do not hold the energy conservation is not a novel one since different variations of the
non-conservative models have been suggested over the years. One of the first examples of
such a model is the Einstein trace-free theory, referred to as unimodular gravity [16]. It is
interesting to observe that even though unimodular gravity, f (R, T) gravity, Rastall theory,
and GR stand out in their individual uses, they are geometrically equivalent. This arises
because they share the same pressure isotropy equations, which govern the behavior of
their gravitational potentials [7,17–19].

Stars play an enormous role in not only the formation but also in the growth and
evolutionary processes of existing cosmic structures across the universe. The evolving and
three-dimensional structures of galactic objects has been the focus of many astrophysicists
for years. The stellar material possesses an inward force due to its mass. This is counter-
balanced by an outward force due to the nuclear processes occurring within the matter.
Nevertheless, there exists a limit at which this force ceases to act against gravitational pull
and the star experiences collapse under its own weight leading to their annihilation and the
formation of compact objects. Due to their unique structure and interesting shapes, a lot of
astrophysicists and researchers are fascinated with neutron stars. These types of stars are
in hydrostatic equilibrium due to the opposing forces of gravity and neutron degeneracy
pressure. A quark star is a hypothetical dense state of matter that may exist between a
neutron star and black hole and is composed of strange quarks with up and down quark
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matter. Numerous researchers [20,21] have conducted research regarding the structural
development of quark stars.

While undertaking the exploration of compact objects, it has been observed that most
of the existing interiors comprise anisotropic matter, which is currently becoming a popular
subject among many astronomers. Herrera [22] argued that there must be anisotropic
fluids in the structure of celestial bodies whose cores are of much lower nuclear density
in comparison with their mass density. Kalam et al. [23] derived some solutions of the
gravitational field equations which correspond to the various neutron stars and proved
their stability and feasibility. Paul and Deb [24] presented insightful solutions for compact
stars in hydrostatic equilibrium. Tangphati et al. [25] observed the interior geometry and
physical properties of quark stars in Rastall theory. Salako et al. [26] looked into the effects
of magnetic fields on strange quark matter in a quintessence field with the framework
of Rastall theory. A detailed analysis of exotic strange quark star matter was conducted
by some researchers [27,28] in a Lovelock gravity and standard theory framework with
the assumption of pressure being anisotropic. Bhar [29] also built an anisotropic model
of strange stars. By adopting the Krori–Barua ansatz and the MIT bag model equation of
state (EOS) [20], some researchers [30,31] studied charged quark stars in Rastall theory.
Mustafa et al. [31] went further to consider dust and phantom regimes. Banerjee et al. [32]
used the MIT bag model and fully solved the modified Tolman–Oppenheimer–Volkoff
equations in order to develop strange star models based on Rastall theory. In the same
context, Sharif and Naseer [33–35] researched different kinds of anisotropic strange stars in
the framework of non-minimally coupled gravity.

The MIT bag model is expected to give insights into the internal structural properties
of quark stars. This model comes particularly handy in understanding the compactness
values of some compact objects like 4U 1728-34, RXJ 185635-3754, Her X-1, 4U 1820-30,
SAX J 1808.4-3658, PSR 0943+10, etc., which cannot be explained using EOS for neutron
stars. The compactness of such objects can be easily understood within the context of the
MIT bag model [36]. The bag constant B serves to distinguish void states from the filled
states as it is inversely proportional to the interior pressure of the quark stars. A couple of
authors [37,38] have taken the EOS based on the MIT bag model and explored the internal
fluid mechanics of quark stars. The mass of the PSR J1614-2230 gave sufficient evidence
that this was the only EOS appropriate for such a massive star. The evaluation of a star
having 9.9 km of radius was utilized to calculate the mass for a couple of stars using the
interpolating function [39]. Based on the Krori–Barua ansatz, Bhar [40] presented a model
for a hybrid star and showed that the resulting mass function agrees with observations.
Arbañil and Malheiro [41] looked at the hydrostatic equilibrium and radial instability of
strange compact stars with the help of the MIT bag model to investigate the influence of
anisotropy on their stability. In the same way, Deb et al. [42,43] worked on charged as
well as uncharged strange stars and also developed regular solutions based on this EOS.
Sharif et al. [44,45] expanded this work in deriving the solutions for anisotropic stellar
bodies in the context of the MIT bag model.

