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Gauge-Invariant Perturbation Theory on the Schwarzschild
Background Spacetime Part I: Formulation and
Odd-Mode Perturbations
Kouji Nakamura

Gravitational-Wave Science Project, National Astronomical Observatory of Japan, 2-21-1 Osawa,
Mitaka 181-8588, Tokyo, Japan; dr.kouji.nakamura@gmail.com

Abstract: This article is Part I of our series of full papers on a gauge-invariant “linear” per-
turbation theory on the Schwarzschild background spacetime which was briefly reported
in our short papers by the present author in 2021. We first review our general framework
of the gauge-invariant perturbation theory, which can be easily extended to the “higher-
order” perturbation theory. When we apply this general framework to perturbations on
the Schwarzschild background spacetime, gauge-invariant treatments of l = 0, 1 mode
perturbations are required. On the other hand, in the current consensus on the perturba-
tions of the Schwarzschild spacetime, gauge-invariant treatments for l = 0, 1 modes are
difficult if we keep the reconstruction of the original metric perturbations in our mind. Due
to this situation, we propose a strategy of a gauge-invariant treatment of l = 0, 1 mode
perturbations through the decomposition of the metric perturbations by singular harmonic
functions at once and the regularization of these singularities through the imposition of
the boundary conditions to the Einstein equations. Following this proposal, we derive
the linearized Einstein equations for any modes of l ≥ 0 in a gauge-invariant manner. We
discuss the solutions to the odd-mode perturbation equations in the linearized Einstein
equations and show that these perturbations include the Kerr parameter perturbation in
these odd-mode perturbations, which is physically reasonable. In the Part II and Part III
papers of this series of papers, we will show that the even-mode solutions to the linearized
Einstein equations obtained through our proposal are also physically reasonable. Then, we
conclude that our proposal of a gauge-invariant treatment for l = 0, 1-mode perturbations
is also physically reasonable.

Keywords: black hole; Schwarzschild spacetime; perturbation theory; gauge-invariance

1. Introduction
The study of gravitational-wave astronomy began at the first event GW150914 of

the direct observation of gravitational waves in 2015 [1]. This event also marked the
beginning of multi-messenger astronomy including gravitational waves [2]. We are now at
the stage where we can directly measure gravitational waves and we can carry out scientific
research through these gravitational-wave events. We can also expect that one future
direction of gravitational-wave astronomy is the development as a “precise science” by the
detailed studies of source science, the tests of general relativity, and the developments of the
global network of gravitational-wave detectors [2–5]. In addition to the current network of
ground-based detectors, as future ground-based gravitational-wave detectors, the projects
of Einstein Telescope [6] and Cosmic Explorer [7] are also progressing to achieve more
sensitive detection.
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In addition to these ground-based detectors, some projects of space gravitational-
wave antenna are also progressing [8–11]. Among them, the Extreme Mass Ratio Inspiral
(EMRI), which is a source of gravitational waves from the motion of a stellar mass object
around a supermassive black hole, is a promising target of the Laser Interferometer Space
Antenna [8]. To describe the gravitational wave from EMRIs, black hole perturbations are
used [12]. Furthermore, the sophistication of higher-order black hole perturbation theories
is required to support these gravitational-wave physics as a precise science. Very recently,
the backaction effect of mass and angular momentum accretion on the Schwarzschild
black hole due to the Blandford–Znajek process [13] was also discussed [14], which are
higher-order effects of two-parameter perturbations [15,16]. The motivation of this paper is
in the theoretical sophistication of black hole perturbation theories toward higher-order
perturbations for very wide physical situations including the topic in ref. [14].

In the current situation of black hole perturbation theories, we may say that further
sophistication is possible even in perturbation theories on the Schwarzschild background
spacetime, although realistic black holes have their angular momentum and we have
to consider the perturbation theory of a Kerr black hole for direct applications to EMRI.
From the pioneering works by Regge and Wheeler [17] and Zerilli [18,19], there have been
many studies on the perturbations in the Schwarzschild background spacetime [20–32].
They usually decompose the perturbations on the Schwarzschild spacetime using the
spherical harmonics Ylm and classify them into odd- and even-modes based on their parity,
because the Schwarzschild spacetime has the spherical symmetry. However, in the current
situations, l = 0 and l = 1 modes should be separately treated through a gauge-fixing
procedure [29–32]. From the arguments in refs. [29–32], it is the current consensus that the
constructions of “gauge-invariant” variables for l = 0, 1 mode perturbations are difficult if
we keep the reconstruction of the original metric perturbations in our mind.

On the other hand, toward unambiguous sophisticated “nonlinear” general-relativistic
perturbation theories, we have been developing the general formulation of a higher-order
gauge-invariant perturbation theory on a generic background spacetime [15,16,33–36] and
have been applying it to cosmological perturbations [37–39]. We review our framework of
the linear gauge-invariant perturbation theory on generic background spacetime [15,16]
in Section 2 of this paper. This framework can be easily extended to “higher-order” per-
turbations, since the reconstruction of the original metric is trivial. This framework starts
from the distinction of the notions of the first- and the second-kind gauges. These two
notions of gauges in perturbations are different from each other and this distinction of
the first- and second-kind gauges is quite important to understand the development of
perturbation theory in this series of our papers. We point out the fact that we often use the
first-kind gauge transformation when we predict or interpret the measurement results of
observations or experiments. Since the actual measurement results include the information
of the detector directivity and the relative motion of the detector and observational targets,
we exclude these information using the first-kind gauge transformation when we predict or
interpret the experimental results. On the other hand, the second-kind gauge has nothing
to do with the nature of physical spacetime and the second-kind gauge should be regarded
as an unphysical mode. More details are described in Section 2.

The general framework of gauge-invariant perturbation theories developed in
refs. [15,16,33–36] is based on a conjecture (Conjecture 1 below), which roughly states
that “we already know the procedure to find gauge-invariant variables for linear-order met-
ric perturbations”. Throughout this series of papers and in refs. [15,16,33–36], we use the
terminology “gauge-invariant variables” as the variables in which the gauge-degree of free-
dom of the “second kind” is completely excluded, if there is no possibility of any confusion.
Owing to Conjecture 1, the reconstruction of the original metric from the gauge-invariant
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variables is trivial. A proof of Conjecture 1 was already discussed in refs. [33–35]. In this
proof, we had to introduce some Green functions for some elliptic derivative operators and
ignored the kernel modes of these elliptic derivative operators due to a technical reason. We
called these kernel modes “zero modes”, and the treatment of these zero modes remained
unclear. We also called the problem to find a gauge-invariant treatment of these zero modes
as the “zero-mode problem”. This zero-mode problem is a serious problem to be resolved
when we develop higher-order gauge-invariant perturbation theory, since mode-coupling
effects including the above “zero modes” occur in higher-order perturbations.

In the case of the perturbations on the Schwarzschild background spacetime, as we
will see in Section 3, these “zero modes” correspond to the above l = 0, 1 modes. The
above conventional special treatments of l = 0, 1 modes in many studies correspond to a
partial gauge-fixing procedure. If arguments are completed within the linear perturbations
on a single patch of the spacetime, this partial gauge-fixing procedure might be harmless,
because there is no mode-coupling in the linear perturbation level. However, from the
viewpoint of the application of our “higher-order” perturbation theory, the above special
treatments of these modes become an obstacle when we develop nonlinear perturbation
theory because the mode-couplings owing to the nonlinear effects make the couplings
between linear-order l = 0, 1 modes and other modes, as mentioned above. Actually, higher-
order l = 0, 1 modes are also created due to the mode-coupling owing to the nonlinear
effects of Einstein equations [40]. Due to this mode-coupling, the special treatments by
gauge-fixing for the linear l = 0, 1 modes in many studies make the “gauge covariance”
of the higher-order perturbations unclear. Moreover, in the EMRI case, we separate the
whole spacetime of the system into some regions and derive the perturbative solutions
including l = 0, 1 mode in each region at once, then we construct global solutions through
some matching method such as the matched asymptotic expansion. To exclude “gauge-
ambiguity” in these matching, we have to carry out these matching procedure under the
“same gauge”. To guarantee that the matching procedure is under “same gauge”, it is
convenient to discuss the perturbation theory in which “gauge covariance” is manifest.
Since this “gauge covariance” is already manifest for l ≥ 2 modes of the perturbations on
the Schwarzschild spacetime in the gauge-invariant perturbation theory, it is natural to
hope that there is a gauge-invariant treatment for l = 0, 1-modes perturbations in spite of
the current consensus mentioned above. Thus, the finding of a gauge-invariant treatment
of l = 0, 1 modes in the perturbations on Schwarzschild background spacetime is not only
a resolution of the above technical zero-mode problem in a specific background spacetime
but also is quite physically crucial in the arguments of EMRI.

This paper is Part I of our series of full papers on the application of our gauge-invariant
perturbation theory on generic background spacetime to that on the Schwarzschild back-
ground spacetime, which is already reported in our short papers [41,42]. This series of
papers is the full paper version of our short paper [41]. In this Part I paper, we propose a
gauge-invariant treatment of the l = 0, 1-mode perturbations on the Schwarzschild back-
ground spacetime and show that Conjecture 1 is true even for these modes if we accept our
proposal. If we consider the mode decompositions for l = 0, 1 modes by the spherical har-
monic functions Ylm, the vector and tensor harmonics vanish for l = 0 mode and the tensor
harmonics vanish for l = 1 mode. This is the essential reason why we have to treat l = 0, 1
modes separately in the conventional approaches as explained in Section 3.1. The mode
decomposition based on the conventional spherical harmonic function Ylm corresponds to
the imposition of the boundary condition due to the restriction of the functions to L2-space
at the starting point. Due to this regular boundary condition at the starting point, vector
and tensor harmonics for l = 0 modes and tensor harmonics for l = 1 mode vanishes.
This requires the special treatments of l = 0, 1 modes in the conventional approaches. In
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Section 4, we also explained the explicit reason for the difficulties of the construction of
gauge-invariant variables for l = 0, 1 modes through the gauge-transformation rules of the
metric perturbations.

