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Approximate SU(5) Fine Structure Constants
Holger B. Nielsen

Niels Bohr Institute, Jagtvej 155 a, DK 2200 Copenhagen, Denmark; hbech@nbi.ku.dk; Tel.: +45-28456511

Abstract: We fit the three finestructure constants of the Standard Model, in which the first
approximation of theoretically estimable parameters include (1) a “unified scale”, turning
out not equal to the Planck scale and thus only estimable by a very speculative story, the
second includes (2) a “number of layers” being a priori the number of families, and the third
is (3) a unified coupling related to a critical coupling on a lattice. So formally, we postdict
the three fine structure constants! In the philosophy of our model, there is a physical lattice
theory with link variables taking values in a (or in the various) “small” representation(s) of
the standard model Group. We argue for that these representations function in the first
approximation based on the theory of a genuine SU(5) theory. Next, we take into account
fluctuation of the gauge fields in the lattice and obtain a correction to the a priori SU(5)
approximation, because of course the link fluctuations not corresponding to any standard
model Lie algebra, but only to the SU(5), do not exist. The model is a development of our
old anti-grand-unification model having as its genuine gauge group, close to fundamental
scale, a cross-product of the standard model group S(U(3)× U(2)) with itself, with there
being one Cartesian product factor for each family. In our old works, we included the
hypothesis of the “multiple point criticallity principle”, which here effectively means the
coupling constants are critical on the lattice. Counted relative to the Higgs scale, we suggest
in our sense that the“unified scale” (where the deviations between the inverse fine structure
constants deviate by quantum fluctuations being only from standard model groups, not
SU(5)) makes up the 2/3rd power of the Planck scale relative to the Higgs scale or the
topquarkmass scale.

Keywords: grand unfication SU(5); lattice theory; running couplings; anti-GUT; standard
model group; critical coupling; energy scales; fine structure constants; planck scale

1. Introduction
We and others [1–20] have long ago worked on fitting the fine structure constants—

especially the non-Abelian ones—in a model based on the following main assumptions:

• Critical Couplings at Fundamental Scale: Preferably, the gauge couplings should be
at some multiple critical point for a lattice theory at the “fundamental scale”. And it is
in the spirit of that model that there indeed would exist a lattice theory in nature.

• AntiGUT: [1,2] The gauge group is at the “fundamental scale” of the Cartesian product
G × G × . . . × G of the same group G with itself and defined one time for every family
of fermions. (This was called AntiGUT by L. Laperashvili.)

But mainly, the Abelian coupling of U(1) was not so well predicted, contrary to the
non-Abelian ones (the attempt by Don Bennett and myself [21] obtained good numbers,
but the theory is a bit complicated). Furthermore, Laperashvili, Das, and Ryzhikh [2] have
even united this type of model with grand unification using SU(5) [2]. They also used
supersymmetry in their picture.
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Now, it is the point of the present article to also make such a combination of the SU(5)
GUT [22,23] and the A(nti)GUT theory (AGUT= “anti-grand-unification theory”, meaning
the type of theory with a cross-product of several copies of the standard model group,
e.g., one cross product factor for each family of fermions) just mentioned, but without
SUSY. Rather, we shall here seek an SU(5)-like “unification” without taking the SU(5)
theory as really true, but rather taking the SU(5) theory as an approximate symmetry
appearing because the link variables have a form reminiscent of SU(5). In fact, one possible
argumentation is to assume that the link variables are constructed as matrices (with the
dynamical matrix element with somewhat restricting movability) for a most simple and
smallest faithfull representation (a sort of principle [24–26] of smallest link representation).
Another similar argumentation is to use our earlier work [24–26] to tell that one can define
a concept of “small representation” so that the standard model group [27]1 This would,
taken seriosly, tell that it is important that the group chosen by nature should have small
representation, and that makes it natural that the link degrees of freedom corresponds to a
“small” faithfull representation of the standard model group. Then, it turns out that such a
typical small representation is the one obtained by starting from the 5-plet of SU(5) and
restricting to the standard model group, as contained in SU(5). Really, the standard model
group S(U(2)× U(3)) is even in the notation, as used here in an obvious subgroup of just
SU(5), the notation of which—the 5 × 5 matrices—is used to write it.

In the game, we proposed [24–26] to specify the standard model group as a group,
where it turns out that a cross-product of several isomorphic groups has the same
“points” (the game of our reference [24–26], which means the AGUT model in the arti-
cle is on a shared first place with the single standard model group) as the group itself, so a
group GSMG × GSMG × . . . GSMG would be equally favored by our game.

In any case, the idea is that the link variables are defined in terms of the fundamental
physics, that is, they are imagined to be behind and represented by variables like in some
“small” representation [24] of the standard model group, and then this representation
happens to be/naturally is effectively an SU(5) representation. This means that the link
variables can formally be interpreted as SU(5) variables; but in reality, they are not. That
is, there is no SU(5) symmetry for turning around the matrix elements in the link 5-plet,
only under the standard model subgroup. There is no true SU(5) theory in our model!
But we can describe the model in terms of an SU(5) theory, which is broken fundamentally.
It is not broken according to the Higgs mechanism as in the usual SU(5) theories (a priori at
least), but other gauge fields than the ones in the standard model subgroup do not exist
(in the first place). There are only gauge fields corresponding to the degrees of freedom in
the standard model groups—one set for each family (So you must imagine either that we
really have the gauge group GSMG × GSMG × · · · × GSMG with as many standrad model
group factors as there are families of fermions, three of them, or you imagine there to be
three layers of a usual lattice so that we have three links where you usually have only one).

In the very crudest approximaton of a lattice action linear in the trace of the representa-
tion matrix, the similarity to the SU(5) matrix theory is so great that the coupling constant
ratios at the fundamental lattice theory in the first approximation become just as in the
GUT SU(5) unification scale. However, when it now comes to perturbative corrections due
to the fluctuation of the lattice theory degrees of freedom, it becomes important that the
degrees of freedom present in SU(5) theory, but not in the standard model, are missing
and therefore cannot fluctuate. So, the quantum corrections from the fluctuation of these–in
standard model not present-degrees of freedom—are lacking and thus make the effective
couplings observed in the continuum limit obtain different values from what they would
have obtained in a true SU(5) theory. Being quantum corrections, one would usually treat
them perturbatively and expect them to be small. If this is indeed the case, then the usual
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SU(5) predictions will be approximate! We can say that it is the main point of present
article to calculate this deviation from the exact SU(5) predictions to the usual picture of
unifying gauge couplings. Thus, the standard model (inverse) fine structure constants do
not truly unify (at a unification scale, but we shall talk in the present paper about an “our
unified scale”, which is the scale at which there is unification, except for our (quantum)
corrections, that we call µU), but we calculate the degree of lack of unification and even
make a prediction of the numerical value of the deviation.

1.1. Some Previous Attempts

Since it has long been well known that when using the SU(5) there is no working
unifying scale in the sense that we see on, e.g., Figure 1, the three lines representing the
runnings of the three standard model Lie groups do not cross just in a point as the SU(5)
GUT would suggest. The two very popular ways of seeking to solve this problem are
the following:

• Supersymmetry: By introducing supersymmetry, one has to have a scale for breaking
this SUSY and thus of course a new parameter with which to adjust the crossing of the
three lines. It happens, and this is then a success for SUSY in that this SUSY-breaking
scale is very close, where we have the data and thus the place from which SUSY
is possible. We mainly expect this from the hierarchy problem, which SUSY can
determine that the breaking scale shall be very high in energy. So SUSY, like in our
model, has a theoretical story about the value of the parameter introduced to fit the
SU(5). We have instead that our quantum correction shall be just the number of family
times bigger than calculated with a simple lattice.

• Bigger Groups Containing SU(5):
If you have a group containing SU(5) as a subgroup such as SO(10), there are possibili-
ties for having the three standard model groups be packed, so to speak, into bigger
simple groups at different ranges of scales and thus also arrive at a way to achieve an
extra parameter and solve the problem.
In our philosophy, we start from the group of the standard model, which is
S(U(2)× U(3)), which means we already have the favored group fixed, and then we
argue that the “smallest”/essentially simplest representation to use to construct the
plaquette variable action contribtuion happens to be an SU(5) representation. That
is to say, we claim that taking the standard model very seriously points to the group
SU(5) proper in a way that we do not have for the alternative unification groups.
This is of course a very weak argument in favor of just SU(5) only, and thus in theory,
we have some prediction for the energy scales of the various symmetry breakings;
a prediction of the minimal SU(5) breaking in the fine structure constants would be
of an anlogous strength as our somewhat ad hoc factor 3 on the quantum correction
from the lattice.

In general, one should bring it as a support for our model that apart from the lattice—
which should at the end be assumed to be fluctuating in link size from place to place in
Minkowski space as quantum fluctuations—a lattice that is somehow needed to avoid
divergencies is kept to just the standard model and nothing else, at least if you ignore
our story about the critical coupling, which is only important for settling the unified
fine structure constant. In other words, our model claims to be more minimal than the
previously mentioned competing scenarious SUSY and grand unification with larger than
SU(5) groups or even with true SU(5) full symmetry.
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Figure 1. This is the usual graph representing the three standard model inverse fine structure
constants with the α−1

1 being in the notation suitable for SU(5), meaning it is 3/5 times the natural
normalization: α−1

1 SU(5) =3/5 ∗ α−1
1 SM =3/5 ∗ α−1

EMcos2ΘW . The vertical thin line at the energy scale

µU = 5 ∗ 1013 GeV points out “our unified scale”, which is, as can be seen, not really unifying the
couplings but rather is the scale where the ratio of the two independent differences, α−1

2 − α−1
1 SU(5)

and α−1
1 SU(5) − α−1

3 , have just the ratio 2/3 as our model predicts at “our unification scale”. One may
note that “our unified scale” is actually very close to where the three inverse couplings are nearest to
each other and in that sense is an “approximate” unification scale.

1.2. Character of Our Prediction(s)

The main point of the present article (recently further developped in [28,29]) is really to
predict the deviation from the exact SU(5) GUT at a certain scale µU at which we calculate
the corrections to the exact SU(5) inverse fine structure constants in the standard model
due to quantum fluctuations in the lattice theory assumed to be really physically existent
at some scale. Since we predict the absolute values of the differences between the inverse
fine structure constants at the scale, we have at this scale two numerical predictions, and
thus, we can afford to use one of these predictions at the fundamental scale to fit the scale,
and we shall still have one predition left. For instance, we can use the prediction at the
scale, at which the ratio of the difference 1/α2(µU)− 1/α1 SU(5)(µU) to the other difference
1/α1 SU(5)(µU)− 1/α3(µU) shall be 2 to 3 (as our calculation implies). This is illustrated in
Figure 1, and one shall remark that the three crossings of the inverse fine structure constant
with the vertical black line on the figure at the scale about 5 ∗ 1013 GeV has been fitted so that
the three crossings lie with the ratio 2:3 of the two intervals. The U(1) inverse fine structure
constant passes in between the SU(2) above it with a piece that is proportional to 2 and the
SU(3) line, then below it with a distance proportional to 3. But having fixed the scale µU

this way, it is still a very non-trivial prediction that, e.g., the absolute difference between
the SU(2)-crossing and the SU(3)-crossing is just 3π/2 = 4.712385. This is illustrated in
Figure 2.
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Figure 2. Same as Figure 1, but now with our prediction inserted, marked as the number
4.712385 = 3 ∗ π/2, which is predicted to be at “our unified scale”—the difference 1/α2 − 1/α3.
Our prediction is that just at the horizontal thin black line at 5 ∗ 1013 GeV corresponding to the scale
µU given by our fit to the green line crossing point dividing the region between the blue and the
red in the ratio 2 to 3, we shall have the difference in ordinate points between the red and the blue
crossing points with the vertical black being 3π/2.

1.3. Our Rather Simple Fitting Formulas
1.3.1. The Quantum Corrections Breaking the Approximate SU(5)

Our formulas for fitting the three inverse fine structure constants in the standard
model in for the SU(5) adjusted notation, wherein one uses 1/α1 SU(5) = 3/5 ∗ 1/α1 SM =

3/5 ∗ cos2ΘW ∗ 1/αEM, are rather simple and concern of course the three standard model
fine structures via a renormalization group transformed to a certain scale µU , which is our
replacement for the unification scale (because there is, as we know, no unification scale
proper unless one involves SUSY or something else extra). The choice of the scale µU is only
indirectly determined in our model, and it is essentially just a fitting parameter, although
in Section 11 we shall speculatively relate µU to the Planck energy scale EPl by a crude

relation
ln(

EPl
mt

)

ln( µU
mt

)
≈ 3/2. Then at this scale to be fitted

1
α1 SU(5)(µU)

=
1

α5 uncor.
− 11/5 ∗ q (1)

1
α2

(µU) =
1

α5 uncor.
− 9/5 ∗ q (2)

1
α3(µU)

=
1

α5 uncor.
− 14/5 ∗ q, (3)

where the one parameter 1
α5 uncor.

, which could also have other definitions like

1
α5 bare

=
1

α5 classical
=

1
α5 uncor.

, (4)

is our replacement for the unified inverse SU(5) fine structure constant. The symbols,
which we propose uncor. = bare = classical, are used to tell that this coefficient in the action
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functioning as the SU(5) inverse coupling is without the quantum fluctuation couplings,
i.e., it is uncorrected (=uncor.) or “bare”. We could also define a corrected one as follows:

1
α5 cor.

=
1

α5 uncor.
− 24/5 ∗ q. (5)

The other parameter q that we use to calculate in our model with its three families of
fermions and in a Wilson lattice in a lowest order approximation is defined as follows:

q = “# f amilies” ∗ π/2 = 3 ∗ π/2 = 4.712385. (6)

Using this notation, we could equally use the formulation

1
α1 SU(5)(µU)

=
1

α5 cor.
+ 13/5 ∗ q (7)

1
α2(µU)

=
1

α5 cor.
+ 3 ∗ q (8)

1
α3(µU)

=
1

α5 cor.
+ 2 ∗ q. (9)

Here in fact, the quantity 1
α5 cor.(µU)

is analogous to the unifying SU(5)-inverse coupling.
At our (replacement for) unified scale µU , all three standard model couplings are equal
to α5 cor ≈ α5 uncor approximately. Of course, since there is no ture SU(5) symmetry, these
SU(5) couplings are rather formal only, at the exact level.

1.3.2. The Critical Coupling

The requirement of the gauge couplings at the fundamental scale being just on the
borderline on one or preferably more phase transitions, that are welcome to be lattice
artifacts, was the basic ingredient in the previous works, of which the present one is a
development [5–10,12–14]. In the present work with its approximate SU(5), it may seem
natural to require the SU(5) coupling to be just on the phase border for the pseudo-unified
SU(5) coupling, as represented by 1

α5 uncor.
. In principle, the critical coupling depends on

the lattice details, and it has to be calculated by lattice computer calculations, but here, we
have for a start just taken an approximate formula for the critical coupling out of our earlier
works [12].

1.3.3. The “Unified Scale” from Lattice Constant Fluctuating “Lattice”

The fact that there has always been a discrepancy for GUT theories of, e.g., SU(5),
namely, that the unified scale turns out appreciably smaller in energy than the Planck scale,
is also a discrepancy in our theory, and for rescuing it against this problem, we propose
the speculation of a strongly fluctuating lattice. It should fluctuate in the size of the lattice
constant, and we should imagine that in various places and moments, the lattice is more or
less fine. We shall see below that this kind of fluctuation can be used as an excuse for the
effective scale for gravity, the Planck energy scale, and that for the standard model, “our”
grand unified scale (which is a replacement for the GUT scale) can deviate from the other
violently. The parameter µU giving our unified scale, namely, the logarithm of it relative
to the weak scale MZ known as ln( µU

MZ
) (or it may be better to use mt instead of MZ), is

defined according to our speculation given in terms of the Planck scale, which thus is a
needed input to obtain all three parameters to give the three fine structure constants.