Motivated by the above considerations, the present work investigates the possible
presence of exotic compact stars in Rastall gravity. The study investigates various physical
aspects of the sought model with the help of observational data on five known compact
stars and derives numerical values for related physical parameters. The structure of
the present paper is as follows. In Section 2, we derive Rastall field equations and their
solutions. In Section 3, we compute the quantitative results of the Finch–Skea profile by
matching the interior and exterior metrics. Section 4 presents some numerical results
showing the variation of some physical properties. Ultimately, Section 5 provides the
overview and the conclusions concerning the results obtained.
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2. Rastall Field Equations and the MITMITMIT Bag Model
The field equations of Rastall theory differ from those of GR by virtue of the Rastall

parameter ξ. This parameter establishes a connection between the covariant divergence of
the stress–energy tensor and that of the curvature scalar R as

∇χT̃ψχ = ξgψχ∇χR. (1)

This relation implies that the covariant divergence of the stress energy tensor Tψχ

is proportional to that of the curvature scalar, where the Rastall parameter ξ denotes the
proportionality constant. In line with the above relation, Rastall proposed a modification
of the Einstein field equations, proposing a non-minimal coupling between matter and
geometry as follows [1]

Rψχ − 1
2
Rgψχ + ζRgψχ = κT̃ψχ, (2)

where ζ = κξ denotes the Rastall dimensionless parameter and Rψχ, gψχ, κ denote the
Ricci tensor, metric tensor, and coupling constant, respectively. The field equations above
simplify to those of GR if ζ = 0. In addition, T̃ψχ denotes an energy–momentum tensor
characterized by a charged anisotropic matter distribution, given by

T̃ψχ = (ρ̃ + P̃t)WψWχ − P̃tgψχ + (P̃r − P̃t)ZψZχ +
1

4π

[1
4

gψχFαβFαβ − Fα
ψ Fχα

]
. (3)

Here ρ̃, P̃r, P̃t,W ,Z specify the energy density, radial pressure, tangential pressure,
4-velocity, and 4-vector, respectively. Considering a comoving frame, the 4-velocity and
4-vector take the form

Wψ = δ
ψ
0

√
g00, Zψ = δ

ψ
1

√
−g11, (4)

and satisfy the relations WψWψ = 1, WψZψ = 0, and ZψZψ = −1. The term
Fαβ = ηβ,α − ηα,β denotes the Maxwell field tensor with ηβ = η(r)δ0

β as the 4-potential.
This Maxwell tensor satisfies the Maxwell field equations as

Fαβ
;β = 4π Jα, F[αβ;γ] = 0, (5)

where Jα is the 4-current, which can be written in terms of charged density φ as
Jα = φ(r)Wα.

To denote the internal geometry, we employ the metric given by

ds2
− = eΦ1(r)dt2 − eΦ2(r)dr2 − r2(dθ2 + sin2 θdϕ2). (6)

where the areal radius r ranges from the star center (r = 0) to an arbitrary point (r = R) on
the surface of the star. The Maxwell field equation for our spacetime becomes

η′′ +

(
2
r
−

Φ′
1

2
− Φ′

2
2

)
η′ = 4πφe

Φ1
2 +Φ2 , (7)

where ′ = ∂
∂r . Upon integration of the above equation, we have

η′ =
e

Φ1+Φ2
2 q(r)
r2 , (8)

with q(r) = 4π
∫ r

0 φe
Φ2
2 r2dr indicating the total charge in the interior of the sphere. By con-

tracting the field Equation (2), we obtain
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R(4ζ − 1) = κT, (9)

which shows that ξ = 1
4 must be avoided. Additionally, since ζ = κξ by the Newtonian

limit, we can thus write κ and ξ in the form

κ =
(4ζ − 1)8π

6ζ − 1
, (10)

ξ =
(6ζ − 1)ζ
(4ζ − 1)8π

. (11)

It is easily observed from Equation (10) that the case κ = 8π of the GR field equations
is retrieved if ζ = 0. We also point out that the case ζ = 1

6 cannot be considered. Using the
above expression for κ given by Equation (10), the field equations become

Rψχ − 1
2
Rgψχ + ζRgψχ =

4ζ − 1
6ζ − 1

8πT̃ψχ. (12)

Contracting these field equations, it follows that

R(6ζ − 1) = 8πT̃, (13)

which implies that ζ = 1
6 cannot be considered as implied by Equation (10). Thus, in the

Newtonian limit, the cases ζ = 1
4 and ζ = 1

6 cannot be considered in Rastall theory.
With the metric given by Equation (6), the field Equations (12) are obtained as