In contrast with these conventional approaches, in our proposal, we introduce singular
harmonic functions at once to prepare the non-vanishing vector and tensor harmonics for
l = 0, 1 mode. Owing to this introduction of the singular harmonic functions, we can treat
l = 0, 1 modes of perturbations in the similar manner to the treatment of l ≥ 2 modes
in which the gauge-degree-of-freedom of the second kind is completely excluded. We
can also construct the gauge-invariant variables for l = 0, 1-mode perturbations in the
similar manner to those of l ≥ 2-modes perturbations in which the reconstruction of the
original metric from the gauge-invariant variables is trivial. This unified construction of
gauge-invariant variables including l = 0, 1 modes enable us to define gauge-invariant
variables for perturbations of any tensor fields of any order in our higher-order gauge-
invariant perturbation theory [15,16,33–39], in which mode-couplings between l = 0, 1
modes and the other modes are naturally included. After the derivation of the linear-order
Einstein equations in terms of these gauge-invariant variables, we eliminate the introduced
singular behavior of harmonics by imposing the regularity of perturbations as the boundary
conditions. This is the main scenario of our proposal in this paper.

In this paper, we show that we can resolve the above “zero-mode problem” if we
accept the above proposal. This resolution will be an important step of the development of
the higher-order gauge-invariant perturbation theory on the Schwarzschild background
spacetime which includes the analyses of EMRI. In addition to the perturbation theory on
a specific background spacetime, this resolution will become a clue to the perturbation
theory on a generic background spacetime. We note that we do not intend to insist that
this proposal is the unique resolution of the above “zero-mode problem”. However,
in the series of our papers, we derive the solutions to the linearized Einstein equation
through our proposal and point out that these solutions are physically reasonable. In
this Part I paper, we derive the odd-mode perturbative solutions which are physically
reasonable. In the Part II paper [43], we will discuss the strategy to solve the even-mode
perturbations following our Proposal 1 and derive their l = 0, 1-mode solutions. Then, we
show these solutions are physically reasonable. Furthermore, in the Part III paper [44], we
will discuss the realization of two exact solutions in terms of the linear perturbations on
the Schwarzschild background spacetime. Owing to these supports, we may say that our
proposal in this paper is also physically reasonable. A brief discussion on the extension to
the higher-order perturbations are already given in ref. [42].

The organization of this Part I paper is as follows. In Section 2, we briefly review
the framework of the general-relativistic gauge-invariant perturbation theory within the
linear perturbation theory, as mentioned above. This framework can be easily extended to
higher-order perturbations [15,16,33–36], since the reconstruction of the original metric is
trivial through the Conjecture 1. In this Section 2, we emphasize that the distinction of the
first-kind gauge and the second-kind gauge is an important premise of our gauge-invariant
perturbation theory. In Section 3, we explain the situation in many studies why the special
treatments of l = 0, 1 modes are required. Then, we propose a strategy for gauge-invariant
treatments of l = 0, 1 modes. In Section 4, we construct gauge-invariant variables including
l = 0, 1 modes through the proposal described in Section 3. This is a proof of Conjecture 1 for
all modes of perturbations, l ≥ 0, on the background spacetimes with spherical symmetry.
In Section 5, we derive the Einstein equations for any mode perturbations following
the proposal in Section 3. In Section 6, we show the strategy to solve the odd-mode
perturbations and derive the explicit solutions for l = 0, 1 mode perturbations through
the component treatment of gauge-invariant variables in the Einstein equations derived
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in Section 5. The final Section 7 is devoted to the summary and discussions within this
Part I paper.

Throughout this paper, we use the unit G = c = 1, where G is Newton’s constant of
gravitation, and c is the velocity of light.

2. Review of Our General-Relativistic Gauge-Invariant Perturbation Theory
In this section, we briefly review our general framework of the gauge-invariant pertur-

bation theory [15,16]. Although the main purpose of the framework of the gauge-invariant
perturbation theory developed in refs. [15,16] is the extension to the higher-order perturba-
tion theory, in this review, we concentrate only on the linear perturbations. This is because
we treat only the linear perturbations within this paper. Since we want to explain the
gauge-invariant perturbation theory in general relativity, first of all, we have to explain the
notions of “gauges” in general relativity [39].

General relativity is a theory with general covariance. This general covariance intu-
itively states that there is no preferred coordinate system in nature. This general covariance
also introduces the notion of “gauge” in the theory. In the theory with general covariance,
these “gauges” give rise to the unphysical degree of freedom and we have to fix the “gauges”
or to extract some invariant quantities to obtain physical results. Therefore, treatments of
“gauges” are crucial in general relativity and this situation becomes more delicate in general
relativistic perturbation theories.

In 1964, Sachs [45] pointed out that there are two kinds of “gauges” in general relativity.
Sachs called these two “gauges” as the first- and the second-kind gauges, respectively. Here,
we review these concepts of “gauge”, which are different from each other. Furthermore,
the distinction of these “gauges” is important to understand the results of this paper and
papers [43,44].

In Section 2.1, we first explain the notion of the first kind gauge. Second, we explain
the notion of the second-kind gauge in Section 2.2. We expect that the reader can distinguish
these two different notions of gauges in general relativity through these explanations. Then,
we review our general framework of the general-relativistic gauge-invariant perturbation
theory on generic background spacetimes in Section 2.3. We have to emphasize that the
aim of our general formulation of general-relativistic gauge-invariant perturbation theory
is to completely exclude the degree of freedom of the second-kind gauge.

2.1. First Kind Gauge

“The first kind gauge” is a coordinate system on a single manifold M . This first kind
gauge is not the “gauge” of our “gauge-invariant perturbation theory”. However, we have
to explain this first kind gauge to distinguish the notions of the first-kind gauge and the
second-kind gauge, as emphasized above.

In standard textbooks of manifolds (for example, see [46]), the following property of
a manifold is written, “On a manifold, we can always introduce a coordinate system as a
diffeomorphism ψα from an open set Oα ⊂ M to an open set ψα(Oα) ⊂ Rn (n = dim M ).”
This diffeomorphism ψα, i.e., coordinate system of the open set Oα, is called “gauge choice”
(of the first kind). If we consider another open set in Oβ ⊂ M , we have another gauge choice
ψβ : Oβ 7→ ψβ(Oβ) ⊂ Rn for Oβ. If these two open sets Oα and Oβ have the intersection
Oα ∩Oβ ̸= ∅, we can consider the diffeomorphism ψβ ◦ψ−1

α . This diffeomorphism ψβ ◦ψ−1
α

is just a coordinate transformation ψα(Oα ∩ Oβ) ⊂ Rn 7→ ψβ(Oα ∩ Oβ) ⊂ Rn, which is
called “gauge transformation” (of the first kind) in general relativity. These are depicted in
Figure 1 which is a famous figure in many textbooks of the theory of manifolds.
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Figure 1. The first kind gauge is a coordinate system of a single manifold. The shaded regions are
the intersection Oα ∩ Oβ and its images though the diffeomorphism ψα and ψβ, respectively. The
points r and s and its coordinates {xµ(s), xµ(r)} and {yµ(s), yµ(r)} are used in the explanations at
the paragraph of Equation (1).

According to the theory of manifolds, coordinate systems are not on a manifold
themselves, but we can always introduce a coordinate system as a map from an open set on
the manifold M to an open set of Rn. Furthermore, we may choose a different coordinate
system through the different map from an open set in the manifold M to an open set of
Rn. We can always change the coordinate system as we want. This is a realization of the
statement of the general covariance that “there is no preferred coordinate system in nature”.
For this reason, general covariance in general relativity is automatically included in the
premise that our spacetime is regarded as a single manifold. The first kind gauge does
arise due to this general covariance. The gauge issue of the first kind is usually represented
by the question, “Which coordinate system is convenient?” The answer to this question
depends on the problem which we are addressing, i.e., what we want to clarify. In some
cases, this gauge issue of the first kind is important. On the other hand, in many cases, this
gauge issue becomes harmless if we apply a covariant theory on the manifold.

We also note the fact that we often use this first-kind gauge transformation when we
predict or interpret the measurement results in observations and experiments as mentioned
in Section 1. In general, directly measured results in observations or experiments include
the information of the detector directivity and the relative motion of the detector and
observational targets. When we predict or interpret the results of these directly-measured
results, we have to take into account the information of our detectors.

One typical example is the dipole mode in the fluctuations of the cosmic microwave
background (CMB). It is well-known that the dipole mode of CMB is actually detected by the
detectors. Usually, this detected dipole mode in CMB is interpreted as the relative motion
of the detector against the last scattering surface of the universe. Then, this detected dipole
mode is regarded as unimportant detected data when we want to discuss the primordial
fluctuations in CMB which are generated in the early history of universe. Regarding
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the reason of the detection of these dipole fluctuations in CMB is the proper motion of
the detector against the last scattering surface; we use the coordinate transformation to
eliminate our relative motion of the detector against the last scattering surface so that the
dipole fluctuations disappear [47]. This coordinate transformation is a typical example of
the first-kind gauge transformation. We can also give the inclination of rotating star or
a binary system and the antenna pattern function of interferometric gravitational-wave
detectors as examples of the first-kind gauges.

The final example of the first-kind gauge transformation is the most important one for
general relativistic perturbation theories. This is the identification of the actual replacement
of points within the single manifold M with an infinitesimal coordinate transformation [48].
To explain this, we consider the replacement of a points r ∈ M to the other point s ∈ M in a
neighborhood r. This replacement r 7→ s is represented by a diffeomorphism Ψλ : M → M

as s = Ψλ(r), where λ is an infinitesimal parameter satisfying Ψλ=0(r) = r. The pullback
Ψ∗

λ of any tensor field Q on M is given by

Q(s) = (Ψ∗
λQ)(r) = Q(r) + λ £ξ Q

∣∣
λ=0 + O(λ2), (1)

where ξa is the generator of the pull-back Ψ∗
λ and a vector field on the tangent space of M .