Universe 2025, 11, 32 7 of 50

1.3.4. Resume of the Fitting

The three parameters with which we fit the three standard model fine structure
constants come in our present work from rather different speculations which, though all
should be sufficiently compatible, means that we can have them in the same model. Here,
we announce in the table below the success of our model.

Parameter Formula From α’s Theory Deviation Section

q q = 1/α2(µU)− 1/α3(µU) 4.618201 4.712385 −0.094 ± 0.05 Section 3, Section 3.1

1/α5 uncor.(µU) see above 51.705 45.927 5.778 ± 3.5 Section 9

ln( µU
MZ

) ln( µU
mt

) = 2
3 ∗ ln( EPl red

Mt
) 26.43 24.76 1.67 ± 1 Section 11

or 0.02

In the third parameter line, we put a somewhat estimated uncertainty for the theo-
retical value, because the scales being divided, the Planck scale over the scale of the three
families ending at low energy taken as the MZ scale or better top-mass mt, form a ratio of
rather ill-defined concepts of scales and thus at least give an uncertainty of one unit in the
natural logarithm.

Depending on how many of the stories behind the “theory” of these parameters the
reader might buy as trustable, the reader can decide with how many parameters we fit the
three standard model (inverse) fine structure constants. In fact, the “theories” for the three
different parameters are rather independent of each other, so that means that selecting
some that are wrong and some that are right would not at all be excluded.

1.4. Plan of Article

In the following Section 2, we describe our assumption of the lattice for the standard
model group, which means that it is important to know what the global structure of this
group is and not only the Lie algebra. According to O’Raifaighty [27], the global structure
of the group is connected with the system of allowed representations, and one can thus
consider the system of repsentations for the fermions in the standard model as a strong
indication for the special gauge group S(U(2)× U(3)).

In Section 3, I perform calculations of the quantum correctons meaning calculating
zero-point fluctuations in plaquette variables, as well as Taylor expanding the partition
function and developping a table for the contributions of the zero-point fluctuations on the
continuum/effective (inverse) fine structure constants. Strictly speaking, our correction
depends on the type of lattice used, although we can hope that it will not be very dependent.
In Section 4, I at least mention the Wilson lattice action, which is the lattice we have used. In
Section 5, I compare the work to an old similar quantum fluctuation which we, Don Bennett
and the present author, made many years ago in the similar model. Also, I look for checking
the crude estimation for what in lattice calculations is called a tadpole improvement [30]
but actually is the quantum fluctuations, and I consider it as the main mechanism breaking
the approximate SU(5) that appears, so to speak, by accident, because the representation
matrix in the links happen to also have SU(5) symmetry before some motions of it are
restricted to not occur.

The fitting of the data—the experimentally determined fine structure constants in
the standard model—comes in Section 6, where I first determine the requirement of the
ratio of the difference between running couplings being as according to the prediction of
the scale that must be the fundamental scale in the model µU . It is what we can call “our
unification scale” µU , but really of course, there is no true unification, since our SU(5) is
only approximate. Next I compare to see if the separations at this scale are what I predict.
At the end of the section, we do the opposite as a check.
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In Section 9, I look at whether the coupling, say the approximate GUT one, is the
critical coupling. In the works that led up to this one, having these critical couplings was
the crucial point [5–10,12–14]. We shall in general postpone second-order calculation, but I
should mention that a second-order calculation is called for, see Section 10, and presumably
not exceedingly hard.

In Section 11, I discuss the most speculative one among the parmeters in our model,
which should be obtainable in an other way than just by the fitting fine structure constants,
namely, the “scale of unification” µU . Although it is probably the most shocking result,
if one would believe the model, that the “fundamental scale µU is not the Planck scale,
then I shall present a speculative story on the in-size fluctuating lattice that shall suggest a
relation between the “fundamental scale” in the model and the Planck one (allowing them
to deviate in order of magnitude).

Finally, I conclude in Section 12 but also include some thoughts about the problems
or suggestion for a quantum gravity if we take the present work seriously, wherein one
must claim that the fundamental scale for the standard model is the unification one for our
approximate SU(5) GUT, even if it is a bit low in energy compared to the usual unified scale.
This proposes a lattice which fluctuates even in scale in some background of a manifold or a
projective space. If one could have the lattice imbedded in the continuum space with some
symmetry, including scalings, there might be a chance of having a different way to average
over fluctuations in the lattice constant size (i.e., coping with a fluctuating “fundamental
scale”) for the fine structure constants gauge theories and for gravity. Such a different
kind of averaging can seperate the different scales to be observed for the two groups of
forces: the standard model ones and gravity.

2. Our Model
Our concrete model is that we have in nature a fundamental lattice with an energy

scale µU corresponding to the lattice constant 1/µU (with c = h̄ = 1)—with the lattice being
the Wilson one. Let us say that this lattice is “tripled up” in the sense that there is really
one Wilson lattice for each family of fermions. Calling the number of families Ngen = 3,
one can think of it as the genuine group being not the standard model group itself SMG
but rather its third power SMG × SMG × SMG as the true gauge group in our model:

G f ull = SMG × SMG × SMG (10)

where SMG = S(U(2)× U(3)) (11)

= (R × SU(2)× SU(3))/Zapp (12)

where Zapp =
{
(r, U2, U3)|∃n ∈ Z[(r, U2, U3) = (2π,−1, exp(i2π/3)1)n]

}
The symbol Zapp denotes a discrete subgroup of the center of the covering group

R × SU(2)× SU(3), which is determined by the Lie algebra of the standard model. The cru-
cial requirement is that the elements is this subgroup of the center shall be represented
trivially in all the representation for the various fields/particels in the standard model. This
requirement leads to a rule ensuring in fact that leptons must have integer electric charges
and and that the quarks must have charges 1/3 modulo 1. This means that some of the
victories usually ascribed to SU(5) grand unification here are considered to be built into the
global group.

Alternatively, one might think of a model like this as being three usual lattices lying
parallel to each other (seperated in an extra dimension), and it could therefore be tempting
to call them “layers” of lattices.
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In any case, we imagine that some way or another the G f ull is broken down to its
diagonal subgroup, which is (isomorphic to) the standard model group SMG. In fact, this
diagonal subgroup is defined as

SMGdiag = the subgroup of G f ullof elements of form (g, g, g)

SMGdiag = {(g, g, g) ∈ G f ull = SMG × SMG × SMG|g ∈ GSMG}.

We tend to use both notations SMG and GSMG for the same definition, so we can simply
express it as SMG = GSMG = S(U(2) × U(3)). This breaking down of G f ull to the
diagonal SMGdiag can easily be imagined to come about by a little bit of mixing up the
different layers locally all over. (“confusion” [31,32]). In Section 11, we shall speculate
a bit more complicated about the lattice structure because we shall propose that there is
diffeomorphism symmetry even at the lattice scale or at least some symmetry like the
symmetry of a projective space–time containing (local or global) scalings. This then means
that we imagine the lattice to fluctuate in both size and position, so that even if it is a Wilson
type very locally, it varies in both in the orientation and size of the lattice constant very
strongly from place to place. If that is so, and it might be unrealistic to imagine that it is
not fluctuating, we shall have a usual gravity theory with its reparametrization fluctuating
(as one should imagine the gauge of any gauge theory to really fluctuate [33]), e.g., the
“fundamental scale” µU that we calculate below by fitting must be at the end considered an
average value of the “fundamental scale” while the local fundamental scale fluctuates.

But apart from this story of connecting our model to gravity, the fluctuations might
be ignored, and a lattice with a fixed lattice constant of order ∼1/µU would be acceptable
(But remember, we fit “the our unification scale” like the one in the usual exact SU(5) to be
appreciably lower in energy than the Planck scale).

2.1. The “Small” Representations Used in the Links and Plaquettes

The crucial special assumtption for this article is to assume that the degrees of freedom
of the lattice links representing the element of the standard model group SMG are the matrix
elements of a matrix representation of this SMG on a minimal faithfull representation. It
is then assumed that these matrix elements are restricted to only (be able to) move quite
freely along the image of the SMG into the “small” representation used, while motion in
other directions is strongly restricted (perhaps by very high potentials). But at least we
shall ignore them if there is any fluctuations, except along the standard model group.
The idea of thinking of such an imbedding is to note that in such an imbedding we have
a way of thinking of an SU(5) representation too, because the “small” reprensentation
we have in mind is the one that is the 5-plet reprentation of SU(5). It is of course also a
representation of the SMG ⊂ SU(5). Now a really crucial point is that we imagine that
once the SMG has been represented this SU(5) simulating approach, it tends to inherit an
SU(5) symmetry, even though our model has no true SU(5) symmetry postulated. It is
only that it seems a bit similar in its simplest reprentaion. A bit more concretely, we may
say that we use the smoothness also assumed for the Lagrangian density as a function of
the plaquette variables, which are also postulated to be formulated in 5 × 5 matrices, is
a smoothness defined from the 5 × 5 matrices. When we then Taylor expand and from
that look for the form of the plaquette action, we come to the trace of the 5 × 5 matrix just
as in the usual SU(5) theory. By this, we have thus “sneaked in” an approximate SU(5)
symmetry. This is really the crux of the matter of our model: The SU(5) symmetry is not a
symmetry imposed on nature but rather an approximate symmetry that can be suggested
to be the most natural way to represent the link and plaquette degrees of freedom for a
model that basically is only symmetric under the standard model group. Thus, there is of
course already bulit into our picture a breaking of the SU(5) symmetry. Most importantly,
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the degrees of freedom from the components in the SU(5) theory fields that are not also
in the standard model group, SMG, are lacking.

For us, this then means that there are no quantum fluctuations in the plaquette or link
variables corresponding to these lacking degrees of freedom. The concern of the present
article is to evaluate how these lacking modes lead to lacking quantum corrections for
the fine structure constants, as well as how these corrections from the lacking modes of
oscillations are not quite equally big for the three different standard model gauge couplings.
This is then accordingly the reason for breaking in these couplings of the fundamentally
non-existing SU(5) symmetry.

2.2. The Plaquette Trace Action

As is usual, once you formulate your gauge theory on a lattice, you for smoothness
reasons let the plaquette action typically be a linear function in the trace of the matrix
representing the plaquette group element. This mainly from smoothness a decided action
for the use of the reprenstation of the standard model group, SMG, on the 5-plet function
as if it were in SU(5) theory. Actually, it leads to couplings for the three sub-Lie algebras
corresponding to the three Lie algebras U(1), SU(2) , and SU(3) being equal to each other
in the same notation, in which they are equal in true SU(5) theory. So at first, we just have
from this simplification and Taylor-expansion-type arguments obtained effective SU(5)
symmetry! The plaquette action, as we shall use it to give the more precise result also
including quantum fluctuations H, takes the form

W□ = ReTr(exp(i(h + H))), (13)

where both h and H are the Lie-algebra-valued fields written as represented by the rep-
resentation on the 5-plet. The h symbolizes the field for which we want to estimate an
effective action; we can think of it as representing a continuous field translated into the
lattice and matrx formulation. On the other hand, the part H should describe the quantum
fluctuations, i.e., quantum mechanically, even in a situation in which you classically de-
scribe the situation by the field from which h has come. There is in reallity a superposition
of field configurations. That is to say that the plaquette or link at a certain position in
space–time deviates appreciably from the confuguration given by h, which is the “naive”
translation of the ansatz field considered for the lattice. It is this deviation that we call H.
In the first approximation—and we shall be satisfied with that–the fluctuation part H will
simply be the fluctuation in a vacuum.

Now, it is our calculational approach to Taylor expand the trace action (13) to include
the first term, which is even on the average get non-trivial contribution from the fluctua-
tions. We shall in our calculation show that it is this lowest non-trivial order term in the
fluctuations that gives the deviation from SU(5) symmetry. And what really shall come
out is that this contribtuion indeed also fits with the deviation from the SU(5) symmetry
of the (inverse) fine structure constants as measured the under use of the standard model.

It is important for the present work to calculate that the fluctuation in one component
of H is

1
2
< H2

one component > =
π

2
α(in one layer lattice) (14)

and we shall do it in the following subsection. The reason we gave the value for 1/2 of the
fluctuation is that there is a factor of 1/2 extra from the Taylor expansion so that the counting
of the fluctuation contributuion in the expression Tr(H2h2) is to be multiplied by 1/2 to
give the correction to the relevant inverse fine structure constant. For the approximation
that we in the zeroth order have an exact SU(5) value, we do not have to distinguish which
precise one of the various fine structure constants we shall use. This is also something
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which would require a bit more thinking/calculation, and I would like to postpone it for a
later article (see Section 10).

What is crucial is our Taylor expansion of the plaquette action (13):

W□ = Re(Tr(exp(i(h + H))) (15)

= ReTr[1] + Re(iTr[(h + H)]) +
1
2

Re(−Tr[(h + H)2]) + . . .

+
1
6

Re(−iTr[(h + H)3]) +
1

24
ReTr[(h + H)4] + . . .

The fields both the fluctuation H and the “test” part h correspond to unitary representation
matrices and are Hermitean as 5 × 5 matrices. Thus, taking the real part removes the odd
power terms, so they do not contribute, leaving in the above expansion up to fourth power
of interest only the terms with second and fourth powers. Now, if we are interested in
the corrections to the effective (continuum) fine structure constants, we only have interest
in the terms of even orders in h, meaning that even from the fourth-order term, we only
care for those six terms in the expnansion of (h + H)4 that have two h factors and two H
factors. Among the a priori 24 = 16 terms in the (h + H)4 development, there are only six
terms with h to just the second power, and if the h and H commuted, these six terms would
be identical. Indeed, h and H do not commute, but when we take the average over the
distribution of the fluctuations of H, it turns out that these terms have the same average
after all, as if h and H did commute.

The terms to be kept for effective fine structure constant calculations purposes are

W□ = . . . − 1
2

ReTr[h2] + . . . +
1
24

ReTr[HHhh(in any of 6 orders)] + . . .

if commuting =
1
2
(ReTr[h2] + Re

1
2

Tr[hhHH] + . (16)

In the last line, we canceled the factor of 6 in the 24 by having here only one term, so this
is achievable only if the h and H “effectively”—i.e., after averaging over the fluctuating
H—do commute.

The full plaquette action shall have a coefficient β in front of it of course. To connect
the continuum theory with Lagrangian density

L(x) = − 1
4g2 Fµν(x)Fµν(x)a (17)

= −α−1/(16π) ∗ Fµν(x)Fµν(x) (18)

we should, say, use a normalization

Fµν = ∂µ Aν − ∂ν Aµ + [Aµ, Aν] (19)

to identify for a link h− in the µ direction

h− = a2 Aµ (20)

and h□ = Σaround the boxh− (to linear approximation) (21)

Calculation-wise, it may be easiest to avoid problems with normalization to extract the
ratio of the second of these two terms to the first. The first of the two represents the
naive (or lowest order) extraction of the continuum coupling from the lattice, while the
second represents the lowest-order effect of the fluctuations.
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3. Extraction of Coupling Corrections
Once we have decided to look for the ratio of the second order and the fourth order

terms in the Taylor expansion of the Plaquette action (16), we should be able to extract
the relative correction due to inclusion of the quantum fluctuations by just putting in some
ansatz for fields alone meaning a set up of one of the three standard model subgroup fields
at a time, and even the normalization (of h) is then not important for this relative size of the
two terms, while the size of the fluctuations still have to be calculated.

Now, we want to estimate the three standard model fine structure constants—or rather
their ratios—by putting on a “test field”, which for the plaquette action on which we think is
denoted as h = h□, and if we think of a purely spatial plaquette, it is really a magnetic field
of that plaquette. This magnetic field is thought upon in the notation with the coupling
constant absored into the field so that the action actually has an inverse fine structure
constant contained as a factor to compensate for the absorbed charge factor e0, say,

S = . . . + ∑
plaquettes

1
2πα0

∗ ReTr(U(□)) (22)

or continuum S ∝
∫ 1

16πα0
FµνFµνd4x. (23)

(see Section 4 for why we just place 1
2πα in front of the ReTr(U□).)

