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Abstract: In this paper, we conduct a thorough investigation of the surface and curvature
tensions, σ and γ, of three-flavor cold quark matter using the Nambu–Jona–Lasinio (NJL)
model with vector interactions. Our approach ensures both local and global electric charge
neutrality, as well as chemical equilibrium under weak interactions. By employing the
multiple reflection expansion formalism to account for finite size effects, we explore the
impact of specific input parameters, particularly the vector coupling constant ratio ηV , the
radius R of quark matter droplets, as well as the charge-per-baryon ratio ξ of the finite size
configurations. We focus on the role of the contributions of each term of the NJL Lagrangian
to the surface and curvature tensions in the mean field approximation. We find that the
total surface tension exhibits two different density regimes: it remains roughly constant at
around 100 MeV fm−2 up to approximately 2–4 times the nuclear saturation density, and
beyond this point, it becomes a steeply increasing function of nB. The total surface and
curvature tensions are relatively insensitive to variations in R but are affected by changes
in ξ and ηV . We observe that the largest contribution to σ and γ comes from the regularized
divergent term, making these quantities significantly higher than those obtained within the
MIT bag model.

Keywords: neutron star; dense matter; chiral effective model

1. Introduction
One of the major unresolved issues in modern astrophysics is understanding the

internal structure and composition of neutron stars. Current theoretical and observational
constraints can be explained by significantly different models, suggesting that the core may
be composed of nucleonic matter, the appearance of hyperons, quark matter, or even dark
matter [1,2].

The possibility of quark matter existing in the core of neutron stars is quite compelling,
as current understanding of the Quantum Chromodynamics (QCD) phase diagram suggests
that, under high-density and high-temperature conditions, nuclear matter would deconfine,
releasing its constituent quarks. Indeed, there is some evidence that a quark–gluon plasma
has formed in heavy-ion collisions [3], supporting the idea that deconfinement could
also occur under the high-density conditions inside neutron stars (see [4] and references
therein). If this is the case, many neutron stars, especially those with higher masses and
consequently higher central densities, could be hybrid stars, consisting of a core of quark
matter surrounded by hadronic matter.

Universe 2025, 11, 29 https://doi.org/10.3390/universe11020029

https://doi.org/10.3390/universe11020029
https://doi.org/10.3390/universe11020029
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/universe
https://www.mdpi.com
https://orcid.org/0000-0002-6523-7469
https://orcid.org/0000-0002-4556-6302
https://orcid.org/0000-0002-2978-8079
https://doi.org/10.3390/universe11020029
https://www.mdpi.com/article/10.3390/universe11020029?type=check_update&version=1


Universe 2025, 11, 29 2 of 19

Although research on hybrid stars has advanced our understanding of their general
properties over the past few decades, several critical unresolved issues persist. Among these
are the structure and microphysical properties of the region separating the quark and
hadron phases. Studies indicate that, if finite-size effects, such as surface tension, curvature
tension, and Coulomb energy, are sufficiently small, the minimization of the system’s energy
tends to favor global electrical neutrality over local neutrality [5–10]. This results in the
formation of what is known as a mixed phase, consisting of electrically charged geometric
structures within a background of the other phase with opposite electric charge [11–14].
This mixed phase, often referred to as the quark–hadron pasta phase, features structures
reminiscent of various types of Italian pasta, such as gnocchi, spaghetti, and lasagna,
embedded in a uniform “sauce” of the other phase that extends over a wide range of
densities within the star. On the other hand, if finite-size effects have a high energy cost,
a sharp boundary would separate the inner core of quark matter from the outer layers of
hadronic matter.

Despite the critical role of surface and curvature tensions, their precise values in the
dense environment of neutron stars remain uncertain, as it is not possible to determine
them from first-principle calculations in the low-temperature, high-density regime. Conse-
quently, while various calculations of these parameters exist in the literature, they currently
only offer a general evaluation of their potential range, and many of them disagree with
each other in their qualitative implications. For example, using the thin-wall formalism,
it has been found that surface tension values are generally low (σ < 30 MeV/fm2) across
various equations of state (EOS) models, such as the NJL model [15–17], the linear sigma
model [17–19], and the Polyakov–quark–meson model [20]. Similarly, the multiple reflec-
tion expansion (MRE) formalism also results in low surface tension values (see references
in [21]) when quark matter is approximated as a free particle gas, which could be a rea-
sonable approximation at extremely high densities due to the property of asymptotic
freedom [22]. However, when various interaction channels are taken into account, which
better represent the non-perturbative density regime of neutron star matter, the MRE for-
malism yields significantly higher σ values, as seen in studies using the NJL model [23]
and the vector MIT bag model [24]. In contrast, the study of curvature tension is less
extensive, although it has been shown that it alters the density range over which each type
of geometric structure prevails [25].

In this context, it is clear that understanding the role of strong interactions in sur-
face and curvature tensions is crucial to fully characterize the behavior and properties of
the mixed phase. Although previous works have partially addressed this issue, a com-
prehensive analysis of how each term in the effective NJL Lagrangian impacts σ and γ,
as undertaken in this study, has not yet been performed. Among the terms we will analyze,
the one representing repulsive vector interactions is particularly relevant. Indeed, their
impact on σ and γ has not yet been thoroughly evaluated in the context of the NJL model.
These terms are important not only for their ability to stiffen the EOS, thereby explaining
the existence of recently observed two-solar-mass pulsars, but also because they can signifi-
cantly increase surface and curvature tensions, as recently demonstrated in the context of
the MIT bag model [24]. To address finite size effects, we will employ the MRE formalism,
focusing on matter that is in chemical equilibrium under weak interactions while taking
into account both local and global electric charge neutrality. Given these conditions, we
will investigate the influence of the vector coupling constant, the radius of quark matter
droplets, and the charge-per-baryon ratio. The present manuscript builds upon an earlier
study [21] but extends it in several key aspects, such as the analysis of the contribution
of each term of the NJL Lagrangian to σ and γ, together with an analysis of the role of
non-vanishing electric charge of the geometric structures.
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This paper is organized as follows: Section 2 discusses the NJL model in the bulk,
including two types of vector interactions. Section 3 addresses finite size effects by adopting
the MRE formalism, separating the contribution of each term in the NJL Lagrangian to the
surface and curvature tensions. Section 4 presents our numerical results, examining the
impact on the surface and curvature tensions of varying the vector coupling constant, the ra-
dius of quark matter droplets, and the charge-per-baryon ratio. Finally, Section 5 concludes
the paper by summarizing our findings, discussing their implications, and comparing them
with previous works.