We consider this expression (1) by a coordinate transformation. To see this, we introduce
the coordinate system {Oα, ψα} on M as above and assume that r, s ∈ Oα ∩ Oβ ̸= ∅ as in
Figure 1. Here, we denote the coordinates ψα : Oα ⊂ M 7→ Rn({xµ}) and ψβ : Oβ ⊂ M

7→ Rn({yµ}). Through these coordinate systems, we can assign the coordinate labels
(xµ(r), xµ(s)) ∈Rn({xµ}) and (yµ(r), yµ(s)) ∈Rn({yµ}) for the points r and s as in Figure 1.
When the variable Q is the coordinate function xµ associated with the chart ψα, we obtain
xµ(s) = xµ(r) + λξµ(r) + O(λ2). Now, we consider the coordinate transformation ψβ ◦ψ−1

α

so that yµ(s) := xµ(s) and we have the relation between the different coordinates as

yµ(s) := xµ(r) + λξµ(r) + O(λ2). (2)

As an example of tensor fields, we consider the metric gab on M . Under the infinitesimal
coordinate transformation (2), the metric at the point s is given by

gab(s) = gµν(x(s))(dxµ)a(dxν)b
∣∣
s = gµν(y(s))(dyµ)a(dyν)b

∣∣
s

= gµν

(
x(r) + λξ(r) + O(λ2)

)∂yµ

∂xρ

∂yν

∂xσ
(dxρ)a(dxσ)b

∣∣∣∣
r

= gab(r) + λ
(
ξτ∂τ gρσ + gµσ∂ρξµ + gρν∂σξµ

)
(dxρ)a(dxσ)b

∣∣
r + O(λ2)

= gab(r) + λ £ξ gab
∣∣
r + O(λ2). (3)

Because of gab(s) = Ψ∗
λgab(r), Equation (3) is usually written as

(Ψ∗
λgab)(r) = gab(r) + λ £ξ gab

∣∣
r + O(λ2). (4)

This is just the definition of the Lie derivative and the realization of Equation (1) itself 1.
From the action of the coordinate transformation (2), the coordinate transformation should
be regarded as the action of the diffeomorphism

ψβ ◦ Ψλ ◦ ψ−1
α (5)

rather than the simple coordinate transformation ψβ ◦ ψ−1
α . However, in our perturbation

theory, we also regard the infinitesimal coordinate transformation (2) is the first-kind gauge
transformation, since the above arguments are restricted within a single manifold M .
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Namely, the Taylor expansion through the infinitesimal parameter λ is to the tangential
direction within the manifold M .

We may write the metric gab as gab =
(0)gab + λ hab + O(λ2) within M . We emphasize

that the direction of this Taylor expansion through the infinitesimal parameter λ is still
“tangential” to M . In this case, Equation (3) yields

(0)gab(s) + λhab(s) = (0)gab(r) + λ
(

hab(r) + £ξ
(0)gab

∣∣∣
r

)
+ O(λ2). (6)

In many studies, arguments start from the infinitesimal coordinate transformation (2) and
reach the conclusion (6). For this reason, the term of Lie derivative of the background
metric in the right-hand side in Equation (3) is understood as the “degree of freedom of
coordinate transformations” and it is “unphysical degree of freedom”, in many studies.
However, the appearance of the Lie derivative of the background metric in Equation (6) is
just due the change of the reference point within the single manifold M and this situation
is same as the above example of CMB dipole measurement. For this reason, we regard
this example as the appearance of the first-kind gauge. This example appears when we
interpret our results in Section 6 of this paper.

We will be able to find many other examples of the first-kind gauges. All of these
are interpreted as the changes of reference point within the single manifold. In some case,
these change of reference point within the single manifold included in the measurement
results in observations and experiments. For this reason, we do not regard this above
first-kind gauge is “unphysical degree of freedom”. On the other hand, the second-kind
gauge which is explained in Section 2.2 has nothing to do with our physical spacetime but
is included in the perturbative variables as explained below. We have to emphasize that
this second-kind gauge is the “unphysical degree of freedom” which should be excluded in
general relativistic perturbation theory.

2.2. Second Kind Gauge

“The second kind gauge” appears in perturbation theories as a theory with general
covariance. To explain this, we have to remind the reader of our purpose regarding
perturbation theories.

First, in any perturbation theories, we always treat two spacetime manifolds. One is
the “physical spacetime” Mph. We want to describe the properties of this physical spacetime
Mph through perturbative analyses. This physical spacetime Mph is usually identified with
our nature itself. The other is the “background spacetime” M . This background spacetime
has nothing to do with our nature and is a fictitious manifold which is introduced as a
reference to carry out perturbative analyses by us. We emphasize that these two spacetime
manifolds Mph and M are distinct. Let us denote the physical spacetime by (Mph, ḡab) and
the background spacetime by (M , gab), where ḡab is the metric on the physical spacetime
manifold, Mph, and gab is the metric on the background spacetime manifold, M . Further,
we formally denote the spacetime metric and the other physical tensor fields on Mph by Q
and its background value on M by Q0.

Second, in any perturbation theory, we always write equations for the perturbation of
the variable Q as follows

Q(“p”) = Q0(p) + δQ(p). (7)

Equation (7) gives a relation between variables on different manifolds. Actually, Q(“p”) in
the left-hand side of Equation (7) is a variable on Mph, whereas Q0(p) and δQ(p) in the
right-hand side of Equation (7) are variables on M . Because we regard Equation (7) as
a field equation, Equation (7) includes an implicit assumption of the existence of a point
identification map M → Mph : p ∈ M 7→ “p” ∈ Mph. This identification map is a “gauge
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choice” in general-relativistic perturbation theories (see Figure 2). This is the notion of
the “second-kind gauge” pointed out by Sachs [45]. Note that this second-kind gauge is a
different notion from the degree of freedom of the coordinate transformation on the single
manifold which is explained in Section 2.1.

Figure 2. The second kind gauge is a point-identification between the physical spacetime Mph = Mϵ

and the background spacetime M on the extended manifold N . Through Equation (7), we im-
plicitly assume the existence of a point-identification map between Mϵ and M . However, this
point-identification is not unique by virtue of the general covariance in the theory. We may choose
the gauge of the second kind so that p ∈ M and “p”∈ Mϵ is same (Xϵ). We may also choose the
gauge so that q ∈ M0 and “p”∈ Mϵ is same (Yϵ). These are different gauge choices. The gauge
transformation Xϵ → Yϵ is given by the diffeomorphism Φϵ = X −1

ϵ ◦Yϵ.

To develop this understanding of the “gauge of the second kind”, we introduce an
infinitesimal parameter ϵ for perturbations and 4+ 1-dimensional manifold N = Mph ×R
(4 = dim M ) such that M = N |ϵ=0 and Mph = Mϵ = N |R=ϵ. On N , the point-
identification choice is regarded as a diffeomorphism Xϵ : N → N such that Xϵ :
M → Mϵ. This point-identification is a gauge choice of the second kind [39,45,49–51].
Furthermore, we introduce a gauge choice Xϵ as an exponential map with a generator Xηa,
which is chosen such that its integral curve in N is transverse to each Mϵ everywhere on
N . Points lying on the same integral curve are regarded as the “same point” by the gauge
choice Xϵ. Note that the action of Xϵ is transverse to each Mϵ.

The first-order perturbation of the variable Q on Mϵ is defined as the pulled-back
X ∗

ϵ Q on M , which is induced by Xϵ, and is expanded as

X ∗
ϵ Q = Q0 + ϵ £XηQ

∣∣∣
M

+ O(ϵ2), (8)

where Q0 = Q|M is the background value of Q and all terms in Equation (8) are evaluated
on the background spacetime M . Because Equation (8) is the perturbative expansion of
X ∗

ϵ Qϵ, the first-order perturbation of Q is given by (1)
X Q := £XηQ

∣∣∣
M

.

When we have two gauge choices Xϵ and Yϵ with the generators Xηa and Y ηa,
respectively, and when these generators have different tangential components to each Mϵ,
Xϵ and Yϵ are regarded as “different gauge choices”. A “gauge-transformation” is regarded
as the change of the point-identification Xϵ → Yϵ, which is given by the diffeomorphism
Φϵ := (Xϵ)

−1 ◦Yϵ : M → M . The diffeomorphism Φϵ does change the point-identification.
Here, Φϵ induces a pull-back from the representation X ∗

ϵ Qϵ to the representation Y ∗
ϵ Qϵ as 2

Y ∗
ϵ Qϵ(q) = Φ∗

ϵX
∗

ϵ Qϵ(q) (9)
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for any point q ∈ M . From general arguments of the Taylor expansion [52], the pull-back
Φ∗

ϵ is expanded as

Y ∗
ϵ Qϵ = X ∗

ϵ Qϵ + ϵ£ξ(1)
X ∗

ϵ Qϵ + O(ϵ2), (10)

where ξa
(1) is the generator of Φϵ. From Equations (8) and (10), the linear-order gauge-

transformation is given as

(1)
Y Q(q)− (1)

XQ(q) = £ξ(1)
Q0(q) (11)

for any point q ∈ M . We also employ the “order-by-order gauge invariance” (of the second
kind) as a concept of gauge invariance [38]. We call the kth-order perturbation (k)

X Q as
gauge-invariant (of the second-kind) if and only if

(k)
XQ(q) = (k)

Y Q(q) (12)

for any point q ∈ M and gauge choice Xϵ and Yϵ.
Here, we have to emphasize the importance of the gauge invariance of the second

kind. As explained above, the second kind gauge has nothing to do with the properties
of the physical spacetime. The physical spacetime is usually identified with our nature
itself. We are living not on the background spacetime but on the physical spacetime.
Any experiment and observation is carried out within the physical spacetime through
the physical process within the physical spacetime. Therefore, measurement results of
experiments and observations should have nothing to do with the background spacetime
nor the gauge-degree of freedom of the second kind. For this reason, measurement results
of experiments and observations should be gauge-invariant in the sense of the second
kind. Keeping this premise in mind, the gauge-transformation rule (11) indicates that
the first-order perturbation (1)Q for an arbitrary tensor field Q is transformed through
the gauge-transformation, i.e., the change in the point identification of the points of the
physical spacetime and the background spacetime in general. This implies that the first-
order perturbation (1)Q includes the unphysical degree of freedom, i.e., the gauge degree of
freedom in the second kind, in general. Thus, order-by-order gauge-invariant variables
defined by Equation (12) does not include the gauge degree of freedom in the second kind
and is quite important for perturbation theories in general relativity.