Thus, the inverse fine structure constants are found from how the action (or we can
say the magnetic energy) varies approximately linearly with the square of the test field
imposed on h2. If the fluctuation field was SU(5)-invariant—as it would of course be in a
theory without any breaking of the SU(5) symmetry—the three fine structure constants in
the “SU(5)”-invariant notation, which are well known to deviate from the more natural one
by the replacement

1
α1

∣∣∣∣
natural

=
1
α1

∣∣∣∣
SU(5)

∗ 5
3

, (24)

would be equal to each other for all three.
The test fields we shall use, and which for the non-Abelian groups SU(2) and SU(3)

correspond to the coupling definitions,

S =
∫
(− 1

4e2
2

1
2

Trmatrix,2×2FµνFµν)− 1
4e2

3

1
2

Trmatrix,3×3(FµνFµν) + ...)d4x

could be

For SU(2) : hSU(2) =
1√
2


0 1 0 0 0
1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

, (25)

for SU(3) : hSU(3) =
1√
2


0 0 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 1 0 0
0 0 0 0 0

, (26)
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for U(1) : hU(1) =
1√
30


3 0 0 0 0
0 3 0 0 0
0 0 −2 0 0
0 0 0 −2 0
0 0 0 0 −2

 (27)

All of the three proposed test matrices h have been normalized so that their squares

h2
U(1) =

1
30

∗ diag(9, 9, 4, 4, 4) (28)

h2
SU(2) =

1
2

diag(1, 1, 0.0.0) (29)

h2
SU(3) =

1
2

diag(0.0., 1, 1, 0) (30)

become of traces equal to unity:

Tr(h2
U(1)) = 1 (31)

Tr(h2
SU(2)) = 1 (32)

Tr(h2
SU(3)) = 1. (33)

It is this normalization that ensures that the three couplings all become equal in the exact
SU(5) limit. (Based on the unbroken symmetry under the standard model group, it will not
matter which component under one of the three standard model groups is used as the test
field, as long as it is a combination of the components of just that one of the three groups
U(1), SU(2), and SU(3).) These fields h are meant to be added to the already fluctuating
field, but not to flutuate themselves, and then dividing the thereby achieved (magnetic)
energy increase or action decrease shall obtain (apart from a constant factor) the inverse
fine structure constant for the subgroup of the standard model in question.

3.1. Difference Between Our Approximate SU(5) and Usual SU(5)

In the very first approximation—the SU(5)-invariant one—there is the same amount
of fluctuation in all the 24 components of the SU(5)-Lie algebra; actually, each of them have
the average of the field squared for one component 1/2∗ < H2

one component >= π
2 ∗ α5.

But in the philosophy that only the standard model components really exist, we must in
our model only have fluctuations in these components.

The difference between our model, in which there, truly speaking, only is gauge
symmetry according to the standard model and not even fields corresponding to the full
SU(5), the usual SU(5) theory comes in by restricting the fluctuation field H in our model
to only fluctuate in standard model degrees of freedom.

Actually, the Lie algebra components, which are in the SU(5)-Lie algebra but not in
the standard model one, can be in the notation, and I have chosen them here (27) to be
represented by the matrix element being put to zero in the following matrix 5 × 5:

· · 0 0 0
· · 0 0 0
0 0 · · ·
0 0 · · ·
0 0 · · ·


I.e., the difference between our model and the SU(5) symmetric model is that the

fluctuation in the vacuum fields on the 2 times 6 points in this matrix marked by the 0 s is
suppressed in our model, while in the SU(5) symmetric H, the fluctuation is the same size
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in all the matrix elements, except for the detail that the trace of H is restricted to be zero,
that is,

tr(H) = 0. (34)

In both usual SU(5) values and ours, the trace is zero, but the 12 elements marked
with zero are restricted from fluctuating only in our model.

The technique to estimate what happens when one puts up in a region a smooth
continium field is simply that we add the field due to the continuum field, which we can
call F, translated to the matrix h to the fluctuating field H. That is to say, we consider the
following configuration:

U(□) = exp(i(H + h)), (35)

and to extract magnetic energy or the action of the plaquette, we assume the usual type of
the real part of the trace action

Splaquette ∝ ReTr(U(□)), (36)

and look for the terms in the action change, which are of the second order in the continuum
extra field representing the continuum field. The coefficient to this second order h2 used to
give the action change due to the continuum field is simply proportional to the inverse fine
structure constant for the type of field we used.

3.2. Expansion of exp(i(H + h))

The Taylor expansion of the exponential is well known, and we only have to keep the
terms of second order in h, and we shall not go further than to second order in H, so we
only need to expand to the fourth order in the sum H + h.

In fact, we generelly have

ReTr(exp(i(H + h)) = ReTr(1) +
1
2

ReTr((i(H + h))2) +
1

24
ReTr((i(H + h))4), (37)

(odd powers give zero).

Dropping the h2 order terms, we obtain

Splaquette

∣∣∣
h2−part

= ReTr(U(□))|h2−part (38)

=
1
2

ReTr(h2) +
1

24
∗ 6ReTr(h2H2) (39)

( provided that h and H commute)

Otherwise : =
1
2

ReTr(h2) +
1

24
∗
(

4ReTr(h2H2) + 2ReTr(hHhH)
)

=
1
2

ReTr(h2) +
1
6

ReTr(h2H2) +
1

12
ReTr(hHhH). (40)

3.3. Classification of Fluctuations

For the presentation of the calculation of the quantum fluctuation corrections to the
three different fine stracture constants in the standard model, we divide the fluctuations into
four classes. Have in mind that in the crudest approximation, the vacuum fluctuations in the
SU(5) symmetric approximation consist of independent fluctuations after all the 24 basis
vectors in a basis for the SU(5) Lie algebra value. Imagine having chosen this basis so that
the 12 basis vectors are also basis vectors for the three sub-Lie algebras corresponding to
the three standard model groups, and we can then divide the fluctuation into four sets



Universe 2025, 11, 32 15 of 50

denoted symbolically by H1 for the fluctuation in the single mode of the U(1) subgroup,
H2 for the fluctuation in the SU(2) degrees of freedom, and H3 for the SU(3) fluctuations,
and then for us, the most interesting class Hint, namely, those remaining fluctuations in the
SU(5) Lie algebra value which do not fall into any of the three well-known subgroups of
SU(5) in the standard model and which in our model are declared to not exist in nature,
must be removed, i.e., these fluctuations under the name Hint become zero. With such
a classification, we can divide the fourth-order term into a series in principle of 3 × 4
combinations. In fact, we can ask for any of the three fine structure constants for which we
want to calculate the quantum fluctuation corrections, wherein the contribution is from one
of any of the four fluctuation classses H1, H2, H3, and Hint.

3.4. Calculation Description

We want to calculate the shift in the three inverse fine structure constants of the standrd
model by first calculating the relative changes ∆α−1

i
α−1

i
of these inverse fines tructure constants

1/αi for i = 1, 2, 3 by denoting, respctively, the subgroups U(1), SU(2), and SU(3). Since
we are now computing the “correction” after the very lowest order approximation is
considered to be exact SU(5) symmetry, we can in principle be careless with which fine
structure constants we use in this calculation when performed at the unification point
of energy scale, because at this scale at zeroth approximation, all three and even the α5

are equal.
We shall first caculate the shifts ∆α−1

i (µU) from their relative shifts. For this, we need
the very important 1/2∗ < H2

one component > = π
2 α5 (but it is here where we can be

careless to our approximation with which α1 you replace this α5(µu)), and the factor π
2 is

explained below in Section 4.
Thus, the shift of the inverse fine structure constant becomes

∆
1

αi(µU)
=

1
αi(µU)

∗
ReTr(H2h2

i )

2ReTr(h2
i )

(for effective commutativity) (41)

=
1

αi(µU)
∗ < H2

one component > ∗
ReTr(H2h2

i )

2ReTr(h2
i )∗ < H2

one component >

=
π

2
∗

ReTr(H2h2
i )

2ReTr(h2
i )∗ < H2

one component >
. (42)

One can think of the fraction ReTr(H2h2
i )

2ReTr(h2
i )∗<H2

one component>
as a kind of counting of how

many components of the fluctuation contribute to the correction of the ith inverse fine
structure constant,

“Eff. # < H2 > contributions”
=

de f
ReTr(H2h2

i )

2ReTr(h2
i )∗ < H2

one component >
(43)

= ∑
j=1,2,3

“Eff. # < H2 > contributions”|Hj .

Here of course

“Eff. # < H2 > contributions”|Hj

=
de f <

ReTr(H2
j h2

i )

2ReTr(h2
i )∗ < H2

one component >
>

and if we also include into this sum the Hint fluctuations, we obtain the corrections under
unbroken SU(5), and in this case, the sum of these “Eff. # < H2 > contributions” should
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for all three inverse fine structure constants be 24/5. There are 24 components for full SU(5),
but in order to contribute to the trace Tr a factor 1, you need five 1s (along the diagonal).

3.5. The Table

By a little thinking that we want the average of these fluctuations, which are indepen-
dent except along the diagonal, and that the elements in the matrix related by permuting
the column number with the row number are strongly correlated—as must be the case to
ensure hermiticity of the fluctuating fields H = H†—we find out that one obtains the same
result, regardless of the order in the matrix product, so that h and H effectively commute
after all.

Let us now list in the following Table 1 these “Eff. # < H2 > contributions” and their
calculations.

Table 1. Table of the numbers
ReTr(H2

i h2
j )

2∗ReTr(h2
j )<H2

i >
first without the explicit denominator 2, but then at the

very two lowest lines, the half is taken for the sum of the contribution from the standard model group
fluctuations and for the ones from the Hint which is missing in the standard model.

From α−1
1 α−1

2 α−1
3

the Hi hU(1) hsu(2) hSU(3)

H1
2∗81+3∗16

900
2∗9

2∗30
4

30
=7/30 =3/10 =2/15

H2
3∗9∗2
3∗30

2∗3
2∗2 0

=9/10 =3/2 =0

H3
4∗3∗8
3∗30 0 8

3
=16/15 =0 =8/3

sum 11/5 9/5 14/5

Hint
54+24

30 3 2
=13/5 =3 =2

check 24/5 24/5 24/5

half s. 11/10 9/10 7/5
half Hint 13/10 3/2 1

The numbers in this Table 1 are easily obtained when having in mind that the trace is of
the form Tr(H2h2), because we can then simply evaluate the traces by using the following
diagonal matrices

< H2
1 > =

1
30

∗ diag(9, 9, 4, 4, 4) (44)

< Tr(H2
1) > = 1 (45)

< H2
2 > =

3
2
∗ diag(1, 1, 0, 0, 0) (46)

< Tr(H2
2) > = 3 (47)

< H2
3 > =

8
3

diag(0, 0, 1, 1, 1) (48)

< Tr(H2
3) > = 8 (49)

< H2
int > = diag(3, 3, 2, 2, 2) (50)

< Tr(H2
int) > = 12 (51)

combined with the squares of the ansatz matrices
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h2
U(1) =

1
30

diag(9, 9, 4, 4, 4) (52)

Tr(h2
u(1)) = 1 (53)

h2
SU(2) = diag(1/2, 1/2, 0, 0, 0) (54)

tr(h2
SU(2)) = 1 (55)

h2
SU(3) = diag(0, 0, 1/2, 1/2, 0) (56)

Tr(h2
SU(3)) = 1 (57)

3.6. The Problem with Commutation

The above multiplication to make the table is acceptable if the hs and Hs indeed
commute. Effectively however, we can show that by applying the averaging, we do end up
with a result as if they commuted:

For the hs, i.e., the ansatz matrices, we can simply choose diagonal ones, because that
is just to select an appropriate basis vector for the group one wants. If the fluctuation field is
a diagonal one, it is then indeed commuting, but if we consider an off-diagonal component
of an Hi field, then we can argue that it leads to a product of the two diagonal elements in
the h, and this leads in the special cases to consider taking the trace of an h, which is zero.
So in practice, it is as if we had commutation almost by accident.

4. Wilson Action
We shall use the notation for the single-layer (our model has three layers corresponding

to three families) Wilson lattice that is related to a continuum theory (we here leave the
gauge group open) and with the charge absorbed into the field Fµν(x) (containing magnetic
B⃗ and electric part E⃗ with their g absorbed).

If we use a notation in which the Aµ(x) gauge fields are already Lie-algabra-valued
fields—or for our U(N) groups of interest here, they are equivalent matrices—we can thus
define basis vector matrices λa and Ta so that

Aµ(x) = (Σ)Aa
µ

λa

2
(58)

= (Σ)Aa
µTa (59)

where, say, for off-diagonal λ1 =


0 1 0 0 0
1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 (60)

λ2 =


0 −i 0 0 0
i 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 (61)

and with of normalization Tr(λaλb) = 2δab (62)

and Tr(TaTb) = 1/2 ∗ δab (63)
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you can interprete the Aµ(x) fields as representations in some representation R construct
of unitary matrices in the crude continuum limit identification

Uµ(x) = exp(iaAµ(x)) (64)

in the usual way that requires the

SWilson[U] = − β

2N
Σ□(W□ + W∗

□) (65)

=
a4β

4N

∫ d4x
a4 trFµνFνµ + ... (66)

where W□ = tr(Uµ(x)Uν(x + µ̂)U†(x + ν̂)U†(x)) (67)

= tr(ordered product around the plaquette □)

to be obtained using (17) S =
∫
− 1

4g2 FµνFνµd4x and the relation

β

2N
=

1
g2 . (68)

or
β

N
=

1
2πα

. (69)

And this leads to the fluctuating part H = (Σ)HaTa = (Σ)Ha λa
2 of the exponent in the

plaquette variable

U□ = exp(iΣHa λa

2
) (70)

going into the action with

Σ□
β

N
Retr exp(iΣHa λa

2
) (71)

= Σ□
1

2πα
Retr exp(iΣHa λa

2
) (72)

≈
second o.

1
2πα

Σ□Retr(−1
2
(ΣaHa λa

2
)2) (73)

=
1

4πα
Σ□Σa(Ha)2/2 (74)

= Σ□ a
1

8πα
(Ha)2 (75)

So if the plaquettes were not coupled—though they are—then in the partition function/the
Euclidean path integral, which is

Z =
∫

DU exp(−βS[U]) (76)

≈ Π□ a exp(− 1
8πα

∗ (Ha)2) (77)

where DU is the Haar measure, the fluctuation of a plaquette variable (exponent) Ha would
be given as < (Ha)2 > (no summation) = 8πα/2 (when restriction between the plaquette

variables is neglected), since
∫

x2 exp(−Kx2)dx∫
exp(−Kx2)dx = 1/(2K). But of course, they are connected

so that there are only half the plaquette variables, which are independent. This can actually
be seen to lead to the distribution of the partition function distribtuion becoming twice
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as narrow a measure in the square Ha average: So in the lattice partition faction or the
Euclideanized path integral, the fluctuation is

< (Ha)2 > (no summation) = 8πα/2/2 = 2πα. (78)

We here used that the plaquette variables, say Ha(□) for the different plaquettes □,
are not independently integrated. On the contrary, for each cube in the lattice, there is
a constraint that when linearized means that the sum of six plaquaette variable for the
plaquettes around the cube is restricted to be zero. Since in four dimensions there are six
plaquettes per site and four cubes, this restriction would first mean that there are only two
independent plaquette variables per site, but that is, however, not true, because there is
a constraint between the four cube constraints on the plaquettes. So in reality, there are
three independent constraints per site on six a priori plaquette variables. This yields that
the average of the square (Ha)2 of a (Gaussian-distributed) plaquaette variable becomes
reduced by a factor 6 to (6 to 3) mean a factor of 2. Simplifying this to just two variables to be
restricted to one independent variable, we could just think of a Gaussian distribution about
the origen in a plane, and we then restrict the first two dimensions to a diagonal—a single
dimension—being a restriction symmetric between the two original variables thought of as
the coordinates. Then, the restricted distribtuion on the symmetric diagonal would project
into one of the coordinate axes with the average of the saquare diminished by a factor of 2.