2. The Model in the Bulk
We begin with an SU(3)f NJL effective model at zero temperature, incorporating

vector interactions. The specific form of the Lagrangian under study is the following:

L = q̄(i/∂ − m)q + 1
2 GS

8

∑
a=0

[
(q̄λaq)2 + (q̄iγ5λaq)2

]
− GD[det q̄(1 + γ5)q + h.c.]

−
{ 1

2 gV(q̄γµq)2

1
2 GV ∑8

a=0

[
(q̄γµλaq)2 + (q̄iγµγ5λaq)2

]
.

(1)

In this equation, qi(i = u, d, s) denotes the quark fields, which are characterized by three
colors and flavors, each associated with a corresponding current quark mass mi. We assume
mu = md. The term with coefficient GS represents a U(3)L × U(3)R symmetric four-Fermi
interaction, where λa are the Gell–Mann matrices, with λ0 =

√
2/3I. The interaction

proportional to GD, known as the Kobayashi–Maskawa–’t Hooft interaction, accounts for
the breaking of U(1)A symmetry. Regarding the vector channel, we consider two types of
contributions, termed Model 1 and Model 2. In Model 1, the term governed by gV(>0) pro-
vides a flavor-independent repulsive interaction, whereas in Model 2, the term associated
with GV(>0) introduces a flavor-dependent repulsion, as discussed in Ref. [26].

Within the mean-field approximation, the thermodynamic potential per unit volume
is expressed as the sum of the following components:

ΩMFA = Ωdiv + Ωfree + Ωcond + Ωdet + Ωvec, (2)

where Ωdiv stands for the regularized divergent contribution, Ωfree has the same functional
form as the T → 0 limit of the free Fermi gas, Ωcond represents the condensate term, Ωdet

is associated with the Kobayashi–Maskawa–’t Hooft interaction, and Ωvec represents the
vector term. Although the thermodynamic potential per unit volume, expressed as a sum
of various components, was explicitly presented in [21], we adopt here a different approach
for the first and second terms. Specifically, we now consider the second term to correspond
to that of a free Fermi gas. The explicit form of each contribution is

Ωdiv = −6 ∑
i=u,d,s

∫ Λ

0

k2dk
2π2 Ei, (3)

Ωfree = −6 ∑
i=u,d,s

∫ κi

0

k2dk
2π2 (µ

∗
i − Ei), (4)

Ωcond = GS

(
ϕ2

u + ϕ2
d + ϕ2

s

)
, (5)
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Ωdet = −4GDϕuϕdϕs, (6)

Ωvec,1 = − 1
2 gV

(
∑

i=u,d,s
ni

)2
(Model 1), (7)

Ωvec,2 = − 1
2 GV ∑

i=u,d,s
n2

i (Model 2). (8)

In Equation (3), Λ represents an ultraviolet cutoff introduced to regularize the divergent

integral, and Ei =
√

k2 + M2
i is the on-shell energy of the quark, self-consistently evalu-

ated for the constituent quark masses Mi, which are dynamically generated via the NJL
interactions governed by the coupling constants GS and GD [27]:

Mi = mi − 2GSϕi + 2GDϕjϕk. (9)

In this equation, ϕi are the quark condensates associated with each flavor, where i, j, and k
are flavor indices with i ̸= j ̸= k. The value of ϕi is ascertained through a self-consistent
solution of the following equation:

ϕi = −6
∫ k2dk

2π2
Mi
Ei

[1 − θ(Ei − µ∗
i )], (10)

simultaneously with Equation (9).
In the preceding expressions, the effective quark chemical potentials µ∗

i account for
the influence of vector interactions and are defined as follows:

µ∗
i = µi − gV ∑

j=u,d,s
nj (Model 1), (11)

µ∗
i = µi − GVni (Model 2), (12)

where ni denotes the particle number densities, calculated as

ni(µ
∗
i ) = 6

∫ κi

0

k2dk
2π2 . (13)

The Fermi momentum κi, used in Equations (4) and (13), is defined by

κi = θ(µ∗
i − Mi)

√
µ∗

i
2 − M2

i , (14)

where θ is the Heaviside step function. To determine µ∗
i , one must substitute Equation (13)

into Equations (11) or (12) and then find a self-consistent solution for these equations,
simultaneously solving Equation (9).

The portion of Equation (4) containing Ei could be incorporated into Ωdiv by altering
the limits of integration. However, we opt to define Ωfree as specified in Equation (4)
because, at finite temperature, this definition ensures that the term has the same functional
form as a free Fermi gas.