Finally, we comment on the difference between the notion of this second-kind
gauge and the first-kind gauge especially the example in the paragraph which contains
Equation (1) and in the next paragraph. First, we point out that the Taylor expansion
through the infinitesimal parameter λ in Equations (1)–(6) is the expansion within the
single manifold M . Therefore, even if we include higher-order perturbations of the in-
finitesimal parameter λ, this Taylor expansion is still within the single manifold. On the
other hand, the direction of the Taylor expansion (8) for the perturbative variable X ∗

ϵ Q is
the transverse direction from the background spacetime M to the physical spacetime Mph

in the extended manifold N . Although the action of the diffeomorphism Φ∗
ϵ is within the

background spacetime, the Taylor expansion of Y ∗Qϵ and XϵQϵ through the infinitesimal
parameter ϵ is the transverse direction to each manifold Mϵ in the extended manifold N .
Therefore, the metric perturbation in Equation (6) cannot direct to the physical spacetime
Mph from the background spacetime M , but the perturbation in Equation (8) actually
directs to the physical spacetime Mph from the background spacetime M . Therefore, the
perturbation of hab in Equation (6) does not have any information of Mph if the manifold

M for Equation (1) is the background spacetime of perturbation, but (1)
XQ in Equation (8)

should have the information of Mph.
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However, Equation (11) indicates that the variables (1)
XQ include the information

of the second-kind gauge; thus, we have to exclude this second-kind gauge completely.
This is accomplished by the construction of gauge-invariant variables (in the sense of
the second-kind). The general-relativistic gauge-invariant perturbation theory explained
below (in Section 2.3) automatically treats only gauge-invariant variables in the sense of
the second-kind defined by Equation (12). Thus, the development of our gauge-invariant
perturbation theory is crucially important in physics. Here, we emphasize the important
fact that the gauge degree of freedom in perturbations to be excluded by the gauge-
invariant perturbation theory is not the above first-kind gauge but the second-kind gauge
as explained below.

2.3. The General-Relativistic Gauge-Invariant Linear Perturbation Theory

Based on the above setup, we proposed a procedure to construct gauge-invariant
variables of higher-order perturbations [15,16]. In this paper, we concentrate only on
the explanations of the linear perturbations. First, we expand the metric on the physical
spacetime Mϵ, which was pulled back to the background spacetime M through a gauge
choice Xϵ as

X ∗
ϵ ḡab = gab + ϵXhab + O(ϵ2). (13)

Although the expression (13) depends entirely on the gauge choice Xϵ, henceforth, we
do not explicitly express the index of the gauge choice Xϵ in the expression if there is no
possibility of confusion. The important premise of our proposal was the conjecture [15,16]
for the linear metric perturbation hab as follows:

Conjecture 1. If the gauge-transformation rule for a perturbative pulled-back tensor field hab to
the background spacetime M is given by Y hab − Xhab = £ξ(1)

gab with the background metric gab,
there then exists a tensor field Fab and a vector field Ya such that hab is decomposed as hab =: Fab

+ £Ygab, where Fab and Ya are transformed as YFab − XFab = 0 and YYa − XYa = ξa
(1) under

the gauge transformation, respectively.

We call Fab and Ya as the “gauge-invariant” and “gauge-dependent” parts of hab,
respectively. In our higher-order gauge-invariant perturbation theory [15,16,33–39],
Conjecture 1 plays an essential role in the derivation of the formula for the decompo-
sition of any variables of higher-order perturbations into their gauge-invariant and gauge-
dependent variables.

The proof of Conjecture 1 is highly non-trivial [33,35], and it was found that gauge-
invariant variables are essentially non-local. Despite this non-triviality, once we accept
Conjecture 1, we can construct gauge-invariant variables for the linear perturbation of an
arbitrary tensor field (1)

X Q, whose gauge-transformation is given by Equation (11), through
the gauge-dependent part of the metric perturbation Ya in Conjecture 1 as

(1)Q := (1)
X Q − £

XYQ0. (14)

This definition implies that the linear perturbation (1)
X Q of an arbitrary tensor field X ∗

ϵ Q is
always decomposed into its gauge-invariant part (1)Q and gauge-dependent part £

XYQ0 as

(1)
X Q = (1)Q + £

XYQ0. (15)

As examples, the linearized Einstein tensor (1)
X G b

a and the linear perturbation of the energy-

momentum tensor (1)
X T b

a are also decomposed as
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(1)
X G b

a = (1)G b
a [F ] + £

XYG b
a , (1)

X T b
a = (1)T b

a [F , ϕ] + £
XYT b

a , (16)

where Gab and Tab are the background values of the Einstein tensor and the energy-
momentum tensor, respectively, and “ϕ” in the gauge-invariant variable (1)T b

a [F , ϕ]

symbolically represents the matter degree of freedom. The gauge-invariant part (1)G b
a of

the linear-order perturbation of the Einstein tensor is given by

(1)G b
a [A] := (1)Σ b

a [A]− 1
2

δ b
a

(1)Σ c
c [A], (17)

(1)Σ b
a [A] := −2∇[a H bd

d] [A]− AcbRac, H c
ba [A] := ∇(a A c

b) −
1
2
∇c Aab. (18)

Then, using the background Einstein equation G b
a = 8πT b

a , the linearized Einstein equa-
tion (1)

X G b
a = 8π

(1)
X T b

a is automatically given in the gauge-invariant form

(1)G b
a [F ] = 8π(1)T b

a [F , ϕ], (19)

even if the background Einstein equation is non-trivial. We also note that, in the case of
a vacuum background case, i.e., G b

a = 8πT b
a = 0, Equation (16) shows that the linear

perturbations of the Einstein tensor and the energy-momentum tensor are automatically
gauge-invariant.

We can also derive the perturbation of the divergence of ∇̄aT̄ a
b of the second-rank

tensor T̄ a
b on (Mph, ḡab). Through the gauge choice Xϵ, the tensor T̄ a

b is pulled back to
X ∗

ϵ T̄ a
b on the background spacetime (M , gab), and the covariant derivative operator ∇̄a

on (Mph, ḡab) is pulled back to a derivative operator

∇̄a := X ∗
ϵ ∇̄a(X

−1
ϵ )∗ (20)

on (M , gab). Note that the derivative ∇̄a is the covariant derivative associated with the
metric Xϵ ḡab, whereas the derivative ∇a on the background spacetime (M , gab) is the
covariant derivative associated with the background metric gab. Bearing in mind the
difference in these derivatives, the first-order perturbation of ∇̄aT̄ a

b is given by

(1)(∇̄aT̄ a
b
)
= ∇a

(1)T a
b [F , ϕ] + H a

ca [F ]T c
b − H c

ba [F ]T a
c + £Y∇aT a

b . (21)

The derivation of the formula (21) is given in ref. [16]. If the tensor field T̄ a
b is the Einstein

tensor Ḡ b
a , Equation (21) yields the linear-order perturbation of the Bianchi identity

∇a
(1)G a

b [F ] + H a
ca [F ]G c

b − H c
ba [F ]G a

c = 0. (22)

Furthermore, if the background Einstein tensor vanishes G b
a = 0, we obtain the identity

∇a
(1)G a

b [F ] = 0. (23)

By contrast, if the tensor field T̄ a
b is the energy-momentum tensor, Equation (21) yields the

continuity equation of the energy-momentum tensor

∇a
(1)T a

b [F , ϕ] + H a
ca [F ]T c

b − H c
ba [F ]T a

c = 0, (24)

where we used the background continuity equation ∇aT a
b = 0. If the background space-

time is vacuum Tab = 0, Equation (24) yields a linear perturbation of the energy-momentum
tensor given by

∇a
(1)T a

b [ϕ] = 0. (25)
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Thus, starting from the Conjecture 1, we can develop the gauge-invariant perturbation
theory through the above framework. Furthermore, this formulation can be extended to
any order perturbations [15,16,33,36] from Conjecture 1. In this sense, the proof of the
Conjecture 1 is crucial to this framework.

We should also note that the decomposition of the metric perturbation hab into its
gauge-invariant part Fab and into its gauge-dependent part Ya is not unique [38,39]. For
example, the gauge-invariant part Fab has six components and we can create the gauge-
invariant vector field Za through the component Fab such that the gauge-transformation
of the vector field Za is given by Y Za − XZa = 0. Using this gauge-invariant vector field
Za, the original metric perturbation can be expressed as follows

hab = Fab − £Zgab + £Z+Ygab =: Hab + £X gab. (26)

The tensor field Hab := Fab − £Zgab is also regarded as the gauge-invariant part of the
perturbation hab because YHab − XHab = 0. Similarly, the vector field Xa := Za +Ya is also
regarded as the gauge-dependent part of the perturbation hab because Y Xa − XXa = ξa

(1).
Equation (26) does show that the definition of the gauge-invariant variable Fab is not

unique. At the same time, this non-uniqueness of the definition of the gauge-invariant
variable Fab implies the symmetry of the linearized Einstein equation (19). Through the
same derivation of the formulae (16), we can also derive the linearized Einstein tensor
(1)
X G b

a and the linear perturbation of the energy-momentum tensor (1)
X T b

a as

(1)
X G b

a = (1)G b
a [H ] + £

XXG b
a , (1)

X T b
a = (1)T b

a [H , ϕ] + £
XXT b

a . (27)

Then, through the same logic for the derivation of Equation (19), we reach the conclusion

(1)G b
a [H ] = 8π(1)T b

a [H , ϕ]. (28)

Equations (19) and (28) indicate the symmetry of the linearized Einstein equation. Namely,
if the gauge-invariant metric perturbation Fab is a solution to the linearized Einstein
Equation (19), the gauge-invariant metric perturbation Hab := Fab − £Zgab is also a solu-
tion to the linearized Einstein equation. This symmetry of the linearized Einstein equation
implies that solutions to the linearized Einstein equation may includes the term £Zgab

as a gauge-invariant arbitrary degree of freedom. Actually, we will see the fact that the
gauge-invariant term £Zgab appears in the solutions derived in Section 6.