The meaning of our basis choice for defining our lattice variables Ha could be illus-
trated by asking what is now the calculated average of the square of an off-diagonal element
in the 5 × 5 matrix. For example, for matrix element row 1 and column 2, we obtain

< |Hrow 1 column 2|
2 > = < (H1/2)2 + (H2/2)2 > (79)

= 1/2 ∗ 2πα = πα. (80)

It is an easy off-diagonal element that we denote by Hone component, and its numeri-
cal average square is for one layer

< |Hone component|2 > |one layer = πα. (81)

Want
1
2
< |Hone component|2 > |one layer = π/2 ∗ α. (82)

The reason we want this half of the average square of the matrix element in the 5 × 5 matrix
is that the Taylor expansion (39) has a two-factor deviation between the two terms, which
we shall compare.

4.1. Our Relative Correction

In the calculation of the relative correction to the inverse exact SU(5) fine structure
constants, we need the ratio of the two terms (39), and the correction term comes from the
Taylor expansion as

“correction term” =
1
4
∗ tr(h2H2)(if commuting effectively)

while the corresponding “uncorrected” =
1
2

tr(h2). (83)

4.2. On Table

Use the numbers from the three table as traces of the products of the diagonal matrices,
which are normalized so that their traces are 1 for the h2, and the dimension of the Lie
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group for the H2
i normalizes the difference of 1

α2
− 1

α3
to one “unit” ignoring yet the factor

3 of the number of families, with the hereby absorbed denominator 2 being

The “unit” =
π

2
(84)

Now we have the notation with “Re Tr” (in which it would at first have been π). So,
the prediction will be that the difference at the unifying scale of the two non-Abelian
inverse fine strucutre constants—which have the number 1 (when the explicit 1/2 is not
included)—will be π

2 for only one family, but it will be 3 ∗ π/2 for three families.

5. Comparison with Old Work with Bennett and with Computer Works
Since it is so crucial for our prediction that we calculate the absolute size of the

quantum correction, defining our q = 3 ∗ π/2 correctly and that it is indeed such a
quantum correction effect, we shall here compare it to an old work with Don Bennett,
though only calculating this correction for simple groups SU(3) and SU(2), but this checks
the absolute size. That the physics of this type of quantum correction works even with
a background of extensive computer calculation is seen in the next Tadpole Correction
Calculations Section. In my old work with Don Bennett [10] arXiv:hep-ph/9311321v1
“Predictions for Nonabelian Fine Structure Constants from Multicriticality”, we in fact
presented the same correction that I use here and even had the normalization included and
used that the correction to the inverse fine structure constants is

1
α

→ 1
α
(1 − C f πα) (85)

=
1
α
− C f π (86)

where C f means the quadratic Cassimir in the fundamental representation of the group in
question. In fact, we find in this article the following:

CSU(2)
f =

3
4

(87)

CSU(3)
f =

4
3

(88)

5.1. Tadpole Correction Calculations

In fact, the quatity < H2
i >, which is so crucial to us to estimate, is a quantity needed to

make the so-called tadpole improvements for lattice calculations [34]. In the calculation by
Niyazi et al. [30], we find some computer study that also reached the quantity u0 defined by

u4
0 =

〈
1
N

Tr(Up(□))

〉
, (89)

as being the average value in the fluctuating lattice (in vaccum) for a link variable. They
presented as a result of their numerical studies a region of βs around β = 7.5 in their
notation that means 1/α3 = 7.5/5 ∗ 2π = 9.42477:

u0(β) = 0.87010 + 0.03721∆β − 0.01223(∆β)2. (90)

where ∆β = β − 7.3.
On the basis of the crudest approximations as speculated in Section 4, we expect the

u0(β) to be of the form
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u4
0(β) = 1 − C

β
(91)

needing then C = 7.3 ∗ (1 − 0.870104) (92)

= 7.3 ∗ (1 − 0.057316) (93)

= 3.1159. (94)

If so, shift ∆
1
α3

= C/3 ∗ 2π ∗ (1 − 2 ∗ 4
20

) (95)

= C ∗ 2π/5 (96)

= 3.9155 (97)

≈ 4.1888 (98)

= 8/3 ∗ π/2 (99)

(here, the correction factor comes from our (68) correction for a Nc = 3 in the notation of [30],
and because of the continuum coupling, the correction—the α3—obtains a contribution
from a lattice action term with double plaquettes having a coefficient β/20 in the first
approximation and contribtuiing eight times as much as the “main Wilson term”). If the
inverse β-type fitting here is correct, then the derivative being the coefficiient on the second
term 0.03721∆β should be

d
dβ

u0(β) =
d

dβ
4

√
1 − C

β
(100)

=
1
4
(1 − C

β
)−3/4 ∗ ( C

β2 ) (101)

=
1
4

u−3
0 ∗ C/β2 (102)

=
1
4

C/7.32/0.870103 (103)

= C ∗ 0.00712 (104)

= 0.022190. (105)

This is a little bit lower than the 0.03721 value.
From Formula (2) in reference [30], we see that Niayzi et al. use the N included in

the action explicitely so that for SU(3), their β = 3βwithout theN , so, e.g., the β = 7.3 they
worked out would mean that the notation without the N included in the definition comes
out to 7.3/3 = 2.4333. Then, since in the usual notation, which Niayzy et al. seem to use,
one has, e.g., according to [35] the result of β = 2Nc

g2
s

, implying that

1
α3

=
4π

g2
s
= 2πβwith no Nc notation (106)

But there is a further point in extracting the fine structure constant used in the work
by Nyaizi et al.: They use Lüscher–Weisz action, which even in a large β = βpl limit, has
an extra term consisting of double plaquette actions with a coefficient which, according
to [36], is given by
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βrt = −
βpl

20u2
0
∗ (1 + 0.4905α3) (107)

S[U] = βplΣrt
1
3

ReTr(1 − Upl) (108)

+ βrtΣrt
1
3

Re(1 − Urt) (109)

+ βpgΣpg
1
3

ReTr(1 − Upg) (110)

so βe f f |lowest order = βpl ∗ (1 −
1

20
∗ 4 ∗ 2) (111)

= βpl ∗
3
5

(112)

So this would mean that we shall use (69), but with β/N changed to 3/5 ∗ βpl/3. The case
β = 7.3 in the notation of [30] corresponds then to

2π ∗ 2.433333 =
1
α3

(113)

giving 1/α3 = 15.2890 forgetting the 3/5

so the u4
0 = 0.870104 = 0.573161057 (114)

will correct by15.2890 ∗ (1 − 0.870104) = 6.25597 (115)

which should be π/2 ∗ 8/3 = 4.18878 (116)

However, when we now remember the inclusion of the effect of the double plaquette
term at least in the weak coupling limit giving the factor 3/5, then instead of Niyazi et al.’s
β = 7.3 value, we have the following:

βtrue = 7.3/3 ∗ 3/5 (117)

= 7.3/5 (118)

= 1.46 (119)

giving
1
α3

= 2πβtrue (120)

= 9.1734 (121)

and shift by 9.1734 ∗ (1 − 0.870104) = 3.91556 (122)

to again compare to 8/3 ∗ π/2 = 4.188787 (123)

Now, there is very little difference, meaning that we can consider that this extraction
from the calculation of the u0 became a test of our calculation of the correction from the
loop corrections that are so crucial for the present work.

Let us take yet another example, namely, βNyaizi = 7.7; it gives β = βNyaizi/3 ∗ 3/5 =

1.54 and 1/α3 = 2π ∗ 1.54 = 9.6761. Now, we have for 7.7 that u0 = 0.8803, and thus,
1 − u4

0 = 1 − 0.88034 = 0.399486, giving a change of the 9.6761 value by 3.8655 in value.
This is still close to 4.1887 (But I do not like it for it to get further away from this 4.1887
value when the coupling becomes weaker, because we expect our values to be exact in the
weak coupling limit).

6. Fitting
The first step in our fitting of our model is to calculate the “unifying” scale µu at which

the ratios between the differences between the inverse fine structure constants for the
three subgroups of the standard model group is the one predicted from our calculation
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of the quantum fluctuation corrections. In fact, the three inverse fine structure constants
shall lie on the number axis as the numbers (2, 13/5, 3) corresponding to the subgroups
(SU(3), U(1), SU(2)), where we have chosen the SU(5) normalization for the U(1) fine
structure constant. The relation is expressed in terms of the two independent differences
that can be formed. Let us, e.g., say that

1
α2

− 1
α1 SU(5)

3 − 13/5
=

1
α1 SU(5)

− 1
α3

13/5 − 2
(124)

⇒ 1
α2

− 1
α1 SU(5)

=
2
3
∗ ( 1

α1 SU(5)
− 1

α3
) (125)

⇒ 1
α2

− 5
3
∗ 1

α1 SU(5)
+ 2/3 ∗ 1

α3
= 0 (126)

We express the 1
αi

s as

1
αi(µ)

=
1

αi(MZ)
− bi

2π
ln
(

µ

MZ

)
+ ... (127)

with bSM
i = (41/10,−19/6,−7), (128)

and this relation for the αi(µu)s is written for the MZ-scale fine structure constants as

1
α2(MZ)

− 5
3
∗ 1

α1 SU(5)(MZ)
+ 2/3 ∗ 1

α3(MZ)
= (b2 −

5
3

b1 + 2/3 ∗ b3)/(2π) ∗ ln
(

µu

MZ

)
.

Inserting the values obtained for the MZ inverse fine structure constants, this becomes

29.57 ± 0.06% − 5
3
∗ 59.00 ± 0.02% +

2
3
∗ 8.446 ± 0.6% =

−19/6 − 5/3 ∗ 41/10 + 2/3 ∗ (−7)
2π

∗

∗ ln
µu

MZ

−63.10 = −44/3/6.2832 ln
µu

MZ
(129)

⇒ ln
µu

MZ
= 27.03 (130)

⇒ µu

MZ
= 5.482 ∗ 1011 (131)

Using MZ = 91.1876GeV (132)

thus µu = 5.00 ∗ 1013 (133)

6.1. Table for Inverse Fine Structure Constants and Our Fitting

In Table 2 in this Section 6.1 just below we go through the calculation to first determine
the unification scale by requiring the ratios of the two relative deviations from true SU(5)
symmetry to be in the ratio required by our model. We have shown this to be done
by requiring the linear combination of the three inverse finestructure constants at this
unifying scale to make zero the linear combination of the inverse fine structure constants
have the coefficients (−5/3, 1, 2/3) for, respectively, (1/α1 SU(5), 1/α2, 1/α3). As a check
of our model, we work this out by correcting for the quantum fluctuations in the inverse
fine structure constant to reproduce the two 1/α5s, namely, the one without quantum
corrections—the bare SU(5) inverse fine structure constant—and the “effective” SU(5)
inverse fine structure constant, which has been corrected for these quantum corrections.
The test is that these two formal SU(5) (inverse) couplings shall be the same regardless of
which of the three standard model fine structure constants are used for the calculation of
them, provided our model agrees with the data used.
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Table 2. Calculation of Replacement for Unifying Scale.

1/α1 SM 1/α1 SU(5) 1/α2 1/α3

Formula 1/αEMcos2ΘW 3/5 ∗ 1/αEMcos2θW 1/αEM ∗ sin2ΘW α−1
3

Start #′s 127.916 ∗ 0.76884 3
5 ∗ 127.916 ∗ 0.76884 127.916 ∗ 0.23116 0.1184−1

Value 98.347 59.008 29.569 8.446
Uncertainty ± 0.02 ± 0.013 ± 0.017 ± 0.05

Coefficient −5/3 1 2/3

Contribution −98.347 29.569 5.631
Uncertainty ± 0.02 ± 0.017 ± 0.034

SUM:
Sum −63.147

Uncertainty ± 0.04

b’s 41/6 41/10 −19/6 −7

b-contribution −5/3 ∗ 41/10 1 ∗ (−19/6) 2/3 ∗ (−7)
= −41/6 = −19/6 = −14/3

Sum (−41−19−28)/6
= −44/3

b-contr./2π −2.33420017 −1.087559696 −0.503991079 −0.742723695

Ratio:
ln( µU

MZ
) −63.147

−2.33420017
= 27.053

Uncertainty ± 0.02

Scale µU 5.116 ∗ 1013 GeV
Uncertainty ±0.1 ∗ 1013 GeV

b’s/2π 0.652535818 −0.503991079 −1.114085543

ln( µU
MZ

) ∗ b′s
2π

17.653 −13.634 −30.139
Uncertainty ± 0.01 ± 0.01 ± 0.02

Value at µU 41.355 43.203 38.585
Uncertainty ± 0.017 ±0.02 ± 0.05

Pred. to 1/α5 bare 3 ∗ 11/5∗π/2 3 ∗ 9/5 ∗ π/2 3 ∗ 14/5 ∗ π/2
= 10.367247 = 8.482293 = 13.194678

1/α5 bare 51.722322462 51.685853652 51.780040772
Uncertainty ± 0.017 ± 0.02 ± 0.05

Pred. to 1/α5 cont 3 ∗ 13/5 ∗ π/2 3 ∗ 3 ∗ π/2 3 ∗ 2 ∗ π/2
= 12.252201 = 14.137155 = 9.42477

1/α5 cont 29.103 29.066 29.161
Uncertainty ± 0.017 ± 0.02 ± 0.05

Average:
Average 29.092 w = 35 w = 25 w = 4

Deviations 0.0107 −0.0258 0.0683

6.2. Values at the µu-Scale

What we are really interested in is the magnitude of the deviation from SU(5) being
accurate at the our “unified scale” µu, and we should like to develop the expression for this
deviation in terms of the original variables at even MZ values. But to obtain an overview,
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it is better first obtain the deviations by simply calculating the three inverse finstructure
constants at our “unification scale” µu:

1
α1 SU(5)(µu)

= 59.00 ± 0.02 − 0.65254 ∗ 27.0566 (134)

= 59.00 − 17.66 (135)

= 41.34 (136)
1

α2(µu)
= 29.57 + 0.50399 ∗ 27.0566 (137)

= 29.57 + 13.64 (138)

43.21 (139)
1

α3(µu)
= 8.446 + 1.11409 ∗ 27.0566 (140)

= 8.446 + 30.143 (141)

= 38.59 (142)

We may note down the differences and check that they are in the right ratio:

1
α2(µu)

− 1
α1 SU(5)(µu)

= 43.21 − 41.34 (143)

= 1.87. (144)
1

α1 SU(5)(µu)
− 1

α3(µu)
= 41.34 − 38.59 (145)

= 2.75 (146)
1

α2(µu)
− 1

α3(µu)
= 43.21 − 38.59 (147)

= 4.62 (148)

The test now is the following:

2/5 ∗ 4.62 ?
= 1.87 (149)

In fact 2/5 ∗ 4.62 = 1.85 (150)

and 3/5 ∗ 4.62 ?
= 2.75 (151)

In fact 3/5 ∗ 4.62 = 2.77 (152)

Now, our question is how big is this 4.62 value in units of π/2 = 1.5708. We find

1
α2(µu)

− 1
α3(µu)

π/2
(153)

=
4.62
π/2

(154)

= 2.94 ≈ 3 = # f amilies! (155)

This is remarkably close to 3, which is the number of families (with an order of magnitude
uncertainty of ±0.1 it the inverse finestructure constants, which is a deviation of only 0.06
and is very good!)! This is in itself a remarkable coincidence in spirit with our old work
stories about critical inverse fine structure constants getting multiplied by the number of
families because of the anti-GUT theory behind them.

Corresponding to this spacing, we can now—with the above calculations being used—
find two SU(5) inverse couplings, namely, one before the effect of the quantum fluctuations
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< H2 > of H are taken into account and one after they are taken into account for the—in
our theory—non-existent whole SU(5).