4ζ − 1
6ζ − 1

(
8πρ̃ +

q2

r4

)
= ζ

[
e−Φ2

(
Φ′′

1 +
Φ′

1
2
(Φ′

1 − Φ′
2) +

2
r
(Φ′

1 − Φ′
2) +

2
r2

)
− 2

r2

]
+ eΦ2

(
Φ′

2
r

− 1
r2

)
+

1
r2 , (14)

4ζ − 1
6ζ − 1

(
8πP̃r −

q2

r4

)
= −ζ

[
e−Φ2

(
Φ′′

1 +
Φ′

1
2
(Φ′

1 − Φ′
2) +

2
r
(Φ′

1 − Φ′
2) +

2
r2

)
− 2

r2

]
+ eΦ2

(
Φ′

1
r

+
1
r2

)
− 1

r2 , (15)

4ζ − 1
6ζ − 1

(
8πP̃t +

q2

r4

)
= −ζ

[
e−Φ2

(
Φ′′

1 +
Φ′

1
2
(Φ′

1 − Φ′
2) +

2
r
(Φ′

1 − Φ′
2) +

2
r2

)
− 2

r2

]
+ e−Φ2

[
Φ′′

1
2

+
Φ′2

1
4

−
Φ′

1Φ′
2

4
+

Φ′
1 − Φ′

2
2r

]
. (16)

The aforementioned system presents six variables (ρ̃, Φ1, Φ2, P̃r, P̃t, q) in three equations,
thus requiring three constraints for the system to be closed. Equations of state, which are
different limitations that relate the thermodynamic parameters of fluid states, are essential
for the study of the physical characteristics of compact objects. Stellar objects with a mass
exceeding 8 but less than 20 times that of the sun will classically end up as neutron stars, which
happen to be the most interesting objects in the universe. Such neutron stars, depending on
the density of the stars, may further be classified into either quark stars or black holes [37]. It
is important to understand that these stars, even though they are incredibly small, are able
to produce very vicious gravitational fields due to the extreme densities obtained within
them. To investigate the inner structure of strange stars, we will make use of the MIT bag
model EOS. This is a model that links state variables of compact star configurations and is
necessary for distinguishing the most essential aspects of quark stars.
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The MIT bag EOS is given by [20]

3P̃r = (ρ̃ − 4B), (17)

where B denotes the bag constant. The value of this constant is not entirely arbitrary, as it
is generally accepted to fall within the range of 57 ≤ B ≤ 92 MeV/ f m3 [46]. Using this
EOS together with the metric coefficients of the Finch–Skea spacetime [47], given by

eΦ1(r) =
(

A +
1
2

Br
√

Cr2
)2, eΦ2(r) = 1 + Cr2, (18)

where A, B, C are constants and can be determined through the matching conditions at
the boundary. We obtain the following expressions for the matter variables in the field
Equations (14)–(16):

ρ̃ = −
(6ζ − 1)

(
− 3C

(Cr2+1)2 − 6B
√

Cr2

r(Cr2+1)(Br
√

Cr2+2A)
+ 16πB(1−4ζ)

6ζ−1

)
16π(4ζ − 1)

, (19)

P̃r =
(6ζ − 1)

(
B
√

Cr2
(
3Cr2 + 2

)
+ 2ACr

)
16π(4ζ − 1)r(Cr2 + 1)2

(
Br

√
Cr2 + 2A

) −B, (20)

P̃t =
1

16π(4ζ − 1)
√

Cr2(Cr2 + 1)2
(

Br
√

Cr2 + 2A
)[BCr

[
Cr2

×
[

2C(4ζ − 1)r2
(

8πBr2 + 6ζ − 1
)
+ 32πB(4ζ − 1)r2 − 48ζ2 + 38ζ

− 5
]
+ 2

(
8πB(4ζ − 1)r2 + 6ζ(11 − 24ζ)− 7

)]
+ 2A

√
Cr2

[
C

×
[

2C(4ζ − 1)r2
(

8πBr2 + 6ζ − 1
)
+ 16

(
2πB(4ζ − 1)r2 + 9ζ2

)
− 54ζ + 5

]
+ 16πB(4ζ − 1)

]]
. (21)

Additionally, the charge parameter q is obtained as

q2 =
−1

2(4ζ − 1)(Cr2 + 1)2
(

2A
√

Cr2 + BCr3
)(

2A + r
√

Cr2
)[r4

[
4A2

√
Cr2

×
[

2C2r2
(

8πB(4ζ − 1)r2 + 4ζ(3ζ − 2) + 1
)
+ C(4ζ − 1)