Finally, we comment on the relation between the gauge-transformation Φϵ and the
coordinate transformation [39,53,54]. As mentioned above, the notion of the second-kind
gauges above is different from the notion of the degree of freedom of the coordinate
transformation on a single manifold which is called first-kind gauge. However, the gauge-
transformation Φϵ of the second kind induces the coordinate transformation. To see this,
we introduce the coordinate system {Oα, ψα} on the background spacetime M , where Oα

are open sets on the background spacetime and ψα are diffeomorphisms from Oα to R4

(4 = dim M ) as depicted in Figure 3. The coordinate system {Oα, ψα} is the set of collections
of the pair of open sets Oα and diffeomorphism Oα 7→ R4. If we employ a gauge choice
Xϵ of the second kind, we have the correspondence of the physical spacetime Mϵ = Mph

and the background spacetime M . Together with the coordinate system ψα on M , this
correspondence between Mϵ and M induces the coordinate system on Mϵ. Actually,
Xϵ(Oα) for each α is an open set of Mϵ. Then, ψα ◦ X −1

ϵ becomes a diffeomorphism
from an open set Xϵ(Oα) ⊂ Mϵ to R4({xµ}). This diffeomorphism ψα ◦ X −1

ϵ induces
a coordinate system of an open set on Mϵ. When we have two different gauge choices
Xϵ and Yϵ of the second kind, ψα ◦X −1

ϵ 7→ R4({xµ}) and ψα ◦Y −1
ϵ 7→ R4({yµ}) become
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different coordinate systems on Mϵ. We can also consider the coordinate transformation
from the coordinate system ψα ◦X −1

ϵ to another coordinate system ψα ◦Y −1
ϵ . Because the

gauge transformation Xϵ → Yϵ (of the second kind) is induced by the diffeomorphism
Φϵ := (Xϵ)

−1 ◦Yϵ, this diffeomorphism Φϵ induces the coordinate transformation as

yµ(q) := xµ(p) =
(
(Φ−1

ϵ )∗xµ
)
(q) (29)

in the passive point of view [15,52], where p ∈ M , Xϵ(p) = “p” ∈ Mph and q ∈ M ,
Yϵ(q) = “p” ∈ Mph. If we represent this coordinate transformation in terms of the Taylor
expansion (10), we have the coordinate transformation

yµ(q) = xµ(q)− ϵξ
µ

(1)(q) + O(ϵ2). (30)

We should emphasize that the coordinate transformation (30) is not the starting point
of the gauge-transformation but a result of the above framework. Because our above
framework of the gauge-invariant perturbation theory is constructed without a coordinate
transformation (30), we “do not” use the coordinate transformation (30) in our formulation.

Figure 3. A second kind gauge transformation induces a coordinate transformation. The diffeo-
morphism ψα ◦ X −1

ϵ maps the open set Xϵ(Oα) ⊂ Mph to a open set on R4. The blue part on M

is an open set includes p and q. This open set is mapped to Rn and Mϵ through ψα and Xϵ (and
Yϵ), respectively. If we change the gauge choice from Xϵ to Yϵ, this change induces the coordinate
transformation from ψα ◦X −1

ϵ to ψα ◦Y −1
ϵ .

3. Linear Perturbations on Spherically Symmetric Background
Here, we consider the 2 + 2 formulation of perturbations of a spherically symmetric

background spacetime, which originally proposed by Gerlach and Sengupta [24–27]. In this
formulation, we pay attention to the symmetry of the background spacetime. Spherically
symmetric spacetimes are characterized by the direct product M = M1 × S2 and the metric
on this spacetime is given by

gab = yab + r2γab, (31)

yab = yAB(dxA)a(dxB)b, γab = γpq(dxp)a(dxq)b, (32)
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where xA = (t, r), xp = (θ, ϕ), and γpq is the metric on the unit sphere. In the case of the
Schwarzschild spacetime, the metric (31) is given by

yab = − f (dt)a(dt)b + f−1(dr)a(dr)b, f := 1 − 2M
r

, (33)

γab = (dθ)a(dθ)b + sin2 θ(dϕ)a(dϕ)b = θaθb + ϕaϕb, (34)

θa = (dθ)a, ϕa = sin θ(dϕ)a. (35)

In Section 3.1, we review the conventional decomposition of the metric perturbation
and its inverse relation and show that the conventional decomposition is essentially non-
local and the two Green functions for the derivative operators are necessary to derive
its inverse relation. The kernel modes of these derivative operators are l = 0, 1 modes.
This is the reason why l = 0, 1 modes in the perturbations on the spherically symmetric
background spacetime should be treated separately. In Section 3.2, we discuss a treatment
in which the special treatments of these kernel modes are not necessary. To develop such
treatment, we use the different scalar harmonic functions from the conventional spherical
harmonic functions. We also summarize the conditions for the harmonic functions should
be satisfied. In Section 3.3, we derive the explicit form of the mode functions. In Section 3.4,
we propose a treatment of l = 0, 1 modes in perturbations on spherically symmetric
background spacetimes.

3.1. Conventional Perturbation Decomposition and Its Inverse Relation

On the above background spacetime (M , gab), the components of the metric perturba-
tion are given by

hab = hAB(dxA)a(dxB)b + 2hAp(dxA)(a(dxp)b) + hpq(dxp)a(dxq)b. (36)

Here, we note that the components hAB, hAp, and hpq are regarded as components of scalar,
vector, and tensor on S2, respectively. In many studies, these components are decomposed
through the decomposition [55–57] using the spherical harmonics S = Ylm as follows

hAB = ∑
l,m

h̃ABS, (37)

hAp = r ∑
l,m

[
h̃(e1)AD̂pS + h̃(o1)AϵpqD̂qS

]
, (38)

hpq = r2 ∑
l,m

[
1
2

γpq h̃(e0)S + h̃(e2)

(
D̂pD̂q −

1
2

γpqD̂rD̂r

)
S + 2h̃(o2)ϵr(pD̂q)D̂

rS
]

, (39)

where D̂p is the covariant derivative associated with the metric γpq on S2, D̂p = γpqD̂q,
ϵpq = ϵ[pq] = 2θ[pϕq] is the totally antisymmetric tensor on S2. Here, we note that the
covariant derivatives of the basis θp and ϕp on S2 are given by

D̂pθq = cot θϕpϕq, D̂pϕq = − cot θϕpθq. (40)

Through these formulae, we can check D̂rϵpq = 0. We also note that the curvature ten-
sors (2)R̂pqrs and (2)R̂pr associated with the metric γpq are given by Equations (A76) in
Appendix B.

Although the matrix representations of the independent harmonic functions are used
in the pioneer papers [17–19], these are equivalent to the covariant form (37)–(39) with the
choice S = Ylm. The choice S = Ylm is the starting point of the original 2 + 2 formulation
proposed by Gerlach and Sengupta [24–27]. They showed the constructions of gauge-
invariant variables for l ≥ 2 modes and derived Einstein equations. If we apply the
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decomposition (37)–(39) with S = Ylm to the metric perturbation hab, special treatments
for l = 0, 1 modes are required [17–27,29–32]. This is due to the fact that the set of
harmonic functions{

S, D̂pS, ϵpqD̂qS,
1
2

γpqS,
(

D̂pD̂q −
1
2

γpq∆̂
)

S, 2ϵr(pD̂q)D̂
rS
}

(41)

loses its linear independence in l = 0, 1 cases. To clarify this situation, we consider the
inverse relation of the decomposition formula (37)–(39), later. Furthermore, we see that
the inverse-relation of the decomposition formulae (37)–(39) requires the Green functions
of the derivative operators ∆̂ := D̂rD̂r and ∆̂ + 2 := D̂rD̂r + 2, respectively. The eigen
modes of these operators are l = 0 and l = 1, respectively. Actually, for l = 0 modes, the
basis in (41) vanish except for {S, 1

2 γpqS}. For l = 1 modes, we have
(

D̂pD̂q − 1
2 γpq∆̂

)
S =

2ϵr(pD̂q)D̂rS = 0. These are explicitly shown in Appendix A.
Note that the decomposition formulae (37)–(39) with the spherical harmonic function

Ylm carry out two decompositions. The first one is the decomposition of the function
space through the spherical harmonic function Ylm as the bases of L2-space on S2. This
corresponds to the imposition of the regular boundary conditions for the perturbations at
the starting point. The second one is the decomposition of the tangent space on S2 through
the derivative of the scalar harmonic function S = Ylm. The imposition of the boundary
conditions at the starting point leads to the vanishing of vector and tensor harmonics in (41)
for l = 0 modes and tensor harmonics in (41) for l = 1 modes. These vanishing vector and
tensor harmonics leads to the failure of the decomposition of the tangent space for l = 0, 1
modes. This is the reason why the special treatments for these modes are required in many
studies. At the same time, these vanishing mode functions are an essential reason for the
fact that the proof of Conjecture 1 for perturbations on the Schwarzschild background
spacetime including l = 0, 1 modes is difficult.

Now, we consider the derivation of the inverse relation of the decomposition (37)–(39).
In this derivation, we use the orthogonality∫

S2
dΩY∗

lmYl′m′ = δll′δmm′ (42)

of the spherical harmonic function S = Ylm, where dΩ = sin θdθdϕ. Therefore, we do not
show the final expressions as the results of the application of Equation (42).

First, we consider the inverse relation of the decomposition (38). Taking the divergence
of Equation (38), we obtain

D̂phAp = r ∑
l,m

h̃(e1)AD̂pD̂pS = r ∑
l,m,(l ̸=0)

h̃(e1)A∆̂S. (43)

Thus, we should regard that the mode coefficient h̃(e1)A in Equation (38) does not include
l = 0 mode. Using the Green function ∆̂−1, we obtain

∑
l,m,(l ̸=0)

h̃(e1)AS =
1
r

∆̂−1D̂phAp. (44)

Furthermore, using the orthogonal property (42) of the S = Ylm with l ̸= 0, we obtain the
mode coefficient h̃(e1)A for each mode, except for l = 0 mode. Similarly, taking the rotation
of Equation (38), we obtain

∑
l,m,(l ̸=0)

h̃(o1)AS =
1
r

∆̂−1D̂r
(
ϵrqhAq

)
(45)
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and the mode coefficient h̃(o1)A for each mode, except for l = 0 mode, through the orthogo-
nal property (42) of the S = Ylm with l ̸= 0.

The explicit form of the Green function is given by refs. [58,59]. The expressions (44)
and (45) indicates that the decomposition (38) is meaningless for the modes which belongs
to the kernel ∆̂ := D̂rD̂r, i.e., l = 0 mode.