6.3. The SU(5) Unification Couplings

Using Table 2 (in Section 6.1) we find that using as unit a 1/α2(µu)− 1/α3(µu) =

4.62 ≈ 3π/2, the two slightly different inverse unified couplings 1/α5 bare and 1/α5 cont (for
SU(5) formally) at our unification scale µu are given as

The “bare”:

1/α5 bare = 1/α1 SU(5)(µU) + 11/5 ∗ 4.62 = 41.34 + 10.164 = 51.504

or 1/α2(µu) + 9/5 ∗ 4.62 = 43.21 + 8.316 = 51.526 (156)

or 1/α3(µU) + 14/5 ∗ 4.62 = 38.59 + 12.936 = 51.526 (157)

The corrected:

1/α5 cont(µU) = 1/α1 SU(5)(µU)− 13/5 ∗ 4.62 = 41.34 − 12.012 = 29.328

or 1/α2(µU)− 3 ∗ 4.62 = 43.21 − 13.86 = 29.35 (158)

or 1/α3(µU)− 2 ∗ 4.62 = 38.59 − 9.24 = 29.35 (159)

It is these unified fine structure constants α5 bare and α5 cont, which only deviate from
each other by quantum correction, which should by our critical coupling assumption be
equal to the critical couplings for a lattice SU(5) model. In the Figure 3 they are compared
to the critical coupling for the lattice SU(5) corrected by the factor 3, because there are 3
families. (See the Section 9 for further details of our philosophy, that the “unified” coupling
should be just on the phase boarder, i.e., critical, except that it should be corrected by a
factor 3.)

(We used in this table, Table 2, the “experimental” value q = 4.62, but it would have
made only very little difference to use the theoretical value q = 3 ∗ π/2, because our
agreement is so good).

Figure 3. On this figure we show the running fine structure constants 1/αi extrapolated by renor-
malization group to our replacement for the unifying scale µu (or approximate unification scale µu)
togther with the two definitions of “unified inverse finestructure constants”, 1/α5 bare and 1/α5 cont,
and finally our by the number of families multiplied critical inverse finestructure constant for SU(5)
evaluated by the formula by Larisa and Rykhsikh, see Formula (217) below. The latter is our predic-
tion and it is denoted by an arrow contrary to the other inverse fine structure constants, which were
derived from the measured couplings, denoted by lines.

7. What Do Our Result Say About Original Variables?
Our remarkable result is that at the “unified scale” µu for our approximate SU(5)

value—the difference between, say, 1
α2(µu)

and 1
α3(µu)

—is just the number of families Ngen

times the “unit” π
2 . It is, so to speak, the deviation from proper SU(5) symmetry, which
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seems remarkably to be an integer—the number of families—times the “unit” π
2 , which

denotes the amount of shift in an inverse α per unit of quantum fluctuations in the lattice
theory of the theory in question.

For testing and for illustrating that there is truly a result in our prediction, we want
now to rewrite this result in terms of the MZ-scale quantities:

Let us begin to write down the difference that should have the remarkable value
Ngen ∗ π

2 (where Ngen is the number of families):

1
α2(µu)

− 1
α3(µu)

=
1

α2(MZ)
− 1

α3(MZ)
− b2 − b3

2π
ln

µu

MZ
,

where now

ln
µu

MZ
=

1/α2(MZ)− 5/3 ∗ 1/α1 SU(5)(MZ) + 2/3 ∗ 1/α3(MZ)
b2−5/3∗b1+2/3∗b3

2π

so that
1

α2(µu)
− 1

α3(µu)
=

1
α2(Mz)

− 1
α3(MZ)

−

− b2 − b3

b2 − 5/3 ∗ b1 + 2/3b3
∗

∗(1/α2(MZ)− 5/3 ∗ 1/α1 SU(5)(MZ) + 2/3 ∗ 1/α3(MZ)).

Here, the ratio of the bis becomes

b2 − b3

b2 − 5/3 ∗ b1 + 2/3 ∗ b3
=

−19/6 − (−7)
−19/6 − 5/3 ∗ (41/10) + 2/3 ∗ (−7)

=
−190 + 420

−190 − 5/3(+246) + 2/3 ∗ (−420

=
−570 + 1260

−570 − 1230 − 840
(160)

=
690

2640
(161)

=
23
88

(162)

Numerically
−3.166 + 7.000

−3.166 − 5/3 ∗ 4.100 − 2/3 ∗ 7.000
(163)

=
3.834

−3.166 − 6.8333 − 4.666

=
3.834

−14.6653
(164)

= −0.26143(agree with
23
88

) (165)

(166)
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Our difference is

1
α2(µu)

− 1
α3(µu)

= (
111
88α2

− 115
264α1 SU(5)

− 218
264α3

)|MZ

=

(
(

111
88

+ 3/5 ∗ 115
264

)
1

αEM
sin2Θ − 3/5 ∗ 115

264
1

αEM
− 218

264
∗ 1

α3

)
|MZ

=

(
1

αEM
∗ (333 + 69

264
∗ sin2Θ − 115

264
)− 218

264
∗ 1

α3

)
|MZ

=

(
1

αEM
∗ (402

264
∗ sin2Θ − 3/5

115
264

)− 218
264

∗ 1
α3

)
|MZ

=

(
1

αEM
∗ (201

132
sin2Θ − 69

264
)− 218

264
∗ 1

α3

)
|MZ

Calculating Our Difference 1
α2(µu)

− 1
α3(µu)

from MZ-Scale Data

Let us use

1
αEM(MZ)

= 127.916 ± 0.015 (167)

sin2Θ = 0.23116 ± 0.00013 (168)

α3(MZ) = 0.1184 ± 0.0007 (169)

Then, our difference becomes

“di f f erence” =
1

α2(µU)
− 1

α3(µU)
(170)

=

(
1

αEM
∗ (201

132
sin2Θ − 69

264
)− 109

132
∗ 1

α3

)
|MZ

= ((127.916 ± 0.015) ∗ (201
132

∗ (0.23116 ± 0.00013)− 69
264

)−

109
132

∗ 1
0.1184 ± 0.0007

) (171)

= 4.6187 ± 0.0014 (from αEM) ± 0.025 (from sin2θ) ± 0.041 (from α3)
?
= 3 ∗ π/2 = 4.7124 (172)

deviation = 0.0937 ± 0.046 (173)

deviation is about 2s.d. (174)

If you would like to blame all our deviation on the strong α3, we would derive that
instead of the 0.1184 used, a number 2.3 standard deviations higher, the replacement
would be

α3(MZ) = 0.1184 ± 0.0007 → 0.1200 (175)

A strengthning by 0.0016 meaning 2.3s.d. (176)

8. Alternative Way of Calculating
As an alternative or check of our work, we could impose our predicted values for the

differences of the inverse fine structure constants and in that way obtain a “unification scale”
µU . If our model is right, then fitting the “unification scale” to the different differences
between the three inverse fine structure constants in the standard model should lead to the
same “unification scale”.
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Let us as the first example take the difference 1
α2(µ)

− 1
α1 SU(5)

. At the MZ-scale, we have

di f f erence21 =

(
1
α2

− 1
α1 SU(5)

)
|MZ (177)

=

(
1

αEM(MZ)
∗ sin2ΘW − 3

5
∗ 1

αEM
∗ cos2ΘW

)
|MZ (178)

= (−3
5
+

8
5

sin2ΘW) ∗ 1
αEM

(179)

= (−3/5 + 8/5 ∗ (0.23116 ± 0.00013)) ∗ (127.916 ± 0.015) (180)

= (−0.230144 ± 0.00020) ∗ (127.916 ± 0.015) (181)

= −29.4390999 ± 0.02 (182)

The, the slope for the renorm group of this difference is

b2 − b1 SU(5)

2π
=

−19/6 − 41/10
2π

(183)

=
−95 − 123

2π ∗ 30
(184)

=
−218
60π

(185)

= 1.156526 (186)

Now, our model—with its quantum fluctuations—says that at the “unified scale” of
interest in our model, the difference, 2 to 1, shall have run to

“difference”2 to 1 = (3 − 13/5) ∗ 3 ∗ π

2
(187)

= 2/5 ∗ 3 ∗ π/2 (188)

= 1.884954. (189)

So, the ratio of our “unified scale” to the MZ-scale has the logarithm

ln(
µU
MZ

) =
1.884954 − (−29.4390999)

1.156526
(190)

=
31.32405
1.156526

(191)

= 27.084608474 ± 0.02 (192)
µU
MZ

= 5.79023 ∗ 1011 (193)

“unifying scale” µu = 5.27997 ∗ 1013 GeV ± 1012 GeV (194)

We earlier obtained by different calculation 27.0566 giving with MZ = 91.1876 GeV that the
“unifying scale” is 5.134 ∗ 1012 GeV.

Note that the difference between the two fits to the ln( µU
MZ

) deviate by just 0.03, while
the predicted quantity 1.88 we used would give rise to a contribution to this logarithm of
the order of 1.6, which is more than 50 times larger. So, we can claim that the prediction
works well to about 2% accuracy.

In Table 3, we have collected similar calculations for the other two differences too.
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Table 3. Table of results for three—not indenpent—ways of using our predicted differences between
the running inverse fine structure constants at “unfied scale in our model” which is the scale at which
the three running differences should be equal to the numbers in line 3 or 4. These predictions are
to be fullfilled at this “unified scale” which, using each of the three differences, is written in line
8, and the success of our model is really that these three numbers agree. They deviate from their
average 27.04 by the numbers of standard deviations (s.d.) given in line 12. The “small” deviations
agree within accuracy. But more important is to compare these deviations from the common average
to the ratios given in line 9, which should be the contribution from our prediction numbers translated
into the numbers in ln( µU

MZ
), which we gave in line 8. Here, it turns out that the deviations from the

average of the three numbers as written in line 12 in terms of standard deviations, when compared to
these predictions divided by the running rate, are relatively small, as seen in line 11. In fact, these
numbers in line 11 are at most of the order of 1/20, while the two smaller ones of them are only of
the order of 1/70. This means that our prediction values turned out correctly to be better than 5%.
A similar conclusion would be reached instead by the average of the three ln( µU

MZ
) fits using the value

of the ln( µU
MZ

) fitted by directly insisting on the ratio of the differences of th the inverse fine structure
constants being the one we require. This insisting on the ratio of the differences directly leads to
27.03, which is only deviating by 0.01 from the average here in the table of 27.04 when wieighting
with uncertaitties were used in evaluating the average (the naive average is 27.00). The difference
0.03 is only 1.5 s.d. measures and quite small compared the to the predicted corresponding shifts in
the ln( µU

MZ
), as seen in line 9 or 10. Again, this fact ensures that our agreement, although not perfect

(yet), is remarkably good.

1. 1/α2 − 1/α1 SU5 ± 1/α2 − 1/α3 ± 1/α1 SU5 − 1/α3 ±
2. di fMZ −29.4390 0.03 21.1232 0.05 50.5623 0.05
3. di fµU pred. 2/5 ∗ 3 ∗ π/2 1 ∗ 3 ∗ π/2 3/5 ∗ 3 ∗ π/2
4. = 1.88495 = 4.71239 = 2.82743
5. dist to run 31.32405 −16.3993 −47.7349
6. Run rate 19/6+41/10

2π
19/6−7

2π
−41/10−7

2π
7. = 1.156526 = −0.6101 = −1.76662
8. ln( µU

MZ
) 27.0846 0.03 26.8797 0.1 27.02046 0.03

as av. + dev. 27.04 + 0.0446 27.04−0.1203 27.04−0.01954

9. di fµU pred.

Run rate
1.88
1.15

4.71
−0.610

2.827
−1.7666

10. = 1.629 = 7.724 = 1.6005
11. rel.dev. 0.052 −0.015 0.011
12. ln( µU

MZ
) 1.5 1.6 0.6

s.d.f. av.
13. d. fr. 27.03 0.05 −0.15 −0.01

8.1. The 2 Minus 3 Case

We could estimate the same “unification scale” µU logarithm ln( µU
MZ

) similarly using
another difference predicted as, e.g., ( 1

α2
− 1

α3
)|µU = 1 ∗ 3 ∗ π/2 = 4.712385.

At the MZ-scale, we have

1
α2(MZ)

− 1
α3(MZ)

=
1

αEM(MZ)
∗ sin2ΘW − 1

α3(MZ)

= (127.916 ± 0.015) ∗ (0.23116 ± 0.00015)− 1
0.1184 ± 0.0001

(195)

= (29.5691 ± 0.003)− 8.4459 ± 0.01 (196)

= 21.1232 ± 0.01, (197)

but at µU we predict : (
1
α2

− 1
α3

)|µU = 1 ∗ 3 ∗ π/2 (198)

= 4.712385 (199)

Running needed: “run need′′ = 21.1232 − 4.72385 (200)

= 16.3993 (201)
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and this difference run with the renorm group by the rate

d(1/α2 − 1/α3)

dµ
=

19/6 − 7
2π

(202)

=
−23

6 ∗ 2π
(203)

= −0.610094. (204)

So, the natural logarithm of ratio is

ln(
µU
MZ

) =
16.3993
0.610094

(205)

= 26.8800 ± 0.02 (206)

This is to be compared with the 27.085 ± 0.02 from above and deviated by about 0.20,
which with an uncertainty for the difference between the two numbers put to 0.03 would
be 7s.d. But note that even with this not-so-impressive number of standard deviations, the
deviation of 0.20 is compared to the number 4.7123/0.6101 = 7.725 corresponding to our
prediction of the value at the unified scale, which is about 30 times as small. So, our theory
works in that sense to 3% accuracy.

8.2. Superfluous Case Difference 1 to 3

Although it is just related to the two foregoing calculations, let us also explicitly
calculate what our requirement for the difference 1 to 3 means:

1
α1 SU(5)(Mz)

− 1
α3(MZ)

=
1

αEM(MZ)
∗ cosΘW(MZ) ∗ 3/5 − 1

α3(MZ)
(207)

= (127.916 ± 0.015) ∗ (1 − 0.23116 ± 0.00013) ∗ 3/5 − 1/(0.1184 ± 0.0007)

= 59.0082 ± 0.02 − (8.4459 ± 0.7%) (208)

= 50.5623 ± 0.021. (209)

Then,

ln(
µU
MZ

) =
(50.5623 − 3/5 ∗ 3 ∗ π/2) ∗ 2π

41/10 + 7

=
47.7349 ∗ 2π

111/10
(210)

= 27.0204 ± 0.01 (211)

8.3. Table

The average of the three values for ln( µU
MZ

) turns out to be exactly 27.00 within our
uncertainty. The 11th line in the table gives the deviation from this average relative to
the part of the ln( µU

MZ
) value, which is due to our prediction value, so it gives the order of

magnitude of the failure of our prediction relatively. Note that even the biggest of these
three deviation measures relative to our predictions is only 0.052, meaning that even this
deviation is only fits well in 1 out of 24 cases.

The ln( µU
MZ

) = 27.00 value corresponds to that the “unification scale in our model”:

µU
MZ

= 5.32 ∗ 1011 (212)

and µU = 4.85 ∗ 1013GeV (213)
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9. Critical Coupling
Now, we have without the lattice theory philosophy—see the old works and [37]

in connection to our several phase speculations [38]—reached an understanding in our
picture of the deviations from SU(5) symmetry. It would of course be natural first to
determine if the unifying coupling should be the critical one for SU(5) corrected for the
factor that is the number of families. This is not at all obviously the correct thing to do in
our philosophy, because we have in the philosophy of the present article no true SU(5)
theory. It is only approximate, but it lacks half of the degrees of freedom. Nevertheless, let
us for the first orientation look to compare the expression for the SU(5) critical coupling
given by Laperashvili, Ryzhikh, and Das [2,12]:

α−1
N crit =

N
2

√
N + 1
N − 1

α−1
U(1)crit (214)

where we for the critical U(1) coupling take the lattice value for Wilson and Villain actions:

αlat
crit ≈ 0.2 ± 0.015. (215)

This gives

α−1
5 crit = 0.2−1 ∗ 5/2 ∗

√
3/2 = 5 ∗ 5/2 ∗ 1.2247 (216)

= 15.309 (217)

With the family factor Ngen = 3, this would let us expect 15.309 ∗ 3 = 45.927 to
be compared with the estimates from the data above. (see Figure 3 for the immediate
comparizon.)