The complete thermodynamic potential is obtained by including the contributions of
electrons, denoted as Ωe, and a vacuum constant, denoted as Ωvac. Electrons are modeled
as a non-interacting gas of massless fermions, and their thermodynamic potential per unit
volume is given by

Ωe(T, µe) = − µ4
e

12π2 . (15)
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The vacuum constant Ωvac is introduced to ensure that the pressure becomes zero at both
zero temperature and zero chemical potentials. Therefore, the complete thermodynamic
potential per unit volume is expressed as

Ω = ΩMFA + Ωe − Ωvac. (16)

It is worth noting that Ωvac does not exert a direct impact on the values of the surface and
curvature tensions, as will be elucidated below.

3. Finite Size Effects
To incorporate finite size effects into the thermodynamic potential, we adopt the MRE

formalism (as detailed in [21] and its references), which, for the case of a finite spherical
droplet, modifies the density of states as follows:

ρi(k) = 1 +
6π2

kR
fS,i(k) +

12π2

(kR)2 fC,i(k). (17)

Here, the surface contribution to the density of states is

fS,i(k) = − 1
8π

(
1 − 2

π
arctan

k
mi

)
, (18)

and the curvature contribution is given by

fC,i(k) =
1

12π2

[
1 − 3k

2mi

(
π

2
− arctan

k
mi

)]
. (19)

The MRE density of states for massive quarks exhibits a reduction compared with
the bulk density, leading to negative values within a specific small momentum range.
To address this non-physical behavior, an infrared (IR) cutoff in momentum space is
introduced. Consequently, the following replacement is necessary to compute the relevant
thermodynamic quantities:

∫ Λ

0
· · · k

2 dk
2π2 −→

∫ Λ

ΛIR

· · · k
2 dk

2π2 ρ(k). (20)

The infrared cutoff ΛIR is the largest solution of the equation ρi(k) = 0 with respect to the
momentum k, and it depends on the flavor and the drop’s radius as shown in Table 1.

Table 1. Infrared cutoff ΛIR for different particle masses m and different values of the drop’s radius
R. In the bulk case (R = ∞), ΛIR is zero.

Particles m [MeV] R [fm] ΛIR [MeV]

quarks u, d 5.5 3 51.77
5.5 5 32.86
5.5 10 18.34

quarks s 135.7 3 95.07
135.7 5 62.15
135.7 10 33.42

Introducing the MRE density of states in Equation (2), the complete expression for the
thermodynamic potential of a finite spherical droplet can be expressed as follows (see [21]
and references therein):

ΩMREV = −PV + σS + γC + · · · , (21)
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where V = 4
3 πR3, S = 4πR2, C = 8πR, and the dots represent higher order terms.

The coefficients corresponding to the volume, surface, and curvature in Equation (21) are
recognized as the pressure (P), surface tension (σ), and curvature tension (γ) of the droplet,
respectively, and are defined as

P ≡ −∂(ΩMREV)

∂V

∣∣∣∣
µ,S,C

, (22)

σ ≡ ∂(ΩMREV)

∂S

∣∣∣∣
µ,V,C

, (23)

γ ≡ ∂(ΩMREV)

∂C

∣∣∣∣
µ,V,S

. (24)

Furthermore, considering the different terms that constitute the mean–field approxima-
tion thermodynamic potential given in Equation (2), it is possible to obtain the contribution
of each one of them to the total P, σ, and γ:

Ptot = Pvec + Pdiv + Pfree + Pcond + Pdet, (25)

σtot = σvec + σdiv + σfree + σcond + σdet, (26)

γtot = γvec + γdiv + γfree + γcond + γdet. (27)

In the following subsections, we will deduce each of the previously mentioned contributions
in detail.

3.1. Divergent Term

By taking the divergent term from Equation (3) and adopting the procedure from
Equation (20), we obtain

ΩMRE
div,i = −6

∫ Λ

ΛIR,i

k2dk
2π2 Eiρi. (28)

Proceeding as in Equation (21), that is, by separating the terms proportional to V, S, and C,
we identify the pressure, the surface tension, and the curvature tension as follows:

Pdiv,i = 6
∫ Λ

ΛIR,i

k2dk
2π2 Ei, (29)

σdiv,i = −6
∫ Λ

ΛIR,i

k dkEi fS,i, (30)

γdiv,i = −6
∫ Λ

ΛIR,i

dkEi fC,i. (31)

3.2. Free Term

Applying the procedure from Equation (20) to Equation (4), we obtain

ΩMRE
free,i = −6

∫ κi

ΛIR,i

k2dk
2π2 (µ∗

i − Ei) ρi. (32)

Splitting the previous expression as in Equation (21), we find
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Pfree,i = 6
∫ κi

ΛIR,i

k2dk
2π2 (µ

∗
i − Ei), (33)

σfree,i = −6
∫ κi

ΛIR,i

k dk(µ∗
i − Ei) fS,i, (34)

γfree,i = −6
∫ κi

ΛIR,i

dk (µ∗
i − Ei) fC,i. (35)

3.3. Condensate Term

The condensate term is given in Equation (5), where the condenstates ϕi are defined in
Equation (10). Using Equation (20), the condensate contribution reads

ΩMRE
cond = GS

[(
ϕMRE

u

)2
+

(
ϕMRE

d

)2
+

(
ϕMRE

s

)2
]

(36)

where

ϕMRE
i = −6

∫ Λ

ΛIR,i

k2dk
2π2

Mi
Ei

[1 − θ(µ∗
i − Ei)]ρi (37)

= −6
∫ Λ

ΛIR,i

k2dk
2π2

Mi
Ei

ρi + 6
∫ κi

ΛIR,i

k2dk
2π2

Mi
Ei

ρi (38)

= −6
∫ Λ

κi

k2dk
2π2

Mi
Ei

ρi. (39)

Proceeding in the same way as in Equation (21), the condensates take on the following form:

ϕMRE
i = ϕV

i +
S
V

ϕS
i +

C
V

ϕC
i , (40)

where we define

ϕV
i ≡ −6

∫ Λ

κi

k2dk
2π2

Mi
Ei

, (41)

ϕS
i ≡ −6

∫ Λ

κi

kdk
Mi
Ei

fS,i, (42)

ϕC
i ≡ −6

∫ Λ

κi

dk
Mi
Ei

fC,i. (43)

Replacing Equation (40) into Equation (36), we obtain

ΩMRE
cond = GS ∑

i

[
(ϕV

i )
2 +

S2

V2 (ϕ
S
i )

2 +
C2

V2 (ϕ
C
i )

2

+ 2
S
V

ϕV
i ϕS

i + 2
C
V

ϕV
i ϕC

i + 2
SC
V2 ϕS

i ϕC
i

]
.