Next, we consider the inverse relation of Equation (39). First, we note that the trace of
Equation (39) yields

∑
l,m

h̃(e0)S =
1
r2 γpqhpq, (46)

and the traceless part of Equation (39) yields

Hpq[htu] := hpq −
1
2

γpqγrshrs, (47)

= r2 ∑
l,m

[
h̃(e2)

(
D̂pD̂q −

1
2

γpq∆̂
)

S + 2h̃(o2)ϵr(pD̂q)D̂
rS
]

. (48)

The mode coefficient h̃(e0) for each mode is obtained through the orthogonal property (42)
of the spherical harmonics S = Ylm from the trace part (46) of hpq. Therefore, we may
concentrate on the traceless part (48) of hpq. Taking the divergence of Equation (48),
we obtain

D̂pHpq[htu] = r2 ∑
l,m

[
h̃(e2)

1
2

D̂q
(
∆̂ + 2

)
S + h̃(o2)ϵrqD̂r(∆̂ + 2

)
S
]

(49)

= r2 ∑
l,m,(l ̸=1)

[
h̃(e2)

1
2

D̂q
(
∆̂ + 2

)
S + h̃(o2)ϵrqD̂r(∆̂ + 2

)
S
]

. (50)

Equation (50) indicates that the mode coefficients h̃(e2) and h̃(o2) do not include l = 1 mode if
S = Ylm because the l = 1 spherical harmonic function Y1m is in the kernel of the derivative
operator ∆̂ + 2. Furthermore, we take the divergence of Equation (50), and obtain

D̂qD̂pHpq[htu] = r2 ∑
l,m,(l ̸=1)

[
1
2

h̃(e2)∆̂
(
∆̂ + 2

)
S
]
= r2 ∑

l,m,l≥2

[
1
2

h̃(e2)∆̂
(
∆̂ + 2

)
S
]

. (51)

Equation (51) indicates that, in addition to the l = 1 mode, the mode coefficient h̃(e2) does
not include the l = 0 mode which is the kernel mode of the derivative operator ∆̂. Then,
through the Green functions of the derivative operators ∆̂ and (∆̂ + 2), we obtain the
solution to Equation (51) as

∑
l,m,l≥2

h̃(e2)S =
2
r2

[
∆̂ + 2

]−1∆̂−1D̂qD̂pHpq[htu]. (52)

From the orthogonal property (42) of the spherical harmonic function S = Ylm with l ≥ 2,
we obtain the mode coefficient h̃(e2).

On the other hand, multiplying ϵqs to Equation (50), we obtain

ϵqsD̂pHpq[htu] = r2 ∑
l,m,(l ̸=1)

[
1
2

h̃(e2)ϵ
qsD̂q

(
∆̂ + 2

)
S + h̃(o2)D̂

s(∆̂ + 2
)
S
]

, (53)
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and then, taking the divergence of Equation (53), we obtain

ϵqsD̂sD̂pHpq[htu] = r2∆̂
(
∆̂ + 2

)
∑

l,m,(l ̸=1)
h̃(o2)S = r2∆̂

(
∆̂ + 2

)
∑

l,m,(l≥2)
h̃(o2)S. (54)

Equation (54) indicates that, in addition to the l = 1 mode, the mode coefficient h̃(o2) does
not include the l = 0 mode, which is the kernel mode of the derivative operator ∆̂. Through
the Green functions of the derivative operators ∆̂ and ∆̂ + 2, we can solve Equation (54) as

∑
l,m,l≥2

h̃(o2)S =
1
r2

[
∆̂ + 2

]−1∆̂−1ϵqsD̂sD̂pHpq[htu]. (55)

From the orthogonality property (42) of the spherical harmonic function S = Ylm with
l ̸= 0, 1, we obtain the mode coefficient h̃(o2).

Since the eigenvalue of the Laplacian operator ∆̂ on S2 is −l(l + 1) with the non-
negative integer l, the fact that we have to use the Green function of the operators ∆ and
(∆ + 2) implies that the one-to-one correspondence between the set of variables {hpq} and
the set of the variables {h̃(e0), h̃(e2), h̃(o2)} is not guaranteed for the kernel modes l = 0
and l = 1.

Finally, we also note that the operators ∆̂−1∆̂ and
[
∆̂ + 2

]−1[∆̂ + 2
]

are not identity
operators but should be regarded as the projection operators. We regard that the domains of
the operators ∆̂−1∆̂ and

[
∆̂ + 2

]−1[∆̂ + 2
]

is the L2-space which is spanned by the spherical
harmonics {Ylm}. Since the operator ∆̂ eliminates the kernel

K∆̂ := { f ∈ F |∆̂ f = 0}, (56)

where F is the function algebra, the range of the operator ∆̂−1∆̂ is the L2-space which is
spanned by the spherical harmonics {Ylm|l ̸= 0}, i.e.,

{Ylm|l ̸= 0} = L2\K(∆̂). (57)

Similarly, the domain of the operator
[
∆̂ + 2

]−1[∆̂ + 2
]

is the L2-space which is spanned
by the spherical harmonics {Ylm|l ≥ 0}, while the kernel

K∆̂+2 := { f ∈ F |(∆̂ + 2) f = 0} (58)

is excluded in the range of the operator
[
∆̂ + 2

]−1[∆̂ + 2
]
, i.e., the range of this operator is

{Ylm|l ̸= 1} = L2\K(∆̂+2). (59)

Namely, the operators ∆̂−1∆̂ and [∆̂ + 2]−1[∆ + 2] are regarded as the projection
operators as

∆̂−1∆̂ : L2 7→ L2\K(∆̂) (60)

[∆̂ + 2]−1[∆ + 2] : L2 7→ L2\K(∆̂+2). (61)

From Equations (60) and (61), we obtain the projection operator

∆̂−1[∆̂ + 2]−1[∆ + 2]∆̂ : L2 7→ L2\
(
K(∆̂) ⊕K(∆̂+2)

)
. (62)

This is one reason why we should discuss the treatments of the modes l = 0 and l = 1
separately if we choose S = Ylm.
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3.2. Treatments of the Kernel Modes

As seen in Section 3.1, the decomposition formulae (37)–(39) with S = Ylm does not
include the l = 0, 1 modes of the perturbations. In the general-relativistic gauge-invariant
perturbation theory proposed in refs. [15,16], we assumed the separation of the linear-order
metric perturbation into its gauge-invariant and gauge-dependent parts, i.e., Conjecture 1.
In refs. [33,35], we discuss a scenario of the proof of Conjecture 1 on the generic background
spacetime. In this scenario of the proof, we had to use the Green functions of some
elliptic differential operators. In other words, we ignored the kernel modes of these elliptic
differential operators in the scenario of the proof of Conjecture 1 in refs. [33,35]. The
treatment of these kernel modes was unclear at that time. We called these kernel modes
as “zero modes”. Furthermore, we called the problem to find the treatment of these zero
modes as the “zero-mode problem”. In the case of the perturbations on the spherically
symmetric background spacetimes, the l = 0, 1 modes correspond to the above zero mode
in refs. [33,35]. This is also a well-known problem like the “l = 0, 1 mode problem” in the
treatments of perturbations on spherically symmetric background spacetimes.

Here, we consider the resolution of this l = 0, 1 mode problem. To carry out this, we
re-examine the derivation of the inverse relations of the decomposition formulae (37)–(39),
again. In this re-examination, we use the harmonic function S = Ylm for l ≥ 2 model,
because the set of the harmonic functions (41) has the linear independence at least for l ≥ 2
mode. For l = 0, 1 mode, we change the harmonic function S from the spherical harmonic
function Y00 and Y1m to k(∆̂) and k(∆̂+2), respectively, i.e., we use the harmonic functions S
which are given by

S = Sδ :=


Ylm (l ≥ 2);
k(∆̂+2) (l = 1);
k(∆̂) (l = 0).

(63)

In this paper, we look for the explicit form of functions k(∆̂) and k(∆̂+2) within the constraints

k(∆̂) ∈ K(∆̂), k(∆̂+2) ∈ K(∆̂+2), (64)

respectively. Within these domains (64) of the kernel modes, we specify the conditions
for the functions k(∆̂) and k(∆̂+2) to realize the independence of the set of the harmonic
functions (41). These introductions of k(∆̂) and k(∆̂+2) correspond to the fact that we do
not impose the regular boundary conditions as the function on S2 before the construction
of gauge-invariant variables, which was imposed in the conventional approach at the
starting point.

3.2.1. hpq

Here, we first consider the decomposition of the component hpq. Previously, we
considered the decomposition of the component hpq as Equation (39)

hpq = r2 ∑
l,m

[
1
2

γpq h̃(e0)S + h̃(e2)

(
D̂pD̂q −

1
2

γpqD̂rD̂r

)
S + 2h̃(o2)ϵr(pD̂q)D̂

rS
]

. (65)

As shown in Equation (46), we can separate the component hpq into the trace part and the
traceless part. The trace part of hpq is given by Equation (46), which is also given by

∑
l,m,l≥2

h̃(e0,l≥2)Ylm + ∑
m=−1,0,1

h̃(e0,l=1)k(∆̂+2) + h̃(e0,l=0)k(∆̂) =
1
r2 γpqhpq. (66)
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Here, we note the effects (60) and (61) of the operators ∆̂−1∆̂ and [∆̂ + 2]−1[∆̂ + 2] as
projection operators. If we apply the derivative operator [∆̂ + 2] to Equation (66), we obtain

∑
l,m,l≥2

h̃(e0,l≥2)[∆̂ + 2]Ylm + 2h̃(e0,l=0)k(∆̂) =
1
r2 [∆̂ + 2]γpqhpq, (67)

since we chose the functions k(∆̂) and k(∆̂+2) are eigenfunctions through Equations (64).