Presumably, the value to compare with is the 51.5 for the unified coupling not corrected
by the quantum fluctuations, which we considered at length in this paper. Now, we must
remember that the U(1)-critical coupling was 0.2 ± 0.015, resulting in 7.5% uncertainty.
This 7.5% means ±3.45 for the 46 we predicted. So, the “experimental” 51.5 value from our
fit is only off by 5.5

3.45 = 1.6 s.d. amounts. If there is an uncertainty in the critical coupling
formula we used, in addition to the one from the uncertainty in the critical coupling for
U(1), then the deviation in standard deviations will be even smaller than the 1.6 value.

So formally, we must count the hypotesis that indeed the critical inverse unified
finestructure constant should be just three times the critical one, which is very successfull!
One should have in mind that, in reality, the “the critial finstructure constant” is not quite
well defined, because it depends on the details of the lattice theory. (See Figure 3 for
illustration.)

If we accept this agreement, we can say that we fitted all three Standar Model fine
structure constants with only the unification scale, i.e., one paramter. The unification value
of the fine structure constant for the SU(5) was determined by the “critcallity”.

Actually, we shall even below in Section 11 claim that we can relate the approximate
unification scale—the lacking parameter to predict at this stage in the article—to the top
mass and the Planck scale so that at the end we shall have predicted all three parameters.

More Thoughts on the Critical Coupling and Unified Coupling

Thinking a bit deeper, we should really not take a formula for the SU(5)-critical
coupling without correction, because we have been claiming all through the article that
in our model the SU(5) symmetry and all its degrees of freedom do not exist. Rather, we
should look for correcting the number for the critical α5 value to the critial coupling for the
lattice standard model group coupling.
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Very crudely, we can think of the critial coupling for groups like the ones we look at to
be the transition between two phases described as follows:

1. An essentially classical phase, wherein the coupling is so weak-i.e., 1/α is so large that
at the scale we consider (the lattice links cale) all the plaquette variables are so close
to unity, that the quantum effects can just be considered perturbations, and that we
basically have the classical theory working.

2. A “confined” phase in which we rather have that for the first approximation the
plaquette variables are distributed uniformly all over the group volume, as in the
Haar measure, we could say. Of course, it will still be more likely to find the plaquette
variables closer to the unit element in the group until the inverse coupling 1/α reaches
zero. But for now, it is the variation in the probability density over the group that is
the “small” perturbation.

If the standard model group lies as a dence network inside the SU(5) in the 5-plet
vector representation space, then the a bit-smeared volume of the standard model group
would be similar to that of SU(5) proper, as well as the value of the (inverse) fine structure
constant at which one or the other one of the two approximations above will shift their
dominance (i.e., the critical value) to be (roughly) the same as for full SU(5). But of course,
the density of the net formed by the standard model group is not perfect, and thus, it will
require that one goes to a somewhat stronger coupling (i.e., smaller inverse 1/α) to give
the “confinement phase” enough weight in the partition function to (barely) compete with
the “classical phase”. Thus, we expect

1
αSMG crit

≤ 1
α5 crit

but only a bit. (218)

But now we have—to be fair—to remember that the standard model group never
had the quantum fluctuating degrees of freedom that the full SU(5) lattice gauge theory
has. It lacks at least the 12 degrees of freedom we referred to as Hint in our calculation.
So going from the standard model of “total” coupling, if such a thing existed, to the
various subgroups SU(2), SU(3), and U(1) would not corresond to taking away so many
fluctuations as if one went from the full SU(5). So, the critical 1

αcrit SMG
should not be

identified with the above fitted 1
α5 bare

, but rather with an inverse fine structure constant of a
type that shall not have had its fluctuations in the set of Hint-type ones removed, as we did
in our formalism when constructing this “bare” inverse SU(5) fine structure constant. So
what we should rather identify as the implimentation of the critical coupling assumption is
that a “fitted” 1

αSMG
is the one you obtain by not counting that the referred to Hint modes be

included, but only the other ones, is to be identified by the three ∗ 1
αsmg crit

values, which

by (218) are actually only a bit smaller than 1
α5 bare crit

. The “fitted” quantity 1
αSMG

comes
actually very close to being an average of the three inverse fine structure constants from
the standard model, which is rather expected, since they are in the standard model genuine
gauge group. Then, if the dence network with which the standard model group GSMG

covers the SU(5), there will only be little difference between the two sides in (218), and
we now expect that the average of the three standard model group inverse fine structure
constants at “our unification scale” essentially say that 1

αSMG
shall be a bit smaller than the

critical SMG inverse fine structure constant times the three of them, which again is just a bit
smaller than the three of them times the critical inverse fine structure constant for SU(5):
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41.34 =
1

α1 SU(5)(µU)
(taken as average 1/αi) (219)

≈ 1
αSMG(µU)

(220)

= 3 ∗ 1
αSMG ccrit

(221)

<
a bit 3 ∗ 1

α5 bare crit
(222)

= 3 ∗ 15.3 = 45.9 (223)

10. Crude Second-Order Calculation
We did in principle the above calculations only up to first-order approximation in

a preturbative scheme in which the 0th-order approximation is the exact SU(5) value,
wherein all three standard fine structure constants are equal to each other and the first-
order approximation is the one in which our corrections are considered small of first order
so that the squares of the corrections can be considered negligible. The numerical order of
the first-order quantities are

“first order size” ≈ α

1 or 3 ∗ π/2
(224)

≈ 1/10. (225)

One unneccesary consideration of the second-order terms, which are expected to be of the
order (1/10)2 times the main term, is that we let the α appearing as a factor in the < H2 >s
cancel with the 1/α—whichever among the 1/αis we meet. Actually, it is tempting to
think that by using this lucky trick of getting rid of the parameters in the estimate of our
corrections, we are likely actually to obtain a better result with respect to agreement with
our calculations. Once we look for accuracies of the second order, there may be more
corrections, such as the H distribtuion being not just Gaussian, and the whole program of
doing the second order deserves a further article. Here, we shall only make a very crude
attempt to estimate the effect of seeing what α (among the three) comes into which of
the fluctuations of < H2 >. We shall make the assumption that the α to be used for an
Hi—where it is the fuctuation in one of the basis vectors for the subgroup i of the SU(5)—is
αi. Then, we see from Table 1 that we have had relativley good luck by letting the two
αs cancel each other, because the value mostly contributing < H2

i > to the correction for
the inverse fine structure constant 1/αj for the standard model subgroup denoted as j is
actually mostly i = j itself. In fact, according to Table 1, the correction to

Fraction of SU(2)-inverse coupling not H2
3/10
3/2

=
1

10
(226)

Fraction of SU(3)-inverse coupling not in H3
2/15
8/3

=
1

20
(227)

For the U(1) inverse fine structure constant is the dominant contributuion to the corrections
that comes from the two non-Abelian groups, i.e., from H2 and H3, but it has a bigger
number from the H1 than any of the other two groups, namely, 7/30. But since the U(1)
coupling correction is so mixed, taking all the same α values is not so bad.

In any case, it looks like it is only about 1/10 of the correction for the SU(2) coupling
and 1/20 for the SU(3) coupling, which would be changed by being a bit more careful with
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which α to use. The change to the more correct α to use would thus increase the difference
for 1/α2 − 1/α3 percent-wise by

Decrease of 1/α2 − 1/α3 =
1/10 + 1/20

2
∗ 4.7/2/40 (228)

= 3/40 ∗ 0.06 (229)

= 0.045 relatively (230)

This is now to be compared with the deviation of of the 3 ∗ π/2 = 4.712385 value from the
number in (148), which is 4.62 and thus smaller than our prediction of 3 ∗ π/2 = 4.712385
by 0.09 and relatively is 0.0190. This agrees only modulo by a factor of 2.

The observed renorm group developing the fine structure constants to “our unification
scale” defined from the ratios of the two independent differences of inverse couplings to
be 2:3 was 4.62, i.e., smaller than the theoretical 4.71 value, but now the effect of pushing
the inverse fine structure constants predicted down from their starting point in the SU(5)-
symmetric limit 1/α5 naive is getting increased for the SU(2)-inverse fine structure constant,
because for that, the changed H1 contribution is getting increased by our second-order
correction because the α1 SU(5) value is correctly stonger than what we used at first. For the
1/α3 value, the 1/α1 SU(5) is, on the contrary, above the 1/α3 value at “our unification” so
that for the 1/α3 value of the H1 contribution corresponds to a weaker 1/α1 SU(5) value,
thus giving a lower suppression compared to the naive inverse SU(5) coupling 1/α5 naive.
Thus, the theoretical 4.712385 value should be diminshed—since the three-inverse coupling
goes up by the correction and two-inverse coupling down—relatively by the 0.045. But that
would bring the theoretical number to 4.50, which is close to the 4.62 value.

The deviation from the only to first order result of the number derived by fitting is of
the order of magnitude of the second-order estimate. So, it is important to estimate this
second-order approach more carefully.

11. Speculative Relation to Planck Scale
A major problem and surprise that results if one takes our suggestion of the truly

existing lattice at the approximate or our unification scale µU = 5.18 ∗ 1013 GeV seriously
is that it suggests a “fundamental” scale that is quite different from the Planck scale.
To seek a way out of this problem, we propose to think of a fluctuating lattice in size of
the lattice constant in the sense that we speculate that the general theory of relativity is
still perturbatively treatable and rather well understood already—so that no completely
speculated quatum gravity theory is needed at the µU scale—so that the whole lattice
structure must be in a quantum superpostion state invariant under the reparametrization
group from the general relativity. That is to say, with the philosophy, there are very big
quantum fluctuations in the gauge that take the diffeomorphism of reparametrization
symmetry as the gauge symmetry of general relativity, so we must accept that the world
is in a superposition of all the possible deformations of the lattice needed for our model
for the approximate GUT SU(5) achieved by reparametrizations. That is to say that in a
typical component in this superpostion, we find somewhere a very small lattice constant
and find somewhere a very big one so that the lattice cannot exactly be a Wilson one, for
example, but locally, it could still be close to a Wilson lattice. Then, of course, the lattice
constant value suggested by our parameter µU as lattice constant a ≈ 1/µU could only be
true in an average sense of the value

µU = Average
1
a

, (231)
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where a is some local or possibly single-link lattice constant, i.e., the length of the link in
the metric of general relativity, which should still be perturbatively treatable in the range
around 1/a ≈ 5.18 ∗ 1013 GeV (which is a small energy amount relative to the Planck scale).

So the physical model in which we developed our more primitive lattice model, is in
the rest of the article further developed into some presumably more chaotic lattice theory
(a kind of glass) in which the degree of fineness varies from region to region, and one
finds links of all possible sizes—at least the approximate diffeomorphism-invariant
structure of the lattice. It is of course only approximately diffeomrphism-invariant by being
in the superposition of having different fineness levels of the lattice at any place. From the
approximate diffeomorphism-invariant structure of the lattice model in this section, we
cannot avoid that the density of links of the length around a has to vary approximately as

“density”(ln(a))d ln(a) = P(ln(a) < ln “link length” < ln(a) + d ln(a))

= a−4d ln(a), (232)

where P(ln(a) < ln “link length” < ln(a) + d ln(a)) is the probablity of finding a random
link taken out of our “chaotic lattice” within the scale in the logartihm from ln(a) <

ln(lattice constant ) < ln(a) + d ln(a). A similar distribtion of the sizes of the plaquettes
found in the “chaotic lattice” of this section would also have a factor in the density going
as the fourth power of the inverse plaquette side size.

There is actually a divergence problem with this “chaotic lattice” as we speculate it: If
indeed this density distribution should be fully true, the probablity of finding links of a
specific order of magnitude would need to be zero, and all the contribtuion would come
from infinitely small links or infinitely long links. So, we have to imagine that there must
finally be some cut-offs for very long—not so important—and for very short links at least.

To have approximate diffeomorphism symmetry and thus also approximate-scale
invariance we should have at most a very slowly varying weight factor depending on
the logarithm of the link length that only very weakly breaks the scale symmetry in
the range of scales we consider relevant, meaning scales between the Planck scale and
macroscopic scales.

But if we shall be concrete, we would propose a Gaussian weighting as a function of
the logarithm of the link length. Near the peak in the Gaussian, such a Guassian weighting
is only very weakly breaking the scaling invariance, but for very large or very small scales,
the Gaussian distribution of the weighting in the logarithm is enormous. But somehow, we
can hope that for very small or very big link lengths, we have obtain the cut-off effectively,
and there is at any rate so little chance for the links to have that size that it does not matter
so much. But I think we need a cut-off in this style to be smooth for some “relevant”
region and then very drastically cut off in the scales of very small a values (i.e., high
energies), becuase if we did not have the strong cut-off somewhere, then attempting to play
simultaneously with the extra factor (1/a)4 for the standard model approximate SU(5)
value and another extra factor (1/a)6 for describing the general relativity Einstein–Hilbert
action would unavoidably lead to severe divergences.

We could say that the proposed Gaussian as a function of the logarithm is very robust
by being able to cut off at the ends large and big scales of any polynomial extra factor.
Then, in addition to in this means be able to cope with any extra power factor, it can be
claimed in the appropriate region of scales to be rather flat so that it is not at such scales
that drastically break scale symmetry.

With this very special “cut-off” assumption, it might feel necessary to make at least a
little bit of a justification for it: Once we preferably have had invariance under scalings in
size, it is suggested that we need a slowly varying weight as a function of the logarithm
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of the scale. We also like to have at the end a robust cut-off that can cut off anything
polynomial, and then an exponential of a smooth function

“weight” ∼ exp( f (ln(1/a)) (233)

is suggested. But then the Gaussian—which may not be so crucial exactly—is obtained
by Taylor expanding the function f around the maximum, which is of course the most
important region. One could as justification also say that the cut-off proposed represents a
weak coupling to the metric tensor of gravity.

Then, depending on whether you have a factor a−4 for the inverse fine structure
constants or a factor a−6 for the gravitational κ, the weighted maximum in the over-scale
logarithm intergal will have somewhat different central values, i.e., central logarithms
of scales.

These centers of the contributing distrbutions will be the effective lattice scales for
the different weightings. So we can indeed obtain the weighted µU with a−4 and the
gravitational scale being the central one for weight a−6 will become different by orders of
magnitude. If we just at first give a name to scale µ0, which one obtains with weight 1, then
in the Taylor expansion lowest-order approximation the drag shifting will be in the ratio
6:4 so that

ln(
EPl
µ0

) = 6/4 ln(
µU
µ0

). (234)

(whether one shall use the formal Planck constant just made by dimensional arguments
from the Newton constant G or some reduced one with an extra factor 8π extracted might
be discussed, but this may just be considered an uncertainty).

11.1. Averaging over Our “Chaotic Lattice”

When we have some part of the continuum Lagrangian like the 2π
α FµνFµνd4x, then the

contribution to it in the lattice theory—our chaotic one or just a usual Wilson lattice—comes
from individual plaquettes or whichever combination of the lattice ingredients that con-
tribute, but you therefore obtain a bigger contribution the more of these contributing objects
there are per hypercubic unit volume to the coefficient in the continuum Lagrangian density.

Actually, we can use simple dimensional arguments to see how the average of the
continuum Lagrangian coefficient comes about.

For the inverse fine structure constants, you simply obtain a contribution to the action
from each plaquette that is independent of its size (provided you let the β weighting the
plaquette in the action be the same regardless of the size of the plaquette, especially with
our philosophy that it should be critical a beta independent of the size suggested). So in
terms of an integral over the logarithm of the inverse size, say 1/a, of the laticce constant
or link length, we have

1/α ∝
∫
(1/a)4“cut off weight ”d ln(1/a) (235)

∝
∫
(1/a)3“cut off weight” d(1/a) (236)

∝ (1/a)4|at peak for (1/a)4 *weight (237)

But gravity, extra 1/a2:

κ ∝
∫
(1/a)4 ∗ (1/a)2“cut off weight”d ln(1/a) (238)

∝
∫
(1/a)5“cut off weight”d(1/a) (239)

∝ (1/a)6|at peak for (1/a)6*weight (240)
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So, we see that we predict from the “chaotic lattice” model with its approximate scale
invariance, through an essentially dimensional argument, that there shall be different
effective lattice scales for the Yang–Mills theories µU and for gravity. (But it is of course
dependent on our Gaussian in log form, which is in some sense a special cut-off, although it
is suggestive.)