(44)

We now multiply the preceding expression by the volume V, retaining only the terms
that are proportional to R3, R2, and R, and disregarding any other powers of the radius R.
The outcome is as follows:

VΩMRE
cond = GS ∑

i

[
V(ϕV

i )
2 + S2ϕV

i ϕS
i

+ C
(

3
2 (ϕ

S
i )

2 + 2ϕV
i ϕC

i

)
+ · · ·

]
. (45)
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From the above equation, we can easily identify the pressure, surface tension, and curvature
tension associated with the condensate term, which turn out to be

Pcond = −GS ∑
i
(ϕV

i )
2, (46)

σcond = 2GS ∑
i

ϕV
i ϕS

i , (47)

γcond = GS ∑
i

(
3
2 (ϕ

S
i )

2 + 2ϕV
i ϕC

i

)
. (48)

3.4. Determinant Term

The contributions of the determinant term can be derived similarly to the preceding
subsection. Starting with

ΩMRE
det = −4GDϕMRE

u ϕMRE
d ϕMRE

s , (49)

replacing Equation (40), and multiplying by the volume, we arrive at

VΩMRE
det =− 4GD ×

{
V
(

ϕV
u ϕV

d ϕV
s

)
+ S

[
ϕV

u ϕV
d ϕS

s + ϕV
u ϕS

d ϕV
s + ϕS

uϕV
d ϕV

s

]
+ C

[
ϕV

u ϕV
d ϕC

s + ϕV
u ϕC

d ϕV
s + ϕC

u ϕV
d ϕV

s

+ 3
2 (ϕ

V
u ϕS

d ϕS
s + ϕS

uϕS
d ϕV

s + ϕS
uϕV

d ϕS
s )
]

+ · · ·
}

,

(50)

where terms of order R0 were disregarded. From the latter expression, we obtain

Pdet = 4GD ϕV
u ϕV

d ϕV
s , (51)

σdet = −4GD

[
ϕV

u ϕV
d ϕS

s + ϕV
u ϕS

d ϕV
s + ϕS

uϕV
d ϕV

s

]
, (52)

γdet = −4GD

[
ϕV

u ϕV
d ϕC

s + ϕV
u ϕC

d ϕV
s + ϕC

u ϕV
d ϕV

s

+ 3
2 (ϕ

V
u ϕS

d ϕS
s + ϕS

uϕS
d ϕV

s + ϕS
uϕV

d ϕS
s )
]
. (53)

3.5. Vector Term in Model 1

To analyze the contributions of the vector term in Model 1, we begin by

ΩMRE
vec,1 =− 1

2 gV

(
nMRE

u + nMRE
d + nMRE

s

)2

=− 1
2 gV

[
(nMRE

u )2 + (nMRE
d )2 + (nMRE

s )2

+ 2nMRE
u nMRE

d + 2nMRE
u nMRE

s

+ 2nMRE
d nMRE

s

]
.

(54)

In the above expression, the particle number density in the MRE formalism is given by

nMRE
i = 6

∫ κi

ΛIR,i

k2dk
2π2 ρi. (55)
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After substituting the MRE density of states ρi and separating the contributions from
volume, surface, and curvature, the particle number density reads:

nMRE
i = nV

i +
S
V

nS
i +

C
V

nC
i , (56)

where we define

nV
i ≡ 6

∫ κi

ΛIR,i

k2dk
2π2 , (57)

nS
i ≡ 6

∫ κi

ΛIR,i

kdk fS,i, (58)

nC
i ≡ 6

∫ κi

ΛIR,i

dk fC,i. (59)

Replacing Equation (56) into Equation (54), we find

ΩMRE
vec,1V = −Pvec,1V + σvec,1S + γvec,1C + · · · (60)

being

Pvec,1 = 1
2 gV

[
(nV

u )
2 + (nV

d )
2 + (nV

s )
2

+2nV
u nV

d + 2nV
u nV

s + 2nV
d nV

s
]

= 1
2 gV

(
∑

i=u,d,s
nV

i

)2

, (61)

σvec,1 = −gV ∑
i,j=u,d,s

nV
i nS

j , (62)

γvec,1 = −gV ∑
u,d,s

nV
i nC

j − 3
4 gV ∑

u,d,s
nS

i nS
j . (63)

3.6. Vector Term in Model 2

The vector term in Model 2 is given by

ΩMRE
vec,2 = − 1

2 GV ∑
i=u,d,s

(
nMRE

i

)2
. (64)

Replacing the particle number density nMRE
i from Equation (56), we obtain

ΩMRE
vec,2V = −Pvec,2V + σvec,2S + γvec,2C + · · · (65)

being

Pvec,2 = 1
2 GV ∑

i=u,d,s

(
nV

i

)2
, (66)

σvec,2 = −GV ∑
i=u,d,s

nV
i nS

i , (67)

γvec,2 = −GV ∑
i=u,d,s

nV
i nC

i − 3
4 GV ∑

i=u,d,s

(
nS

i

)2
. (68)