(
32πBr2 + 18ζ − 3

)
+ 16πB(4ζ − 1)

]
+ 4(ABC)r

[
16πB(4ζ − 1)

(
Cr3 + r

)2
+ (6ζ − 1)

×
(

2Cr2
(

C(2ζ − 1)r2 + 2ζ
)
− 12ζ + 3

)]
+ B2

(
Cr2

)3/2
[

2C2r4
[

8πB(4ζ − 1)r2

+ 4ζ(3ζ − 2) + 1
]
+ Cr2

(
32πB(4ζ − 1)r2 − 24ζ2 + 22ζ − 3

)
+ 2(4ζ − 1)

×
(

8πBr2 − 18ζ + 3
)]]]

. (22)

3. Junction Conditions
The junction conditions define the conditions for fulfilling the smooth matching of

the physical properties at the boundary of the inner and outer regions of a compact object.
Such fundamental aspects as the nature of the interior spacetime geometry (dynamic or
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static) and/or the presence of an electromagnetic field, dictate the choice of the exterior
geometry to be selected for matching. Since the inner geometry is dictated by the presence
of charge, the external spacetime suitable for this case is the Reissner–Nordström (RN)
metric. The outer RN metric is given by

ds2
+ =

(
1 − 2M̃

r
+

Q̃2

r2

)
dt2 −

(
1 − 2M̃

r
+

Q̃2

r2

)−1

dr2 − r2(dθ2 + sin2 θdϕ2), (23)

where M̃ and Q̃ denote the mass and charge at the boundary, where r = H. This equality
results from the continuity of the first fundamental form at the boundary of the compact
object, where the interior and exterior geometries merge. Here, r and H denote the radii of
the interior and exterior geometries, respectively. This inequality thus implies that at the
boundary of the compact objects, the radii of the interior and exterior geometries are equal
as stipulated by the junction conditions.

Applying the Darmois junction conditions, we obtain the following constraints to
enhance smooth matching at the surface:

gtt :
(

A +
1
2

BH
√

CH2
)2

= 1 − 2M̃
H +

Q̃2

H2 , (24)

grr :
1

1 + CH2 = 1 − 2M̃
H +

Q̃2

H2 , (25)

gtt,r : B
(

2A
√

CH2 + BCH3
)
=

2
(
M̃H− Q̃2)

H3 . (26)

Solving the above system simultaneously, we obtain the Finch–Skea constants (A, B, C) as

A =

√
− Q̃2−2M̃H

−2M̃H+Q̃2+H2

(
H(2H− 5M̃) + 3Q̃2)

2H
√

2M̃H− Q̃2
, (27)

B =
M̃H− Q̃2

H2
√

2M̃H− Q̃2
, (28)

C =
1

−2M̃H+ Q̃2 +H2
− 1

H2 . (29)

The experimental data, including the masses and radii of five different strange stars,
namely Her X-1 [48], SAX J 1808.4-3658 [49], PSR J038-0842 [48], LMC X-4 [50], and SMC
X-1 [50], are utilized. This information is provided in Table 1, where we also calculate the
mass–radius ratio for each star as a dimensionless quantity. We find that these computed
ratios comply with the limit M̃

2H < 2
9 as suggested by Buchdahl [51]. Additionally, in Table 2,

we present the values of the Finch–Skea triplet (A, B, C), as well as Q̃2

H2 .

Table 1. Experimental data of five strange stars.

Star Models Mass (M⊙) G (km) M̃
H

Her X-1 0.85 8.1 0.154679

SAX J 1808.4-3658 1.44 7.07 0.300221

PSR J038-0842 2.1 10.06 0.307694

LMC X-4 1.29 8.831 0.215316

SMC X-1 1.04 9.34 0.164128
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Table 2. Values of Finch–Skea triplets (A, B, C) and Q̃2

H2 .