Furthermore, applying the derivative operator ∆̂ to Equation (67) as

∑
l,m,l≥2

h̃(e0,l≥2)∆̂[∆̂ + 2]Ylm =
1
r2 ∆̂[∆̂ + 2]γpqhpq. (68)

The left- and right-hand sides of Equation (68) are in the domains of the Green functions
[∆̂]−1 and [∆̂ + 2]−1. Therefore, we may apply the Green functions [∆̂]−1 and [∆̂ + 2]−1 to
Equation (68) and obtain

∑
l,m,l≥2

h̃(e0,l≥2)Ylm =
1
r2 [∆̂ + 2]−1∆̂−1∆̂[∆̂ + 2]γpqhpq. (69)

Through the orthogonal property (42) of the spherical harmonic function, we obtain

h̃(e0,l≥2) =
1
r2

∫
S2

dΩY∗
lm[∆̂ + 2]−1∆̂−1∆̂[∆̂ + 2]γpqhpq =: h̃(e0,l≥2)[[hpq]]. (70)

Thus, for l ≥ 2, the mode coefficients h̃(e0,l≥2) is given by the functional of the original
metric component hpq.

Substituting Equation (70) into Equation (67), we obtain

2h̃(e0,l=0)k(∆̂) =
1
r2 [∆̂ + 2]γpqhpq − ∑

l,m,l≥2
h̃(e0,l≥2)[[hpq]][∆̂ + 2]Ylm

=: 2h̃(e0,l=0)[[hpq]]k(∆̂). (71)

Then, the mode coefficient h̃(e0,l=0) is obtained as a functional of the original metric pertur-
bation hpq if k(∆̂) ̸= 0. Furthermore, from Equations (66), (70), and (71), we obtain

∑
m=−1,0,1

h̃(e0.l=1)k(∆̂+2) =
1
r2 γpqhpq − ∑

l,m,l≥2
h̃(e0,l≥2)[[hpq]]Ylm − h̃(e0,l=0)[[hpq]]k(∆̂). (72)

To resolve the degeneracy of the modes with m = 0,±1 in Equation (72), we choose
k(∆̂+2) as

k(∆̂+2) = k(∆̂+2)m = Θ1m(θ)eimϕ. (73)

Through the orthogonality condition

1
2π

∫ 2π

0
dϕei(m−m′)ϕ = δmm′ , (74)

we obtain

e+imϕ 1
2π

∫ 2π

0
dϕe−im′ϕk(∆̂+2)m = k(∆̂+2)mδmm′ . (75)

Applying the property (75) to Equation (72), we obtain
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h̃(e0.l=1)k(∆̂+2)m = e+imϕ 1
2π

∫ 2π

0
dϕe−imϕ

×

 1
r2 γpqhpq − ∑

l,m′ ,(l ̸=0,1)
h̃(e0,l≥2)[hpq]Ylm′ − h̃(e0,l=0)[hpq]k(∆̂)


=: h̃(e0.l=1)[[hpq]]k(∆̂+2)m. (76)

Then, if Θ1m(θ) ̸= 0, i.e., k(∆̂+2) ̸= 0, the mode coefficient h̃(e0,l=1) is given in the functional
form of the original metric perturbation hpq.

Thus, the mode decomposition of the trace part (66) of the metric perturbation hpq is
invertible. In this argument, we essentially used Equations (64) for the eigenfunctions and
the ϕ-dependence (73) of the function k(∆̂+2).

Next, we consider the traceless part (47) of hpq as Equation (48). Taking the divergence
of Equation (48), we obtain

1
r2 D̂pHpq[htu] = ∑

l,m

[
1
2

h̃(e2)D̂q
(
∆̂ + 2

)
Ylm − h̃(o2)ϵqrD̂r(∆̂ + 2

)
Ylm

]
= ∑

l,m,l≥2

[
1
2

h̃(e2,l≥2)D̂q
(
∆̂ + 2

)
Ylm − h̃(o2,l≥2)ϵqrD̂r(∆̂ + 2

)
Ylm

]
+h̃(e2,l=0)D̂qk(∆̂) − h̃(o2.l=0)2ϵqrD̂rk(∆̂), (77)

where we used Equations (A76) in Appendix B and (64). We have to emphasize that the
l = 1 mode does not appear in the expression (77). Taking the divergence of Equation (77),
again, we have

1
r2 D̂qD̂pHpq[htu] =

1
2 ∑

l,m,l≥2
h̃(e2,l≥2)

(
∆̂ + 2

)
∆̂Ylm, (78)

where we used the property of the eigen equation for k(∆̂) in Equations (64). Through

the Green functions ∆̂−1 and [∆̂ + 2]−1 and the orthogonal property (42) of the spherical
harmonics Ylm, we obtain the same result as Equations (55) and the mode coefficient h̃(e2,l≥2)
of each mode is given in a functional form of the original metric perturbation htu as

h̃(e2,l≥2) =
2
r2

∫
S2

dΩY∗
lm[∆̂]

−1[∆̂ + 2]−1D̂qD̂pHpq[htu] =: h̃(e2,l≥2)[[htu]]. (79)

On the other hand, taking the rotation of Equations (77) and use the eigen equation for k(∆̂)
in Equations (64), Green functions [∆̂]−1 and [∆̂ + 2], and the orthogonal properties (42) of
the spherical harmonics Ylm, we obtain the mode coefficient h̃(o2,l≥2) in the functional form
of the original metric perturbation htu as

h̃(o2,l≥2) =
1
r2

∫
S2

dΩY∗
lm[∆̂]

−1[∆̂ + 2]−1ϵpsD̂sD̂qHpq[htu] =: h̃(o2,l≥2)[[htu]]. (80)

Substituting Equations (79) and (80) into Equation (77), we obtain

h̃(e2,l=0)D̂qk(∆̂) − h̃(o2.l=0)2ϵqrD̂rk(∆̂)

= − ∑
l,m,l≥2

[
1
2

h̃(e2,l≥2)[[htu]]D̂q
(
∆̂ + 2

)
Ylm − h̃(o2,l≥2)[[htu]]ϵqrD̂r(∆̂ + 2

)
Ylm

]
+

1
r2 D̂pHpq[htu]. (81)
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If D̂qk(∆̂) ̸= 0, the vectors D̂qk(∆̂) and ϵqrD̂rk(∆̂) are orthogonal to each other. Then, we have

h̃(e2,l=0) = h̃(e2,l=0)[[hut]]

:=

(
D̂qk(∆̂)

)
(

D̂sk(∆̂)
)(

D̂sk(∆̂)
)[ 1

r2 D̂pHpq[htu]

− ∑
l,m,l≥2

{
1
2

h̃(e2,l≥2)[[htu]]D̂q
(
∆̂ + 2

)
Ylm

−h̃(o2,l≥2)[[htu]]ϵqrD̂r(∆̂ + 2
)
Ylm

}]
(82)

and

h̃(o2,l=0) = h̃(o2,l=0)[[hut]]

:=

(
ϵqrD̂rk(∆̂)

)
(

D̂sk(∆̂)
)(

D̂sk(∆̂)
)[ 1

r2 D̂pHpq[htu]

− ∑
l,m,l≥2

{
1
2

h̃(e2,l≥2)[[htu]]D̂q
(
∆̂ + 2

)
Ylm

−h̃(o2,l≥2)[[htu]]ϵqrD̂r(∆̂ + 2
)
Ylm

}]
. (83)

Now, we return to the original definition (48) of the traceless part Hpq. From
Equations (47), (79), (80), (82), and (83), we obtain

∑
m=−1,0,1

[
h̃(e2,l=1,m)

(
D̂pD̂q −

1
2

γpq∆̂
)

k(∆̂+2) + 2h̃(o2,l=1,m)ϵr(pD̂q)D̂
rk(∆̂+2)

]

=
1
r2Hpq[htu]−

[
∑

l,m,l≥2

{
h̃(e2)[[htu]]

(
D̂pD̂q −

1
2

γpq∆̂
)

Ylm + 2h̃(o2)[[htu]]ϵr(pD̂q)D̂
rYlm

}
+h̃(e2,l=0)[[htu]]

(
D̂pD̂q −

1
2

γpq∆̂
)

k(∆̂) + 2h̃(o2,l=0)[[htu]]ϵr(pD̂q)D̂
rk(∆̂)

]
=: H(∆̂+2)pq[[htu]]. (84)

To simplify the notation, we define

K(m)pq :=
(

D̂pD̂q −
1
2

γpqD̂rD̂r

)
k(∆̂+2)m, J(m)pq := 2ϵr(pD̂q)D̂

rk(∆̂+2)m, (85)

and we evaluate K(m)pqKpq
(m′), J(m)pqKpq

(m′), and J(m)pq Jpq
(m′), which are given by

K(m)pqKpq
(m′) =

(
D̂pD̂qk(∆̂+2)m

)(
D̂pD̂qk(∆̂+2)m′

)
−2
(

k(∆̂+2)m

)(
k(∆̂+2)m′

)
, (86)

J(m)pqKpq
(m′) = 2ϵrpD̂rD̂qk(∆̂+2)mD̂pD̂qk(∆̂+2)m′ , (87)

J(m)pq Jpq
(m′) = 4

[(
D̂pD̂qk(∆̂+2)m

)(
D̂pD̂qk(∆̂+2)m′

)
−2
(

k(∆̂+2)m

)(
k(∆̂+2)m′

)]
. (88)

To carry out the resolution of the degeneracy in Equation (84), we use the property (73)
of the function k(∆̂+2). From the property (73), we have
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D̂pk(∆̂+2)m =

(
d
dθ

Θm(θ)

)
eimϕθp +

im
sin θ

Θm(θ)eimϕϕp (89)

and

D̂pD̂qk(∆̂+2)m =

(
d2

dθ2 Θm(θ)

)
eimϕθpθq

+

[(
d
dθ

Θm(θ)

)
cot θ − m2 1

sin2 θ
Θm(θ)

]
eimϕϕpϕq

+im
1

sin θ

[
d
dθ

Θm(θ)− cot θΘm(θ)

]
eimϕ2θ(pϕq). (90)

From Equation (90), we obtain

K(m)pq :=
(

D̂pD̂q −
1
2

γpq∆̂
)

k(∆̂+2)m

= −
(
θpθq − ϕpϕq

)[
cot θ

d
dθ

Θm(θ) +

(
1 − m2

sin2 θ

)
Θm(θ)

]
eimϕ

+2θ(pϕq)
im

sin θ

(
d
dθ

Θm(θ)− cot θΘm(θ)