3.7. Global/Local Charge Neutrality and Chemical Equilibrium

In this work, we are interested in studying finite-size droplets in β-equilibrium that
may form, for example, within the mixed phase of a hybrid star. In such cases, chemical equi-
librium is maintained through weak interactions among quarks, such as d → u + e− + ν̄e,



Universe 2025, 11, 29 10 of 19

u + e− → d + νe, s → u + e− + ν̄e, and u + d ↔ u + s. Since we are considering a system
at zero temperature, neutrinos leave the system freely, resulting in a vanishing chemical
potential for the neutrinos. Therefore, the chemical equilibrium conditions read

µd = µs = µu + µe, (69)

which can be expressed as

µu = µq − 2
3 µe, (70)

µd = µq +
1
3 µe, (71)

µs = µq +
1
3 µe, (72)

where µq is the quark chemical potential. The electric charge per unit volume is

nQ = 2
3 nMRE

u − 1
3 nMRE

d − 1
3 nMRE

s − ne. (73)

For convenience, we will write the charge density in terms of the charge-per-baryon ratio:

ξ ≡
nQ

nB
, (74)

where
nB = 1

3 (nu + nd + ns) (75)

is the baryon number density. Replacing nQ = ξ(nu + nd + ns)/3 in Equation (73) we
obtain the electric charge conservation equation:

0 =
( 2

3 − ξ
)
nMRE

u −
(

1
3 + ξ

)
nMRE

d −
(

1
3 + ξ

)
nMRE

s − ne. (76)

The calculation of the surface and curvature tensions presumes that there is a boundary sep-
arating the quark from the hadronic phase. Across this boundary, the electron background
is uniform, i.e., it is the same on the internal and the external side of the drop’s boundary,
simply because electrons do not feel the strong interaction. Additionally, the hadronic phase
is predominantly positive since it is constituted mainly of neutrons and protons. Therefore,
due to global charge neutrality, the quark phase inside the drop has to be negative. Thus,
nQ must be negative at the inner side of the drop, i.e., ξ ≤ 0 (cf. Figure 5 of Ref. [25]).
From Ref. [25] we learn that typical values of ξ are in the range −0.75 < ξ ≤ 0 (see also
Ref. [28]).

4. Numerical Results
In this study, we have adopted the HK parameter set as described in Ref. [26], with the

following specific values: mu,d = 5.5 MeV, ms = 135.7 MeV, Λ = 631.4 MeV, GSΛ2 = 3.67,
and GDΛ5 = 9.29. Using these parameters, we have computed the corresponding IR cutoff
for each flavor and size, as detailed in Table 1. In the figures we will use the parameter ηV ,
which represents both ηV = gV/GS (Model 1) and ηV = GV/GS (Model 2).

The thermodynamic potential is determined for each µq as a function of the conden-
sates and the chemical potentials. From this, the thermodynamic quantities of interest
can be calculated. Therefore, we numerically solve Equation (9) self-consistently, along
with Equations (11) or (12), supplemented with the global/local electric charge neutrality
condition (Equation (76)) and the chemical equilibrium conditions (Equations (70)–(72)).
Note that previous calculations were performed under conditions of local electric charge
neutrality (ξ = 0) as described in [21]. One of the main focuses of this section is to extend
the analysis to cases with finite ξ, which are of much greater astrophysical interest due to
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their role in determining the geometric structures that comprise the quark–hadron mixed
phase in the interior of hybrid stars.

It is important to remark that, in general, when we numerically solve the set of
equations related to all the conditions discussed above, there might be regions for which
there is more than one solution for each value of µq. To choose the stable solution among
all of them, we require it to be an overall minimum of the thermodynamic potential.

4.1. Masses and Densities

In Figure 1 we begin by presenting results that are already well known in the litera-
ture [27] for the bulk case (R = ∞), with local electrical charge neutrality (ξ = 0) and with-
out vector interactions (ηV = 0). These results will be subsequently used for comparison
when we consider different inputs for the parameters R, ξ, and ηV . At µq = µc ∼ 350 MeV,
we observe a first-order phase transition, where Mu and Md decrease sharply from 335 MeV
to a significantly lower value (see Figure 1a). At this transition, the particle number den-
sity of u and d quarks jumps from zero to a finite value of approximately 2 − 3n0, while
the particle number density of s quarks remains zero (see Figure 1b). However, due to
flavor mixing, Ms does not remain constant but instead exhibits a small jump at µq = µc.
Beyond µc, the contributions of ϕu and ϕd to Ms gradually shrink, and Ms remains nearly
constant until µq surpasses Ms, leading to a non-zero ns as well. At that point, we observe
a smooth crossover above the strange quark threshold.
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Figure 1. Constituent quark masses (a) and quark number densities (b) as functions of the quark
chemical potential µq, for the bulk case (R = ∞), maintaining local electric charge neutrality (ξ = 0)
and excluding vector interactions (ηV = 0). As vector interactions are omitted, there is no distinction
between Model 1 and Model 2. The quark number densities are expressed in units of the nuclear
saturation density, n0 = 0.15 fm−3.