Figure 4 illustrates how after having inserted a strong cut off implementing weight,
we obtain a distribtuion in the logarithm ln(1/a) of the scale with a broad peak, (which we
imagine is Gaussian, in this log, in the first approximation).

The main point is that the dominant or peak value for the distributions depends on the
exact distribution and that the one for gravity has an extra factor (1/a)2. For the standard
model gauge couplings, this peak scale is only of relevance via the renormalization group,
while for gravity, the very size of the (inverse) coupling κ (also) depends on the peak value
for the (logarithm of) 1/a.

It should be clarified that it is only because of some “phenomenologically” added
“cut-off weight” factor that we at all manage to obtain a peaking distribution instead of
some nonsencal divergent one just increasing monotomously. So, the picture we propose
is really dependent on there being some cut-off of this type, and this cut-off has to be
considered some sort of “new physics”, even though we escape from assuming many
details about it, except that it is smooth in the logarithm of the scale and sufficiently strong
to cause the convergence (preferably exponential in form but with a low coefficient on the
function, say f (ln(1/a)) = “small number” ∗ (ln(1/a)− const.)2, in the exponent).

Let us now suppose that by including this “new physics” weight, there is a scale that
we call µ0 for which the density of plaquettes or links counted per link-size volume is
maximal. Then if we do not put the factor (1/a)4 or (1/a)6 on as we did above, then the
peak of the so-called “weight” would be at µ0, or we should say ln(µ0), when thinking of
the plotting with ln(1/a) along the abscissa, as seen in Figure 4.

Now, in the approximation of the “weight” distribtuion being Gaussian in the loga-
rithmic scale and noticing that the extra factors (1/a)4 and (1/a)6 from the logarithmic
abscissa point of view are linear terms in the exponents 4 ln(1/a) and 6 ln(1/a), which will
shift the peak from ln(µ0) by amonts respectively proportional to 4 and 6, we see that

ln( EPl
µ0

)

ln( µU
µ0
)

=
6
4
=

3
2

(241)

11.2. On the Maximum Before the Powers in 1/a Factors

In seeking to guess what to take for the maximum density scale µ0, when no extra
factor like the (1/a)4 or (1/a)6, we should have in mind that the density of plaquettes in
a volume (in four space) of a size like the plaquette or link is indeed what we called the
number of “layers”, which again were identified with the number of families, or at least
this density of plaquettes in the range associated with a plaquette is proportional to the
number of layers.

Since we identify by our hypothesis the number of layers with the number of families,
we take the number of layers at different scales to reflect the number of families being
present as fermions with negligible mass at the various scales. That is to say that in the
range of scales of the quark and (charged) lepton masses, we have a region of scales where
as one goes down in energy, one loses more and more families. With such a philosophy of
only counting the effectively massless fermions at the scale, we may—using a table like
Table 4—extrapolate to a scale with a maximal number of families and take that as µ0;
we could take it close to the mass of the most massive quark or lepton, seen at the top.
Actually, as seen in Table 5, putting µ0 = mt as the top quark mass is close to satifying
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our prediction (241). Fitting to make our prediction (241) be exact would require a slightly
higher energy scale for µ0.

We consider this to be as close to a successful agreement for theoretically explaining
the “unification scale” µU of our approximate SU(5).

Table 4. Here, we list the charged quarks and leptons exposing their masses and the natural logarithms
of the latter with the purpose of very crudely using them to extrapolate to scale the µ0 at which the
number of that scale of effectively massless flavors would be maximal. This scale µ0 is presumably
very close to the top mass, since just above mt, all the quarks and leptons are effectively massless.
But how high above we shall expect the maximum for the purpose of our lattice remains speculative.

Name Mass ln (Mass/GeV) Sums

Quarks:

up 2.16 MeV −6.137
down 4.67 MeV −5.367

strange 93.4 MeV −2.371
charme 1.27 GeV 0.239
bottom 4.18 GeV 1.430

top 172.5 GeV 5.150
sum quraks −7.055 −1.176
“average” 309 MeV −1.176

electron 0.5109989461 MeV −7.055
muon 105.6583745 MeV −2.248

tau 1776.86 MeV 0.575
sum leptons −9.252 −3.084
“average” 45.78 MeV −3.084

av. weight 2:1 163 MeV −1.812

11.3. Ambiguity of Concept of Planck Energy Scale Reduced?

In reduced Planck units, the Planck energy 1.22 ∗ 1019 GeV from unreduced Planck
units is divided by

√
8π = 5.01325 so as to obtain

EPl red = 1.22 ∗ 1019 GeV/5.013225 (242)

= 2.4335 ∗ 1018 GeV (243)

Now, however, we must ask: What is it that gives us a scale in the sense of the studies
of the running couplings? The ratio of the reduced Planck energy 2.43 ∗ 1018 GeV relative
to the logarithmically averaged charged lepton masses maverage = 163 MeV is

2.43 ∗ 1018 GeV
0.163 GeV

= 1.4930 ∗ 1019 (244)

and has ln(
EPl red

mav.ch. f ermions
) = 44.15 (245)

Further:
mZ

mav.ch. f ermions
=

91.1876 GeV
163 MeV

(246)

= 559.4 (247)

and has ln(
MZ

mav.ch. f ermions
) = 6.327 (248)

So for “our” scale ln(
µU

mav.ch. f ermions
) = 27.05 + 6.327 (249)

= 33.38 (250)

Thus the ratio
ln( EPl red

mav.cg. f ermions
)

ln( µU
mav.ch. f ermions

)
=

44.15
33.38

(251)

= 1.323. (252)
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Had we not used the reduced Planck energy, but the usual one, we would have
obtained the logarithmic distance from the quark and charged lepton mass scale to the
Planck one up to ln(

√
8π) = 1.612 bigger so that it would go from the 44.15 value up to

44.15 + 1.612 = 45.76 value. Then, we would obtain the ratio changed to

ln(
Epl

mav.ch. f ermions
)

ln( µU
mav.ch. f ermions

)
=

44.15 + 1.61
33.38

(253)

=
45.76
33.38

(254)

= 1.371 (255)

In fact we think we can argue that this latter choice is not the correct one, because the 8π or
4π usually comes from the differnce in the coefficient to a Coulomb field and the charge
appearing in the field theory action. When we have just used the fermion masses without
any 4π-like correction, we associate it with the simple relation m = gy < ϕ >, while if we
would like the Yukawa field around the Higgs particle, we would get a 1/(4π) factor in.
So, the simple masses correspond we could say to the Yukawa coupling gy being used for
unit and not the alternative gy/(4π). So this means that

G ∼
gy

4π
(256)

(4πor8π)G ∼ gy and thus also m (257)

This argues for the reduced EPl red as the right one to use to not introduce unjustified
extra factors.

We could also have argued that the nice scheme of the standard model with its gauge
fields and three families is spoiled when already going down in energy at the Higgs scale
so that we should not come up with these logarithmically averaged fermion masses but just
use the Z0 mass MZ instead; then, our ratio would be a bit simpler to compute:

ln( EPl red
MZ

)

ln( µU
MZ

)
=

−1.612 + ln( 1.22 ∗ 1019 GeV
91.1876 GeV )

27.05
(258)

=
−1.612 + 39.43

27.05
(259)

= 1.398 (260)

11.4. Table of Combinations

The most important outcome of the fluctuating-size-of-links lattice we propose is that
it gives us the possibility of having a Planck scale very different from the “unification scale”
and still claim a “fundamental” lattice at the unification scale. But we would of course like
to see if the order of magnitudes are at all thinkable. We therefore in Figure 4 illustrate how
we imagine a smooth Gaussian distribution in the logarithm of the link length.

Description of Figure 4: Here, the number densities of links or of plaquettes in a
small length range of say a percent counted or weighted in different ways. The curve
“original” is for counting this number density as the number in 4-cube size proportional
to the link length range which is being counted. In the two other curves, the “original”
density has been weighted with, respectively, the inverse fourth power of the link length a
and the sixth power. For all three curves, it is the logarithm of the density, which is plotted,
and a Gaussian behavior as function of the logarithm of the inverse length of the link is
assumed as suggestive example. Plotted with logarithmic ordinate of course, a Gaussian
distribution looks like a downward pointing parabola, and the three curves are meant to be
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such downward pointing parbolas. It is trivial algebra to see that weighting the density
counted the “original” way by (1/a)4 and (1/a)6, the logarithms of which are linear in
ln(1/a), just leads to displacements of the p parbolas but leaves their shapes the same.
For the fine structure constants or, say, our approximate SU(5), it is the total number of
plaquettes equivalent to the weighting with (1/a)4 that counts, and the effective lattice
link size for our approximate SU(5) model should thus be the tip of the distribution with
the “extra factor a−4”. The abscissa of this tip is therefore marked by the symbol µU (with
a µ written by the curve progarm). Because the Einstein–Hilbert action has a dimension
2 different behaviors from just the counting plaquettes, it is the abscissa of the tip of the
parabola, which had an a−6 weighting relative to the “original”, which means the effective
lattice link size for the extraction of the Planck scale EPl energy. One shall note from figure
or the trivial algebra that by denoting the abscissa for the peak of the “original” by µ0, then
the pushing of this tip energy scale by the two different linear extra terms in the logarithm
by a−4 and a−6, respectively, makes displacements in the dominant (energy) scale by terms
in the logarithm be in the ration 4:6 = 2:3. This means the prediction

ln( µU
µ0
)

ln( EPl
µ0

)
=

4
6
=

2
3

. (261)

But we have to guess, e.g., µ0 = MZ or µ0 = mt to use this.

Figure 4. As function of the logarithm of the scale—given as energy being the inverse of the link
length 1/a—we give here the (1) density of links per links-length to the fourth, (2) this density
multiplied by a−4 that is the contribution to the Lagrangian dentity for Yang–Mills theories, (3) the
first density multiplied by a−6 that is the density of contribution to the Einstein–Hilbert Lagrangian
density. See also the text. In our approximation, we assume these densities to be Gaussian, and with
the logarithmic ordinate, these Gaussians are parabolas pointing downwards.

11.5. Variants of the Relation Planck Scale to “Our Unified”

In fact, the scales µ0 and also the “Planck scale” do not come in precisely from our
physics and are at best order of magnitude-wise determined. The µ0 scale should be where
the effective number of families is having it maximum, but is this effective number of
families of an order of three from the top mass and up to infinity? So, we only know
µ0 ≥ mt. And for the Planck scale, we shall in fact claim that it would be expected that
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the reduced Planck scale (including the often-associated 8π to G before using dimensional
arguments to construct an energy scale) is actually more reasonable to use.

11.6. How Well Does Our Relation Agree?

In Table 5, we combine our fit obtained value of “our unification scale” µU = 5.1 ∗ 1013

GeV with some reasonable suggestions for the two less well-defined scales µ0 and the
“Planck scale”.

Table 5. Table with µU = 5.1 ∗ 1013 GeV of ln “gravity scale”
ln “unified scale” =

ln( EPl or Plred
µ0

)

ln( µU
µ0

)
.

Name µ0 EPl EPl red
= 1.22 ∗ 1019 GeV = 2.34 ∗ 1018 GeV

Z0 mass MZ 1.4579 1.3968
= 91.1876 GeV

Av. fermion mass mav. f ermions
= 163 MeV 1.3711 1.3216

Top quark mt
= 172.52 GeV 1.4689 1.4079

Fitted µ0 µ0 best
= 24.231 TeV 1.5769 1.5 (exact)

11.7. Fitted µ0

Alternatively to just guessing good ideas of what our scale µ0 at which the density of
the size of the scale is maximal by counting its own link length as a unit, we can simply fit
what we would like this scale to be and then possibly build up a story of what it should be
of that order. Such a fitting of the scale µ0 would simply mean that we solve the equation
of our prediction, say

ln(
EPl red

µ0
) =

3
2
∗ ln(

µU
µ0

) (262)

formally giving:
1
2

ln(µ0) =
3
2

ln(µU)− ln(EPl red) (263)

= 31.563 ∗ 3/2 − 42.2967(using GeV) (264)

= 5.048 (265)

So: ln(µ0) = 2 ∗ 5.048 (in GeV used) (266)

= 10.095 (with GeV) (267)

⇒ µ0 = 24.23 TeV. (268)

The choice of µ0 that would make the prediction perfect can be as seen from the table
and our calculation of 24 TeV, which is higher than the top quark mass only by a factor
of 24.23

172.25 GeV = 7.11. Very speculatively, one could attempt to construct some fitting of the
density as a function of the scale fermions and still effectively find the massless scales
considered. Above the top mass of course, the effective number of massless fermions at
the scale correspond to three families, but below the top quark mass, there is a 1/3 or 1/4
value of a family missing, and one could claim that just below the top mass, we have some
3 and 1/4 or 3 and 1/3 families left and then crudely estimate in this spirit if one could
fit the (non-integer) number of families to a function reaching a bit above the top mass
a maximum of three families. Then, this maximum in a curve taken as a function of the
logartihm of the scale would have its maximum with value three families very close to our
desired µ0 = 24.23 TeV. (which is most welcome to make gravity scale match our model).

Such a very crude and somewhat arbitrary extrapolation might be this:
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First have in mind that the derivative of the number of “effectively massless” fermion
families as function of the logarithm of the scale is given by the “density of the fermions
with mass at that scale” = “density of species”.

On a logarithmic mass scale, there is a “density of species” of 1 over a scale dististance
ln mt

mb
= 6.02, meaning a density = 0.166 per e-factor. The center of this interval is the

geometric mean of 172.25 GeV and 4.180 GeV, which is 26.83 GeV. Next, take the inter-
val beteen the b-mass and the s-mass, which has length ln( 4.180

0.095 ) = 3.784 and contains
two species of quarks and three species fermions if we include the τ-lepton. This means
that for this region around

√
4.180 ∗ 0.095 GeV = 0.630 GeV, we have a density of quark

species of 2/3.784 = 0.5285. This density is 3.184 times bigger than in the interval between
t and b. If the deviation from the maximal number three of the number of families at the
scale being seen as massless were varying with the logarithm of the scale quadratically
counted out from some center value of the scale, then the slope of it would be in fact the
“density of species” and would vary linearly, and we should just extrapolate the density
to the point where it passes zero to find the maximum point for the formal number of
massless families. In logarithmic terms, the distance between the two points we considered
is ln( 26.83

0.630 ) = 3.75, and the linear extrapolation leads to zero for the slope point displaced
upward from the 26.83 by the exponential of 3.75/(3.184 − 1) = 1.717 that gives 149.4 GeV.
It is actually very close to the top mass. Now we see that if we take the difference between
the two possibilities we mention in the table for the Planck scale as an estimate of the
uncertainty of only the order of magnitude numbers, then this uncertainty for the ratio
given in the table is of the order 0.06. But actually, the best of the points for the top mass as
µ0 deviates only by 0.03 from the predicted 1.5, so we must say that we should take it as
agreement within expected uncertainty.

In any case, we have shown how a fluctuating lattice size can speculatively solve our
problem that the unification scale is quite different from the Planck energy scale in spite of
the fact that we want a common lattice to describe them both.