Star Models A B C Q̃2

H2

Her X-1 0.738761 0.0342317 0.00680767 0.000609663

SAX J 1808.4-3658 0.396133 0.0546911 0.0299642 0.000800242

PSR J038-0842 0.372864 0.0389518 0.0157835 0.000395243

LMC X-4 0.612632 0.0370883 0.00967802 0.000512909

SMC X-1 0.720066 0.0306069 0.00559002 0.000458528

4. Physical Analysis
This study investigates the various structural properties of strange stars using an

anisotropic model under Rastall gravity. Following the information from Table 1, the graph-
ical representations of different matter parameters are analyzed. The analysis covers the
study of the properties of quark stars, in particular, the appearance and the possible limi-
tations of the stars metric potentials, the energy density distribution, and the anisotropic
stress. Energy constraints, compactness, and surface redshift are also considered. Their
stability is also studied. A regular solution guarantees that the components of the con-
sidered metric do not contain singularities and are increasing and positive everywhere.
The metric components, as shown in Equation (18), depend only on the Finch–Skea pa-
rameters for which the values are provided in Table 2. We include the effect of an electric
field by adopting Q = 0.2, 0.7 and the values of the Rastall parameter as ζ = 0.255, 0.259,
which are represented by thick and broken lines, respectively. These values of the Rastall
parameter are chosen to be of the order 10−3 in line with the results from [52], where
118 galaxy–galaxy strong gravitational lensing systems were used to constrain the Rastall
dimensionless parameter. Where appropriate, we set B = 60 MeV/fm3 for the bag constant.

The considered quark candidates, Her X-1, SAX J 1808.4-3658, PSR J038-0842, LMC
X-4, and SMC X-1, are denoted by the colors blue, brown, green, red, and black, respectively.
The metric functions are shown in Figures 1 and 2 for the cases Q = 0.2 and Q = 0.7,
respectively, and serve to demonstrate the physical plausibility of the solution obtained.
However, we observe no impact of the increment on the charge.

0 2 4 6 8
0.1

0.2

0.3

0.4

0.5

0.6

0.7

r(km)


ϕ
1

0 2 4 6 8 10

1.0

1.5

2.0

2.5

r(km)


ϕ
2

Figure 1. Plots of metric functions against r for Q̃ = 0.2. (The colors blue, brown, green, red, and
black, denote the considered quark candidates, Her X-1, SAX J 1808.4-3658, PSR J038-0842, LMC X-4,
and SMC X-1, respectively).
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Figure 2. Plots of metric functions against r for Q̃ = 0.7. (The colors blue, brown, green, red, and
black, denote the considered quark candidates, Her X-1, SAX J 1808.4-3658, PSR J038-0842, LMC X-4,
and SMC X-1, respectively).

4.1. Matter Variables

In any particular geometric configuration, matter becomes centralized around the core.
Thus, a physical solution can be found only if the central part possesses maximal values
of the matter parameters (such as density or pressure), which decrease towards the surface.
Given the anisotropic configuration of the considered fluid, we essentially consider three main
parameters, viz. ρ̃, P̃r, and P̃t. As presented in Figures 3 and 4, these parameters satisfy the
aforementioned requirements. We notice that the core density is slightly higher for a smaller
value of Q̃ and thus deduce that the density has an inverse correlation to the electric field.
The same trend can be observed in relation to P̃r as well. For comparison purposes, we plot
the GR case (ζ = 0) for the effective parameters in Figure 5, where it is observed that these
parameters attain higher values at the core compared to the case of Rastall gravity (ζ ̸= 0).

In addition, we check the regularity of these matter parameters with the help of the
conditions dρ̃

dr < 0, dP̃r
dr < 0, dP̃t

dr < 0. Figures 6 and 7 show that the properties of the matter
obey these regularity principles, which means that within this approach, matter is postulated
to be highly anisotropic, yet also very dense. It is also observed that smaller values of the
Rastall parameter leads to the formation of a denser core and higher core radial pressure.
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Figure 3. Plots of ρ̃, P̃r, P̃t and q2 against r for ζ = 0.255 (thick), 0.259 (broken) and Q̃ = 0.2. (The
colors blue, brown, green, red, and black, denote the considered quark candidates, Her X-1, SAX J
1808.4-3658, PSR J038-0842, LMC X-4, and SMC X-1, respectively).
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Figure 4. Plots of ρ̃, P̃r, P̃t and q2 against r for ζ = 0.255 (thick), 0.259 (broken) and Q̃ = 0.7. (The
colors blue, brown, green, red, and black, denote the considered quark candidates, Her X-1, SAX J
1808.4-3658, PSR J038-0842, LMC X-4, and SMC X-1, respectively).
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Figure 5. Plots of ρ̃, P̃r, P̃t against r for ζ = 0 and Q̃ = 0.2 (left), 0.7 (right). (The colors blue, brown,
green, red, and black, denote the considered quark candidates, Her X-1, SAX J 1808.4-3658, PSR
J038-0842, LMC X-4, and SMC X-1, respectively).
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Figure 6. Plots of dρ̃
dr , dP̃r