In Figure 2, we present the constituent quark masses Mi as a function of the quark
chemical potential µq for quark drops of finite radii (R = 3, 5 fm) and the bulk scenario
(R = ∞). We examine conditions with local electric charge neutrality (ξ = 0) and global
charge neutrality (considering ξ = −0.2,−0.4). Additionally, the influence of vector
interactions is explored with ηV values of 0, 0.5, and 1. These analyses are conducted for
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both Model 1 and Model 2, encompassing all three quark flavors. Up, down, and strange
quarks are represented by blue, red, and green curves, respectively. Each panel illustrates
the effect of varying a single parameter while holding the others constant. The curve
characterized by ξ = −0.2, R = 5 fm, and ηV = 0.5 is depicted with a solid line and is
consistently repeated across all the panels. As in the baseline scenario depicted in Figure 1a,
all curves asymptotically converge toward the current mass of the quarks. The up and
down quarks undergo a continuous partial restoration of chiral symmetry, in contrast to
the baseline scenario of Figure 1a, which shows a first-order transition. On the other hand,
the strange quark consistently restores chiral symmetry through a crossover mechanism,
akin to the pattern observed in the baseline case.
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Figure 2. Impact of the parameters ξ, R, and ηV on the behavior of the constituent masses Mi for each
flavor for the two adopted models of vector interactions (labeled as Model 1 and Model 2). In (a,d),
the variation of Mi with µq is shown for different values of ξ, keeping R = 5 fm and ηV = 0.5. In (b,e),
changes across different R are examined, keeping ξ = −0.2 and ηV = 0.5. In (c,f), the influence of ηV

is explored while keeping ξ = −0.2 and R = 5 fm. The solid curves represent the reference models
characterized by R = 5 fm, ξ = −0.2, and ηV = 0.5. Therefore, these curves are repeated across (a−c)
for Model 1 and (d−f) for Model 2.

In Figure 2a,d it is shown how the curves Mi versus µq are affected by changes in the
parameter ξ, keeping R = 5 fm and ηV = 0.5. As ξ is changed from zero to increasingly
negative values, there is a shift in the behavior of the constituent masses across both models
shown. In the chiral symmetry broken phase, at low chemical potentials, the constituent
masses Mi align with the baseline model across all ξ values (up to µq ∼ 300 MeV). As µq

increases, there is a common qualitative behavior for the d and s quark masses, distinct
from that of the u quark mass. For the d and s flavors, as ξ becomes more negative,
the constituent masses decrease for a fixed µq. Indeed, chiral symmetry restoration occurs
earlier for more negative ξ values. However, the behavior for the u flavor is the opposite.
At a fixed chemical potential, the constituent mass of the u quark increases as ξ becomes
more negative. Notably, in the most extreme case of ξ, chiral symmetry partial restoration
for the u quark occurs at very high chemical potentials, after the restoration of d and s
quarks. This effect is pronounced in Model 1. As we will discuss later, this behavior is
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related to the electric charge of each flavor. By imposing a more negative ξ, we require a
suppression of u quarks, which results in an increase in their mass.

In Figure 2b,e, we show the behavior of the constituent masses Mi while varying R,
keeping ξ = −0.2 and ηV = 0.5 constant. We observe that as R decreases, the effective
mass exhibits a reduction. This effect is more pronounced at lower chemical potentials and
diminishes asymptotically. Thus, we see that chiral symmetry partial restoration for all
flavors is slightly anticipated when the system size decreases.

In Figure 2c,f, we present the behavior of the constituent masses Mi while varying ηV ,
with ξ = −0.2 and R = 5 fm held constant. We observe that as ηV increases, the effective
mass shows a slight increase. This effect is more pronounced at intermediate chemical po-
tentials and diminishes asymptotically. As is well known, increasing the vector interaction
delays the partial restoration of chiral symmetry.

In Figure 3, we show the quark number densities ni as a function of the quark chemical
potential µq for the same parameter choices of Figure 2. As before, each panel illustrates the
effect of varying a single parameter while holding the others constant. Similarly, the curve
characterized by ξ = −0.2, R = 5 fm, and ηV = 0.5 is depicted with a solid line and is
repeated across all the panels. As in the baseline scenario, the particle number densities are
zero at sufficiently low µq; however, they increase gradually without the discontinuity seen
in Figure 1b.
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Figure 3. Baryon number density and number density for each quark flavor as a function of µq,
for different values of the parameters ξ, R, and ηV . The figure follows the same organization as the
previous one, with the same models and parameters being explored. In (a,d), ξ varies with R = 5 fm
and ηV = 0.5 constant; in (b,e), different radii are explored with ξ = −0.2 and ηV = 0.5; and in (c,f),
different ηV values are used with ξ = −0.2 and R = 5 fm. Solid curves represent reference models
with R = 5 fm, ξ = −0.2, and ηV = 0.5.

Figure 3a,d illustrate how the ni versus µq curves are influenced by variations in the
parameter ξ while maintaining R = 5 fm and ηV = 0.5. For ξ = 0,−0.2, the onset of u and
d quarks occurs at roughly the same value of µq, while s quarks appear at larger µq. For the
more extreme case ξ = −0.4, u quarks appear at a much higher chemical potential, even
larger than the s quark onset. For a fixed chemical potential, as the value of ξ becomes
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more negative, the amount of d and s quarks increases. Comparatively, there are always
more d quarks than s quarks simply because the former has a lower mass. The behavior of
u quarks is the opposite. As ξ becomes more negative, the amount of u quarks decreases.
This behavior is related to the electric charge of each flavor. Imposing a more negative
ξ disfavors the u quarks, which are the only ones with a positive charge. In Figure 3b,e
we show the role of the drop’s radius on the particle number densities. While changes in
R affect the ni, these effects are significant only around the onset for each flavor. As µq

increases, all curves tend to the bulk case. Finally, Figure 3c,f illustrate how the curves
change with variations in the parameter ηV . Changes in ηV affect the ni, but these effects
are not significant around the onset for each flavor. However, as µq increases, the effect of
vector repulsive interactions becomes substantial and, for a fixed µq, reduces the particle
number densities as ηV increases. This effect is more pronounced for Model 1.