12. Conclusions
We have succeeded in constructing a lattice model picture in which we fit the three

fine structure constants in the standard model by three parameters, which have limited
accuracy predicted by various assumptions of the model. What we consider to be the
most important is that we suggest that the way that the smallest representation used as
the link variables for the standard model group—understood as the global group structure
S(U(2)× U(3)) in the O’Raifeartaigh sense [27] and not only the Lie algebra sense—in
fact links, this also could have been an SU(5) representation, and therefore, the model
obtains an approximate SU(5) symmetry when we impose the usual trace action. We then
took that this first approximation of SU(5) symmetry of the classically treated simple trace
action was broken by quantum fluctuations, which are of course only present for those
fluctuations and are true standard model group degrees of freedom, while the degrees of
freedom which are only in SU(5) but not in the Standard model group do not contribute
quantum corrections to correct the fine structure constants in our model, wherein they
do not exist. It is this quantum correction breaking of the SU(5) symmetry (the SU(5)
relation between the couplings is only valid in the classical approximation) that brings the
deviations from SU(5) GUT theories without help from additions as SUSY, and indeed,
we “predict” in our model not only ratios of the shifts caused by the quantum fluctuation
for the three different standard model inverse fine structure constants but also the absolute
size of the corrections. So even if we used the ratio of the corrections to fit the pseudo-
unified scale, or let us say “our unification scale” µU , then it is still a prediction that we
know the size of the correction from precise SU(5) unification. This prediction—it must be
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admitted—contains a factor of three being the number of families. Really, it is the number of
parallel lattices supposed to exist in nature—that is, three—so the connection to the number
of families is that there would be by assumption one layer (one of the Wilson lattices lying
in parallel) for each family of fermions (with each family being its own “layer”).

The success of this prediction of the deviation from GUT by quantum corrections
actually fits to the experiment-fitted fine structure constants at the MZ (Z0-mass scale)
within uncertainties! And this is quite remarkable, because these uncertainties for the
three inverse fine structure constants in the standard model are much smaller by a factor of
the order of 50 than the corrections due to the quantum fluctuations, as we predicted.

This is due to the high accuracy with which the fine structure constants are nowadays
known that we can find such good agreement compared to our quantum corrections,
because these corrections are indeed about 10 times smaller than the typical inverse fine
structure constant, which is of the order 40, while our correction is of the order of 1 times the
important “unit” for our corrections 3 ∗π/2 = 4.7124. In fact, we predict, e.g., the difference
between the inverse fine structure constants at “our unification scale” (µU) such as

1/α2(µu)− 1α3(µu) “predicted′′ 3 ∗ π

2
= 4.7124 (269)

turned out: 1/α2(µu)− 1α3(µu) “ f itted′′ 4.62. (270)

and the uncertainty in these inverse fine structure, e.g., the 1/α3 is ±0.05, so the deviation
of 0.09 is only 1.8 in s.d. (s.d. = standard deviations), and if we count two similar numbers,
the estimated uncertainty would be ±

√
2 ∗ 0.05 = ±0.07 and we would have 1.3 s.d. Our

deviation and uncertainty are of the order of a factor 52 smaller than the quantity of
deviation 4.62, which we found!

It would in itself be interesting just to leave the two further parameters, namely, the
unified coupling for the SU(5) and the scale of this approximate unification, because we
would even then have an interesting relation between the fine structure constants.

12.1. The Further Two Parameters

But we also have formally manged to find assumptions so that these two further
parameters are fitted within the now somewhat smaller accuracies:

• The Unified Coupling as Critical Coupling
We managed to claim that the unified coupling is indeed the critical coupling for
the non-existent SU(5) in our model. So in a way, there is the little worry with this
prediction that for the SU(5) lattice gauge thoery, we use the critical coupling, but this
SU(5) theory is not truly present in our model. One should possibly replace the SU(5)
critical couplng by one with a modified SU(5) and the degrees of freedom cut down
to those of the standard model—like it is in our model—but such a correction would
make the critical coupling be stronger (i.e., lower 1/α5 crit), and that would make the
fitting with this critical coupling being the unified one a worse prediction. So after
such an improvement, our unified coupling prediction would not work so well if this
was all we did. But if one starts from a standard model group critical coupling, then
one should not make the quantum corrections as if it were a full SU(5) value. When
we also correct the quantum correction for the standard model group, then it actually
seems to agree better.

• Relation of the Unified Scale to the Planck Scale
Our story behind our formality within the errors relating our model to a unified
scale—at which our corrections are to be applied—to the Planck scale may be a bit
too much derived with guesswork to be truly convincing. Thus, this part of the work
should, rather than being an attempt to find a third predicted parameter, namely, the
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unification scale, be taken as a needed story for rescuing our model against a severe
problem: Our unification scale µU should like the lattice scale be the fundamental scale
in our model. But that is not so good, because this “unification energy scale” is much
lower than the presumably fundamental scale of gravity—the Planck energy scale.

12.2. Problem with Planck Scale in Our Model

In the references [28,29], we have made progress on the fluctuating lattice, which is
meant to help with the problem of unified and Planck scales not matching.

The problem with the Planck scale comes about like this:
It is not surprising that this unified scale turns out, like in all GUT theories, to be

appreciably smaller than the Planck scale, and in our theory, it is even compared to usual
unification to be a bit small:

µU = 5.13 ∗ 1013 GeV. (271)

However, the real problem is that we suggest to have a lattice that is taken seriously
to exist in nature, and we would seemingly loose ordinary continuum manifold physics
for smaller distances than 1/µU , and the seemingly approximate well-working generel
relativity taken classically at such scales would already be considered as a quantum gravity;
in addition, we would find it a priori non-attractive to have several (two) fundamental
scales (µU and the Planck energy scale).

12.3. Gravity Has to Be “Weak” on Fundamental Scale

This may bring us some message about gravity: We have to invent a story that gravity
is for some reason very weak compared to the fundamental scale expectation. Our de-
scribed model has as a philosophy that the unified scale—which remains low compared
to the Planck scale in energy—is the “fundamental scale”! You might speculatively think
that the gµν (with upper indices) has appeared as a kind of spontaneous breaking of, e.g.,
diffeomorphism symmetry, and thus has a chance to be small (often one finds relatively
small spontaneously breaking fields; otherwise, it would not be so common with low
temperature superconductivity that it is a big sensation to find high temperature supercon-
ductivity). If this gµν is small compared the our fundamental lattice, then compared to this
lattice, the gµν with lower indices will be large, and thus, the length of a lattice link would
be big. This bigness would be big compared to the Planck constant, and so obtaining gµν

by some spontaneous breaking story would help bring about the lack of coincidence of our
fundamental scale with the Planck one [39].

Although this idea of having gµν represent a spontaneous symmetry breakdown and
be “small” for that reason seems attractive to me, we shall in this article rather seek to solve
the problem with the Planck scale being different from “our unified one” µU by the idea of
fluctuating the lattice link size described in next subsection.

12.4. Fluctuating Lattice Scale

A priori, it seems somewhat incongruent that our theory taken seriously wants a
fundamental scale with a lattice already at the approximate unification scale 5 ∗ 1013 GeV,
while we a priori would expect the fundamenntal scale at the Planck scale, especially for
the gravity itself, when we even seek to uphold a principle of critical coupling constants.
If a lattice gravity should have in one sense or another a critical coupling, then the lattice
should roughly be of the Planck scale lattice constant. The speculation solution that almost
has to be needed is that of the a scale fluctuating lattice like this or something similar.

At around the “unifying scale”, the gravitational fields must behave classically to a
very good approximation, except that a gauge degree of freedom would tend to fluctuate
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infinitely (actually Ninomiya Förster and myself [33] even would let such strong quantum
fluctuation be the reason for the exact gauge symmetry) because there is a lack of terms
in the Lagrangian sense that can keep the gauge to a fixed one, except to by hand put in
gauge fixing terms, but they are of course not physical.

This then means that we must think in a gravity containing theory of the lattice
fluctuating being dense with a small lattice constant somewhere in the Riemann space–
time and large somewhere else. In that case, we must imagine that the “observed” lattice
scale (for our model, the 5.13 ∗ 1013 GeV) will be some appropriate average over a highly
fluctuating lattice constant size. We would expect the local lattice scale to fluctuate with a
distribution that would be an approximately flat distribution in the logarithm of the lattice
constant, because the diffeomorphism group contains scalings, and the Haar measure
for a pure scaling symmetry subgroup would suggest smooth logarithm distribtution.
But now, while the averaging of the Yang–Mills Lagrangiam over a distribution of scales
with a smooth distribution in the logarithm would be weighted in a slowly varying way,
the gravity action of the Einstein–Hilbert one varies with a power law with the scale of
the lattice if you, as we had success with, assumed a critial coupling. This would then lead
to the average size of the lattice link or plaquette structures contributing dominantly to
gravity action that would be much smaller than the ones contributing to the Yang–Mills
fields action.

This could suggest a mechanism for the seeming fundamental scale (=lattice constant
size scale) for gravity that would be much higher in energy than for the Yang–Mills theories.

A fluctuating lattice might provide a natural explanation for the much smaller Planck
length than the length scale at the Yang–Mill.

12.5. Baryon Non-Conservation?

Our theory is in danger of inheriting baryon decay in analogy to the usual SU(5)
grand unification theories, but at least the gauge particles in the SU(5) theory are not
in one of the standard model groups that are also supposed not to exist in our scheme,
so the obvious diagram with an exchange of such an SU(5) gauge particle is missing in
our model. Actually, some four fermion interactions are in our model that could give the
baryon violation, but such an interaction would have a dimension similar to that of the
Einstein–Hilbert action, and thus, the interaction of such a type violating baryon number
conservation would be suppressed as a term in a Lagrangian sense of high order with
Planck energy as the energy unit. At least that is what happens in our model just using
our cut-off scheme as we did with gravity (fluctuating lattice scale). Whether our Gaussian
in log weighting can be assumed sufficiently consistently to suppress the baryon number
violation to cope with the bounds on proton decay may deserve study in a later work,
but at first it looks like it works and gives sufficient suppression.

When we in this way have no other breaking of the baryon number than via the
instantons present in the standard model, this means that our model points toward baryon
assymetry that should be caused via lepton assymetry. We only obtain the instant baryon
number variation to wash away any previous baryon number assymetry unless there is
lepton number assymmetry. But this pointing to the baryon assymetry coming from lepton
assymetry is not an absolute must, because the baryon number conservation is still only an
accidental symmetry in our model; we only got rid of the true SU (5) so to reconcile the
violation of baryon conservation.

That we have a seesaw scale much lower than the Planck scale may also encourage us
that even baryon violation could exist too if it could help the assymetry without making
decays. But we do favor lepton assymetry as the mechanism.
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12.6. Is Approximate Scale Invariance a Dirty Assumption?

Of course, when we claim what we in this fluctuating lattice model claim—that
we have at least approximate scale invariance—this symmetry is nevertheless broken so
much that the size distribution of the numbers of lattice links, or of lattice plaquettes,
has a maximum at some finite scales—even in order of magnitude—depending on the
exact weighting, which sounds a bit dangerous and can only be true approximately. The
means that if you include some extra power of the (inverse) link length (1/a)n, it can
shift the maximum in the size distribution from, e.g., “our unifying scale” to the Planck
scale. It also involves some physical effect or principle that performs the necessary very
strong suppression of links or plaquettes being stronger and stronger the smaller the link
or plaquette.

At first, it looks like breaking reparametrization invariance in general relativity, which
does not sound nice. But we must postpone this problem having now just admitted
that there is a problem, that would need more detailed modeling, and most likely, such
improved models would be too complicated to be believable.

12.7. Our Progress Compared to Our Earlier Works

One way of looking at the progress of the present work is to think of it as an updated
version of the work by Don Bennett and myself [21], which seeks to obtain all three fine
structure constants from criticality at the Planck scale and the anti-GUT type of model with
the gauge group being a cross-product of three isomorphic standard model groups. But in
the old works, we had to use extra assumptions regarding the U(1) fine structure constant.
In the present article, this U(1) value has been replaced by the approximate SU(5) value so
that it seems more natura, and not so specially just making some story for U(1) alone.

12.8. Outlook
12.8.1. The Dream of Exact Formula for αEM

Of course, behind such fittings of fine structure constants is the holy grail dream of find-
ing the mathematical formula for the (electrodynamics) fine structure constant, because that
is so well known—with many decimals—that it contains so much infromation [40] that
one could hope to justify a theory to be correct if it fitted the fine structure constant in a
sufficiently simple way (with the many decimals). A work like the present would suggest
restrictions on the form of the formula for the fine structure constant and thereby make a bit
more complicated formula be acceptable as convincing provided it were of the right form.

But to make a formula without from phenomenology included expressions possible,
we would of course need to have the Higgs and the fermion masses connected, and for the
time being, the usual philosophy is that the Higgs scale is a pure mystery and that it needs
a solution to the hierarchy problem to be possible at all. Some different philosophies, e.g., a
coupling of the weak scale or Higgs scale to the development of the renorm group (e.g., the
top quark mass) are needed; one example is our [41,42] paper applying the complex action
theory from [43].

12.8.2. Could the Seesaw Scale Be Identified with Our Unifcation Scale?

It is characteristic of the our unified scale µU for the only approximate that it is a bit to
the low side in energy to even unified scales in other models (especially if they are models
with SUSY), and furthermore, it is the spirit of our model that our unification scale is a
lattice scale—or some dominating average in a fluctuating lattice link size—so it is only
5.13 ∗ 1013 GeV. So, this puts us in the direction of asking if the seesaw mass scale could be
the same as our unification scale.
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The neutrino mass square differences are for the atmospheric neutrino mass square
difference and the solar one

∆m2
A ≈ 1.4 ∗ 10−3 eV2 to 3.3 ∗ 10−3 eV2 (272)

∆m2
sol ≈ 7.3 ∗ 10−5 eV2 to 9.1 ∗ 10−5 eV2 (273)

indicating masses of the order of magnitudes (4 to 5) ∗ 10−2 eV and 3 ∗ 10−3 eV. With a
typical charged fermion mass in the standard model being of a mass of 1 GeV, you would
expect by dimensional arguments a seesaw neutrino mass of the order

“see saw scale” ≈ (1 GeV)2

10−2 eV
(274)

= 1011 GeV (275)

Not so far from ourµU = 5.13 ∗ 1013 GeV. (276)

If we take it that the spread in the charged fermion masses from the electron mass
0.5 ∗ 10−3 GeV and if the top quark 174 GeV implies that our typical charged fermion
mass shall be considered to have 2 to 3 orders of magnitude of uncertaity, implying by the
squaring in going to the seesaw mass a doubling in the numbers of orders of magnitude,
then the seesaw scale is

“see saw scale” ≈ 1011GeV ∗ 10±5 (277)

having inside errors µU = 5.13 ∗ 1013 GeV. (278)

So if we believe in a lattice already at the 5.13 ∗ 1013 GeV, we can look for replacement of
the seesaw neutrinos by some lattice effects.

12.8.3. Small Hierarchy by the Charges from GSMG × · · · × GSMG

If our model were right, one would look to understand the charged fermion masses
along the lines of our old work with Yasutaka Takanishi and Colin Froggatt [14], while
the neutrino oscillations would be related to the lattice of effective lattice scale only by
5.13 ∗ 1013 GeV.

12.8.4. Modification of Accurate Standard Model Results

The idea of the fluctuating lattice put forward above and the hypothesis that the
lattice truly exists means that ideal standard model perturbative calculations studied with
high accuracy, such as the famous anomalous magnetic moment calculations, would be
modified, because they should be performed with truly exisitng lattices, which only have
finite link lengths. In fact, in the philosophy of the fluctuating lattice stricly speaking is
the central value for the link distribution about the top mass or better defined as 104 GeV,
which means that corrections to ideal perturbation theory would be much closer than if the
most fundamental scale had been the Planck scale.

Also, it would be very great of course if one could experimentally somehow explore
the non-locality due to relatively seldom-found lattice links of exceptionally large lengths.
Indeed, such effects also should be much more accesible if the present fluctuating lattice
was true compared to say if the Planck scale were the fundamental scale.
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Note
1 O Raifeartaigh points out that by choosing the group among the set of groups with the given Lie algebra, which is “smallest” and

thus has the fewest representations but still has the representations used by the fermions and the Higgs(es), one can claim that one
selected the gauge group for the used theory with its fermions. So in a sense, it can be given in this way to the standard model
group, and it turns out to be S(U(2)× U(3)), meaning the group of 5 × 5 matrices is composed along (and around) the diagonal
U(2) and a U(3), and then we impose the condition—symbolized by the “S”—of the determinat of the whole 5 × 5 matrix,
wherein det = 1 gets selected as having the smallest faithfull representation among all groups.
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