dr , and dP̃t
dr against r for ζ = 0.255 (thick), 0.259 (broken) and Q̃ = 0.2. (The

colors blue, brown, green, red, and black, denote the considered quark candidates, Her X-1, SAX J
1808.4-3658, PSR J038-0842, LMC X-4, and SMC X-1, respectively).
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Figure 7. Plots of dρ̃
dr , dP̃r

dr , and dP̃t
dr against r for ζ = 0.255 (thick), 0.259 (broken) and Q̃ = 0.7. (The

colors blue, brown, green, red, and black, denote the considered quark candidates, Her X-1, SAX J
1808.4-3658, PSR J038-0842, LMC X-4, and SMC X-1, respectively).

4.2. Pressure Anisotropy

The pressure anisotropy ∆̃ is given by ∆̃ = P̃t − P̃r and can be evaluated using
Equations (20) and (21) as
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∆̃ =
1

8π(Cr3 + r)2
(

4
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√

Cr2
)
+ B2Cr4

)[r
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4A2r
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C
[

r2
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×
(

16πBr2 + 6ζ − 1
)
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+ 16πB
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+ 4AB

√
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×
(

r2
(
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)(

C
(

16πBr2 + 6ζ − 1
)
+ 16πB

)
− 18ζ + 3

)
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×
[

r2
(

C
(

r2
(

C
(

16πBr2 + 6ζ − 1
)
+ 32πB

)
− 6ζ + 1

)
+ 16πB

)
− 36ζ

+ 6
]]]

. (30)

The distinguishing feature of anisotropic pressure is the difference between the tangential
and radial components. If the tangential stress is greater than the radial stress of the material
(P̃t > P̃r), it is an indication that the material is under an outward force, while if it is the other
way around (P̃r > P̃t) then it is a force directed inwards. A factor of positive anisotropic
pressure in such bodies produces an external force that counteracts the inward gravitational
pull in such spheres in order to ensure that balance is achieved. The distribution of anisotropic
pressure in the selected models of the quark stars is presented in Figure 8. It is observed that ∆̃
is smooth and decreases towards the surface but remains positive at all times, which suggests
that there is a force that works towards building such heavy stellar structures.
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Figure 8. Plots of anisotropic pressure (∆̃) against r for ζ = 0.255 (thick), 0.259 (broken) and Q̃ = 0.2
(left), = 0.7 (right). (The colors blue, brown, green, red, and black, denote the considered quark
candidates, Her X-1, SAX J 1808.4-3658, PSR J038-0842, LMC X-4, and SMC X-1, respectively).

4.3. Mass, Compactness, and Surface Redshift

In order to calculate the mass of a sphere, its energy density can be taken into consid-
eration by using the equation

m(r) = 4π
∫ H

0
ρ̃r2dr, (31)

where ρ̃ is defined in Equation (19). Figures 9 and 10 (corresponding to Q̃ = 0.2 and Q̃ = 0.7,
respectively) show that the mass function starts at zero in the core and increases steadily
towards the surface. Additionally, we study the compactness of the sphere, σ(r) = m(r)

r ,
and the surface redshift, Zs(r) = 1√

1−2σ(r)
− 1. How properly an object mass is distributed

within a given radius is called the compactness of the object, and it is an important factor in
the assessment of the strength of the gravitational field along the surface of a star. Changes
in the wavelengths of electromagnetic radiations emitted from the surface of a compact
object are shown by the surface redshift, Zs(r). The strong field in the vicinity of the
surface reduces the energy of the emitted radiation causing a redshift of the radiation,
meaning an increase in wavelength. Photons that are generated from the central core tend
to travel through denser sections of the core, which results in them losing some energy
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due to scattering. On the other hand, the surface, where the emission occurs, is occupied
with less dense material, which lessens the amount of scattering and therefore the loss of
energy. For a physically viable configuration to exist, the following conditions must hold
σ < 4

9 [51] and Zs ≤ 5.2 [53]. The relations between the compression of liquid and surface
redshift as shown in Figures 9 and 10 suggest that the limits required by the aforementioned
parameters are observed in this model.
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Figure 9. Plots of m(r), σ, and Zs against r for ζ = 0.255 (thick), 0.259 (broken) and Q̃ = 0.2. (The
colors blue, brown, green, red, and black, denote the considered quark candidates, Her X-1, SAX J
1808.4-3658, PSR J038-0842, LMC X-4, and SMC X-1, respectively).