4.2. Surface and Curvature Tensions

In Figures 4 and 5, we illustrate the behavior of the surface and curvature tensions
as functions of the baryon number density nB for the same parametrizations of previous
figures. In a recent article [21], we studied σ and γ for the electrically neutral case (ξ = 0),
without considering the separate contributions of each term in Equations (26) and (27).
Here, we present a detailed breakdown of the role of these contributions.
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Figure 4. Total surface tension (black curves) and its contributions from divergent (red), free (green),
condensate (blue), determinant (orange), and vector (magenta) terms as functions of the baryon
number density. The parameters ξ, R, and ηV are varied in the same manner as in the previous figure.
Panels (a–c) correspond to Model 1, while panels (d–f) correspond to Model 2.

Within each panel of Figure 4, the total surface tension (black curves) is shown along
with the contributions from the divergent, free, condensate, determinant, and vector
terms, as specified in Equation (26). Note that σtot exhibits two density regimes. Up to
approximately 2 − 4 n0, it remains relatively constant at around 100 MeV fm−2; beyond
this density threshold, it becomes an increasing function of nB. The total surface tension is
roughly insensitive to variations in R but is affected by changes in ξ and ηV starting from
nB/n0 ≳ 2 − 3. As ξ becomes more negative (see Figure 4a,d) and when ηV increases (see
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Figure 4c,f), an increase in the total surface tension is observed. The effect of ηV grows with
density and is much more pronounced for Model 1.
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Figure 5. Curvature tension as a function of the baryon number density for the same models and
parameters of the previous figures. Panels (a–c) correspond to Model 1, while panels (d–f) correspond
to Model 2.

In all six panels, we observe that the divergent term has the most significant impact
on the total surface tension. The influence of σdiv decreases with increasing density, while
the effects of all other terms grow with density. Notably, σdet has the smallest impact and
approaches zero beyond approximately 2n0. The role of σcond is quite significant because it
has a large negative value, especially in the low-density region. As the density increases,
this term asymptotically approaches zero and becomes practically negligible beyond ∼7n0.
The fact that σcond is always negative can be understood as follows: the quantity ϕV

i is
always negative, as seen in Equation (41). On the other hand, the quantity ϕS

i is always
positive because fS ,i(k) is always negative (see Equation (42)). Therefore, σcond is always
negative (cf. Equation (47)). As the ϕi tend to zero with increasing density, this causes σcond

to also asymptotically approach zero. The contribution from σfree is always positive and
increases approximately linearly with density. Notice that σfree is practically insensitive to
variations in R (Figure 4b,e) and ηV (Figure 4c,f). However, as ξ becomes more negative,
σfree increases significantly (Figure 4a,d). The contribution from σvec is always positive
and increases approximately linearly with density, becoming negligible at densities lower
than ∼3 − 4n0. The σvec term is practically insensitive to variations in R (Figure 4b,e) and
ξ (Figure 4a,d). However, with increasing ηV , σvec increases substantially, especially in
Model 1.

Finally, in Figure 5 we display the variation of the curvature tension as a function of
nB/n0. The total curvature tension γtot is shown along with the contributions from γdiv,
γfree, γcond, γdet, and γvec, as specified in Equation (27). The total curvature tension remains
relatively unaffected by changes in R (Figure 5b,e), but it is influenced by variations in ξ

(Figure 5a,d) and ηV (Figure 5c,f). Differently from σtot, as ξ becomes more negative, γtot

decreases. However, the dependence with ηV follows the same trend as for the surface
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tension, i.e., there is an increase in γtot as ηV increases. The effect of ηV grows with density
and is much more pronounced for Model 1.

Across all panels, it is evident that the divergent term dominates the total curvature
tension. Similar to the behavior observed with surface tension, the influence of the divergent
term diminishes as density increases, while the effects of other terms rise with nB. Notably,
the determinant term has the least impact and approaches zero beyond approximately
2n0. The condensate term is always negative, and its influence is more significant in the
low-density region. The contributions from γfree and γvec are always positive and increase
with density. The influence of γvec is particularly relevant in Model 1, especially at high
densities. All terms are quite insensitive to variations in R and ηV , except for γvec, which
strongly depends on ηV .

5. Conclusions
We have undertaken a comprehensive study of the surface and curvature tensions of

three-flavor cold quark matter using the NJL model, incorporating the vector channel into
the Lagrangian. Our study ensures both local and global electric charge neutrality, as well
as chemical equilibrium under weak interactions. Utilizing the MRE framework to address
finite size effects, we examined the influence of particular input parameters, specifically the
vector coupling constant, the radius of quark matter droplets, and their charge-per-baryon
ratio. Special attention was paid to analyzing how each term in the Lagrangian contributes
to the surface and curvature tensions. To the best of our knowledge, this is the first time
such an analysis has been performed.

We find that the total surface tension σtot has two density regimes: it is roughly
constant with a value around 100 MeV fm−2 up to ∼2 − 4 n0, and, above this density, it is
a steeply increasing function of nB. The low-density plateau extends while the s-quarks
are absent in the system. As soon as the s-quark fraction becomes finite, the total surface
tension starts to increase. This is a quite EOS-independent behavior associated with the
MRE density of states, which is quite sensitive to the particle’s mass. As emphasized in
Refs. [23,24], the contribution of s-quarks to the total surface tension is much larger than
the one of u and d quarks. This behavior can be understood if one keeps in mind that for
massless particles, fS = 0, while for m → ∞, fS remains finite. This means that light quarks
tend to have a smaller contribution to the surface tension.

Our results show that the total surface tension is roughly insensitive to variations in
R but is affected by changes in ξ and ηV starting from nB ≳ 2 − 3 n0. As ξ becomes more
negative and as ηV increases, an increase in σtot is observed (see Figure 4). The effect of ηV

grows with density and is much more pronounced for Model 1. Regarding the role of each
term in the Lagrangian in σtot, we observe that the largest impact comes from the divergent
term. This influence decreases with nB, while the effects of all other terms increase with
nB. The determinant term, in particular, has a practically negligible effect. The influence of
the condensate terms is quite significant due to their large negative value, especially in the
low-density region. As the density increases, this term asymptotically approaches zero and
becomes practically negligible beyond ∼7n0. The contributions of σfree and σvec are always
positive and increase with density, becoming relevant above ∼3 − 4n0.

In contrast to the total surface tension, the curvature tension does not exhibit different
density regimes, behaving consistently as a monotonically increasing function of nB. This
feature can be understood by examining the fC contribution to the MRE density of states.
As discussed in [23,24], for massless particles fC = −1/

(
24π2) and for m → ∞, fC it is

also finite. Consequently, light quarks play a significant role in the curvature contribution,
rendering γtot less dependent on the emergence of s-quarks.
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The behavior of the total curvature tension is mostly unaffected by variations in R but
is sensitive to changes in ξ and ηV , as illustrated in Figure 5. Unlike σtot, γtot diminishes as
ξ becomes more negative. The relationship with ηV mirrors that seen with surface tension;
specifically, γtot rises as ηV increases. The influence of ηV intensifies with density.

Regarding the influence of each term in the Lagrangian on the total curvature tension,
the divergent term clearly dominates γtot. Similar to the behavior observed with surface
tension, the influence of γdiv diminishes as density increases, while the contributions from
other terms rise with nB. Notably, γdet is negligible. The condensate term is always negative
and becomes more significant in the low-density region. The contributions from γfree and
γvec are consistently positive and increase with density. The role of γvec is quite relevant
in Model 1, especially at high densities. All contributions are relatively insensitive to
variations in R and ηV , except for γvec, which strongly depends on ηV .

When comparing Model 1 and Model 2, it is noteworthy that the forms of the vector
terms differ significantly. In Model 1, the vector term incorporates the square of the sum of
the ni, resulting in six quadratic terms. Conversely, in Model 2, the vector term is directly
the sum of the n2

i , yielding only three quadratic terms. This distinction directly influences
the growth of σvec and γvec with density. In fact, in Model 1, these quantities increase much
more with density than in Model 2. Therefore, to achieve comparable increases in both
models for a given density, the value of ηV used in Model 2 should be significantly higher
than in Model 1 to compensate for the missing terms.

Another interesting aspect that arises from our results relates to the behavior of σtot

in the low-density regime. Indeed, in the density range up to approximately 3 − 4n0,
σtot shows a plateau with a value of about 100 MeV fm−2, which is quite insensitive to
variations in the parameters ξ, R, and ηV . This result is quite interesting because it shows
that the hypothesis of constant surface tension, used in several works in the literature
to describe the quark–hadron mixed phase, could be a reasonable approximation in the
low-density regime.

Finally, it is worth comparing the results from the NJL model with those obtained
in previous works using the MIT bag model. Since the MIT bag model does not incorpo-
rate dynamic masses, this comparison is particularly meaningful at the highest possible
densities, which is precisely where the dynamic masses in the NJL model approach their
current masses. Comparing the NJL Lagrangian of this work with that of the vector MIT
bag model from Ref. [24], we see that both the vector and the “free” terms are present in
both Lagrangians. Indeed, the vector term used in Ref. [24] has the same functional form
as in Model 1 of the present work. On the other hand, both the determinant term and
the condensate term in the NJL model are practically negligible at high enough densities.
Therefore, the main difference between both models at high densities arises from the di-
vergent term of the NJL model. If we compare the value of σ from the MIT bag model,
as given in [24], with σfree + σvec,1 from the NJL model, we find that the values are quite
similar, and the same applies to γ. In fact, at high enough densities, the major difference in
the total surface and curvature tensions between these models stems from the dominant
contribution of the divergent term in the NJL model.

Our results have implications for understanding the properties of the quark–hadron
mixed phase that may exist at the core of hybrid neutron stars. Although calculations
in [25] show that density-dependent surface and curvature tensions have a small impact on
the star’s structure (mass, radius, and tidal deformabilities), the geometric structure of the
quark–hadron mixed phase is highly sensitive to how σ and γ behave. Our calculations
demonstrate that both σ and γ increase as the baryon number density rises. Consequently,
based on [25], we expect that drops, rods, and slabs—which form at lower densities—would
be less suppressed by surface tension compared with tubes and bubbles, which emerge at
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much higher densities. Therefore, in the absence of curvature effects, drops, rods, and slabs
would dominate the mixed phase, while tubes and bubbles would be rarely observed [25].
We also expect the curvature effects within the mixed phase to mirror those described
in [25]. Specifically, slabs are not influenced by curvature, whereas bubbles exhibit a
reversal in curvature energy compared with drops. This implies that surface and curvature
effects partially counterbalance each other for tubes and bubbles, facilitating their stability
even at higher densities and, consequently, with increased values of σ and γ. In contrast,
for drops and rods, surface and curvature effects combine, resulting in these configurations
being less prevalent in the mixed phase. The characteristics of the mixed phase have
significant astrophysical ramifications. When a hybrid neutron star undergoes dynamic
perturbations, the interfaces between pasta structures and the surrounding matter can
trigger phase conversion reactions. The diversity and extent of these structures lead to
considerable variations in both the effective surface area and the conditions that facilitate
these reactions. These variations are crucial, as they can influence the damping of r-
modes [29] and the overall dynamic stability of hybrid stars [30,31] as well as strange
white dwarfs [32]. Understanding these processes is essential for accurately modeling the
behavior and evolution of hybrid neutron stars. None of these aspects were analyzed using
σ and γ values determined within the context of the NJL model, presenting a promising
direction for future research.
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