0 2 4 6 8 10

0.0

0.5

1.0

1.5

2.0

2.5

r(km)

m
(k
m
)

0 2 4 6 8 10

0.00

0.05

0.10

0.15

0.20

0.25

r(km)

σ

0 2 4 6 8 10

0.0

0.1

0.2

0.3

0.4

0.5

r(km)

Z
s

Figure 10. Plots of m(r), σ, and Zs against r for ζ = 0.255 (thick), 0.259 (broken) and Q̃ = 0.7. (The
colors blue, brown, green, red, and black, denote the considered quark candidates, Her X-1, SAX J
1808.4-3658, PSR J038-0842, LMC X-4, and SMC X-1, respectively).
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4.4. Energy Conditions

Astrophysics has a procedure to determine the kind of matter that makes up the body
of any given heavenly body. These are given by a known set of constraints, termed as
energy conditions. Such restrictions put in place are important to understand the features
of such bodies and how they act. These conditions (classified as dominant, strong, null, and
weak energy conditions) help to define the region occupied by normal and strange matter
in a given geometry. The fulfillment of these conditions, which are functions of the physical
quantities P̃r, P̃t and ρ̃, is indicative of the existence of regular matter in a correlated star.
Also, these bounds serve the purpose of determining whether certain proposed models are
realistic in different theories of gravity. It is necessary that the relevant physical parameters
fulfill certain limits to enable ordinary matter content in a given geometric configuration.
These criteria can be categorized as follows:

ρ̃ +
q2

8πr4 ≥ 0, ρ̃ + P̃r ≥ 0,

ρ̃ − P̃r +
q2

4πr4 ≥ 0, ρ̃ − P̃t ≥ 0,

ρ̃ + P̃t +
q2

4πr4 ≥ 0, ρ̃ + P̃r + 2P̃t +
q2

4πr4 ≥ 0.

Figures 11 and 12 illustrate these conditions corresponding to Q̃ = 0.2 and Q̃ = 0.7,
respectively. It is shown that these conditions are satisfied, implying the presence of
ordinary matter in the interior of the considered stellar configurations.
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Figure 11. Graphs of energy bounds against r for ζ = 0.255 (thick), 0.259 (broken) and Q̃ = 0.2. (The
colors blue, brown, green, red, and black, denote the considered quark candidates, Her X-1, SAX J
1808.4-3658, PSR J038-0842, LMC X-4, and SMC X-1, respectively).
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Figure 12. Graphs of energy bounds against r for ζ = 0.255 (thick), 0.259 (broken) and Q̃ = 0.7. (The
colors blue, brown, green, red, and black, denote the considered quark candidates, Her X-1, SAX J
1808.4-3658, PSR J038-0842, LMC X-4, and SMC X-1, respectively).

4.5. Stability

The stability of compact star has drawn the attention of astrophysicists, as it helps
to create physically realistic models of such objects. It is captivating to study those huge
celestial masses that can maintain their stable behavior irrespective of the changes made
to their environment, hence the importance of studying their structural stability. In this
regard, with Rastall theory taken into account, we use two different methods for the stability
analysis of the compact stars.

Firstly, we employ the cracking process attributed to Herrera [22]. With this criterion,
stability is guaranteed if the requirement 0 ≤ |V2

st − V2
sr| ≤ 1 holds, wherein V2

st = dP̃t
dρ̃

is understood as the tangential sound speed while V2
sr = dP̃r

dρ̃ is the radial sound speed.
In Figure 13, the Herrera cracking condition is presented, showing that the configurations
remain stable for all the parameters under consideration. Additionally, we investigate
the stability of the proposed models via the causality conditions with which stability
necessitates that 0 ≤ V2

sr, V2
st ≤ 1 [54]. The result of this test shown in Figure 14, depicts a

stable configuration.
Furthermore, we investigate the stability using the adiabatic index Γ, which is a

fundamental tool for the stability analysis of self-gravitating objects. This approach necessi-
tates that the adiabatic index remains greater than 4

3 across the entire model for a stable
system [55]. With this parameter, the criterion for stability is Γ > 4

3 , where

Γ =

(
ρ̃ + P̃r

P̃r

)
dP̃r

dρ̃
. (32)
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We plot the adiabatic index in Figure 15, from which we deduce the stability of all
the considered configurations. Given that these methods are widely accepted and have
been rigorously applied in this study, we contend that they are sufficient to substantiate
the stability of our models. While additional graphical representations may provide a
visual confirmation of the results, the detailed analysis already presented in the manuscript
confirms that the necessary stability criteria are fully satisfied. To enhance a comparative
analysis, we also investigate the stability of the model for the GR case as shown in Figure 16,
where a stable configuration is also deduced.
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Figure 13. Plots of |V2
st − V2

sr| against r for ζ = 0.255 (thick), 0.259 (broken) and Q̃ = 0.2 (left),
0.7 (right). (The colors blue, brown, green, red, and black, denote the considered quark candidates,
Her X-1, SAX J 1808.4-3658, PSR J038-0842, LMC X-4, and SMC X-1, respectively).
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Figure 14. Plots of V2
sr and V2

sr against r for ζ = 0.255 (thick), 0.259 (broken) and Q̃ = 0.2 (left),
0.7 (right). (The colors blue, brown, green, red, and black, denote the considered quark candidates,
Her X-1, SAX J 1808.4-3658, PSR J038-0842, LMC X-4, and SMC X-1, respectively).
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Figure 15. Plots of Γ against r for ζ = 0.255 (thick), 0.259 (broken) and Q̃ = 0.2 (left), 0.7 (right). (The
colors blue, brown, green, red, and black, denote the considered quark candidates, Her X-1, SAX J
1808.4-3658, PSR J038-0842, LMC X-4, and SMC X-1, respectively).
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Figure 16. Plots of |V2
st − V2

sr| and Γ against r for ζ = 0 and Q̃ = 0.2 (left), 0.7 (right). (The colors blue,
brown, green, red, and black, denote the considered quark candidates, Her X-1, SAX J 1808.4-3658,
PSR J038-0842, LMC X-4, and SMC X-1, respectively).

5. Conclusions
In the present work, we have developed a model for strange anisotropic compact

stars under electric field within Rastall theory. To examine the structural properties of five
different stars, namely, Her X-1, SAX J 1808.4-3658, PSR J038-0842, LMC X-4, and SMC X-1,
we have used MIT bag model EOS together with the field equations of Rastall theory.
The Finch–Skea metric potentials that have three constant parameters in the form of
(A, B, C) have been employed, and their values are expressed in terms of star masses
and radii using the matching conditions within this theory. A bag constant value of
B = 60 MeV/fm3 has been chosen for this study. In the analysis of the observational
data, the masses and radii of the aforementioned quark star candidates have been used to
estimate dimensionless mass–radius ratios, which are discussed in Table 1. In Table 2, these
values are further applied to estimate the Finch–Skea parametric values of (A, B, C).

To investigate the different physical attributes associated with the quark star candi-
dates, graphical analyses have been performed. We have taken the values of the Rastall and
charge parameters to be ζ = 0.255, 0.259 and Q̃ = 0.2, 0.7, respectively. The thermodynamic
variables which comprise ρ̃, P̃r, P̃t, etc., conform to the familiar features of compact stars.
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In particular, these quantities are found to be positive and finite, achieving the maximum
values at the center. Going outward from the center to the surface, the density and pressures
are found to decrease monotonically. Also, a positive anisotropy is noted to be present.
The behavior of the energy density is such that there is an inverse relationship with respect
to ζ and Q̃. The redshift and compactness have been found to be within their predicted
limits. The energy conditions are completely met, showing that there is normal matter in
the inner region of the quark candidates. We mention that while we focus on investigating
the impact of the Rastall and charge parameters on various physical properties of the
obtained models, no relationship is deduced or established between these parameters,
as these parameters are taken as independent variables whose effect on other parameters
is investigated in this study.

We have deduced the stability of our model by means of the Herrera cracking technique
as well as the adiabatic index, both of which suggest that the stars under consideration
remain stable for all parametric values considered. Furthermore, it is noted that the compact
star Her X − 1 is found to be more condensed in the perspective of Rastall theory as opposed
to f (R, T,Q) [35]. On the other hand, SAX J 1808.4-3658 turns out to be denser in Rastall
theory as compared to both f (R, T,Q) [35] and f (R, T) [56] theories. Three of the stars
considered, namely, Her X-1, SAX J 1808.4-3658, and SMC X-1, were also studied in [31] and
found to be stable. Finally, our solutions reduce to the solutions of GR in the case where
ζ = 0.
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