)
eimϕ, (91)

where we used (∆̂ + 2)k(∆̂+2)m = 0, i.e.,

d2

dθ2 Θm(θ) + cot θ
d
dθ

Θm(θ) +

(
2 − m2

sin2 θ

)
Θm(θ) = 0. (92)

From the expression of the components K(m′)pq, J(m′)pq, θp, and ϕp, we can confirm

1
2π

∫ 2π

0
dϕe−imϕK(m′)pq = K(m)pqe−imϕδmm′ , (93)

1
2π

∫ 2π

0
dϕe−imϕ J(m′)pq = J(m)pqe−imϕδmm′ . (94)

Furthermore, straightforward calculations yield

K(m)pqKpq
(m)

=
(

D̂pD̂qk(∆̂+2)m

)(
D̂pD̂qk(∆̂+2)m

)
− 2
(

k(∆̂+2)m

)2
, (95)

J(m)pqKpq
(m)

= 0, (96)

J(m)pq Jpq
(m)

= 4K(m)pqKpq
(m)

. (97)

Through Equations (93) and (94), we can consider the resolution of the m-degeneracy
of l = 1 mode in Equation (84) as follows

1
2π

e+imϕ
∫ 2π

0
dϕe−imϕH(∆̂+2)pq[[htu]]

= ∑
m′=−1,0,1

[
h̃(e2,l=1,m)e

+imϕ 1
2π

∫ 2π

0
dϕe−imϕK(m′)pq

+h̃(o2,l=1,m)e
+imϕ 1

2π

∫ 2π

0
dϕe−imϕ J(m′)pq

]
= ∑

m′=−1,0,1

[
h̃(e2,l=1,m)K(m)pqδmm′ + h̃(o2,l=1,m) J(m)pqδmm′

]
= h̃(e2,l=1,m)K(m)pq + h̃(o2,l=1,m) J(m)pq. (98)
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Furthermore, from Equations (95)–(97), we obtain

h̃(e2,l=1,m) = [K(m)pqKpq
(m)

]−1Kpq
(m)

1
2π

e+imϕ
∫ 2π

0
dϕe−imϕH(∆̂+2)pq[[htu]]

=: h̃(e2,l=1,m)[[htu]], (99)

and

h̃(o2,l=1,m) =
1
4
[K(m)pqKpq

(m)
]−1 Jpq

(m)

1
2π

e+imϕ
∫ 2π

0
dϕe−imϕ H(∆̂+2)pq[[htu]]

=: h̃(o2,l=1,m)[[htu]]. (100)

Thus, we have obtained the mode coefficients h̃(e2,l=1,m) and h̃(o2,l=1,m) in the functional
forms of the original metric htu.

Here, we summarize the conditions for the eigenfunctions k(∆̂) and k(∆̂+2) to obtain the
inverse relation of the metric decomposition (65). To obtain the inverse relations of the mode
decomposition of the trace and the traceless-part of Equation (65), we use the conditions

k(∆̂) ∈ K(∆̂), k(∆̂+2) ∈ K(∆̂+2), k(∆̂+2) = k(∆̂+2)m = Θ1m(θ)eimϕ, (101)(
D̂pk(∆̂)

)(
D̂pk(∆̂)

)
̸= 0, (102)

K(m)pqKpq
(m)

=
(

D̂pD̂qk(∆̂+2)m

)(
D̂pD̂qk(∆̂+2)m

)
− 2
(

k(∆̂+2)m

)2
̸= 0. (103)

The condition (103) implies the non-vanishing K(m)pq and J(m)pq.

3.2.2. hAp

Next, we consider the inversion relation of the decomposition (38) taking account of
the kernel modes k(∆̂) and k(∆̂+2).

hAp = r ∑
l,m

[
h̃(e1)AD̂pS + h̃(o1)AϵpqD̂qS

]
(104)

= r ∑
l,m,l≥2

[
h̃(e1,l≥2)AD̂pYlm + h̃(o1,l≥2)AϵpqD̂qYlm

]
+r ∑

m

[
h̃(e1,l=1)AD̂pk(∆̂+2) + h̃(o1,l=1)AϵpqD̂qk(∆̂+2)

]
+r
[

h̃(e1,l=0)AD̂pk(∆̂) + h̃(o1,l=0)AϵpqD̂qk(∆̂)
]
. (105)

Taking the divergence of Equation (105) we obtain

D̂phAp = r ∑
l,m,l≥2

h̃(e1,l≥2)A∆̂Ylm − 2r ∑
m

h̃(e1,l=1,m)Ak(∆̂+2). (106)

Applying the derivative operator ∆̂ + 2 to Equation (106), we obtain

[∆̂ + 2]D̂phAp = r ∑
l,m,l≥2

h̃(e1,l≥2)A[∆̂ + 2]∆̂Ylm. (107)

Using the Green functions [∆̂ + 2]−1, ∆̂−1, and the orthogonal property (42) of the spherical
harmonics Ylm, we obtain

h̃(e1,l≥2)A =
1
r

∫
S2

dΩY∗
lm∆̂−1[∆̂ + 2]−1[∆̂ + 2]D̂phAp =: h̃(e1,l≥2)A[[hBs]]. (108)
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Thus, the mode coefficient h̃(e1)A is given in the form of the functional of the original metric
component hAp. Through Equation (108), Equation (106) is expressed as

∑
m

h̃(e1,l=1,m)Ak(∆̂+2) =
1
2 ∑

l,m,l≥2
h̃(e1,l≥2)A[[hBr]]∆̂Ylm − 1

2r
D̂phAp. (109)

To resolve the m-degeneracy of Equation (109), we use Equations (101) and (75). Then,
we have

h̃(e1,l=1,m)A =
eimϕ

k(∆̂+2)m

1
4π

∫ 2π

0
dϕe−im′ϕ

[
∑

l,m′ ,l≥2
h̃(e1,l≥2)A[[hBr]]∆̂Ylm′ − 1

r
D̂phAp

]
=: h̃(e1,l=1,m)A[[hBs]] (110)

On the other hand, taking the rotation of Equation (105), we have

ϵpqD̂qhAp = r ∑
l,m,l≥2

[
h̃(o1,l≥2)A∆̂Ylm

]
− 2r ∑

m

[
h̃(o1,l=1)Ak(∆̂+2)

]
. (111)

As in the case of Equation (108), we have

h̃(o1,l≥2)A =
1
r

∫
S2

dΩY∗
lm∆̂−1[∆̂ + 2]−1[∆̂ + 2]ϵpqD̂qhAp =: h̃(o1,l≥2)A[[hBr]], (112)

h̃(o1,l=1)A =
eimϕ

k(∆̂+2)m

1
4π

∫ 2π

0
dϕe−im′ϕ

[
∑

l,m′ ,l≥2

{
h̃(o1,l≥2)A[[hBr]]∆̂Ylm′

}
− 1

r
ϵpqD̂qhAp

]
=: h̃(o1,l=1)A[[hBs]]. (113)

Through Equations (108), (110), (112), and (113), we obtain

h̃(e1,l=0)AD̂pk(∆̂) + h̃(o1,l=0)AϵpqD̂qk(∆̂)

=
1
r

hAp − ∑
l,m,l≥2

[
h̃(e1,l≥2)A[[hBs]]D̂pYlm + h̃(o1,l≥2)A[[hBs]]ϵpqD̂qYlm

]
−∑

m

[
h̃(e1,l=1)A[[hBs]]D̂pk(∆̂+2) + h̃(o1,l=1)A[[hBs]]ϵpqD̂qk(∆̂+2)

]
(114)

=: HAp[[hBs]]. (115)

Here, we use the condition (102). Then, we have

h̃(e1,l=0)A =
[(

D̂qk(∆̂)
)(

D̂qk(∆̂)
)]−1

D̂pk(∆̂)HAp[[hBs]] =: h̃(e1,l=0)A[[hBs]], (116)

h̃(o1,l=0)A =
[(

D̂rk(∆̂)
)(

D̂rk(∆̂)
)]−1

ϵpqD̂qk(∆̂)HAp[[hBs]] =: h̃(o1,l=0)A[[hBs]]. (117)

Thus, we have shown that the mode coefficients h̃(e1)A and h̃(o1)A for all l ≥ 0 modes
are given in the functional forms (108), (110), (112), (113), (116), and (117) of the original
metric hAp under the conditions (101)–(103).

3.2.3. hAB

Through the harmonic functions Ylm (l ≥ 2), k(∆̂+2)m, and k(∆̂), the component hAB of
the metric perturbation hab is decomposed as

hAB = ∑
l,m(l≥2)

h̃(l≥2)ABS + ∑
m=−1,0,1

h̃(l=1,m)ABk(∆̂+2)m + h̃(l=0)ABk(∆̂). (118)
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This decomposition has the same form as Equation (66) for the trace part of the component
hpq. Then, we obtain the inverse relations

h̃(l≥2)AB =
∫

S2
dΩY∗

lm[∆̂ + 2]−1∆̂−1∆̂[∆̂ + 2]hAB =: h̃(l≥2)AB[[hAB]], l ≥ 2, (119)

h̃(l=0)AB =
1

2k(∆̂)

[∆̂ + 2]hAB − ∑
l,m,(l ̸=0,1)

h̃(l≥2)AB[[hAB]][∆̂ + 2]Ylm


=: h̃(l=0)AB[[hAB]], (120)

h̃(l=1,m)AB =
1

k(∆̂+2)m
e+imϕ 1

2π

∫ 2π

0
dϕe−imϕ

×

 1
r2 hAB − ∑

l,m′ ,(l ̸=0,1)
h̃(l≥2)AB[[hAB]]Ylm′ − h̃(l=0)AB[[hAB]]k(∆̂)


=: h̃(l=1)AB[[hAB]]. (121)

which correspond to Equations (66), (71), and (76), respectively.

3.2.4. Summary of the Mode Decomposition Including l = 0, 1 Modes

Here, we summarize the mode decomposition by harmonic functions Ylm (l ≥ 2),
k(∆̂+2)m, and k(∆̂). We decompose the components {hAB, hAp, hpq} of the metric perturba-
tion hab as Equations (37)–(39) with

S =


Ylm for l ≥ 2;

k(∆̂+2)m for l = 1;
k(∆̂) for l = 0.

(122)

This decomposition is invertible for any l, m modes including l = 0, 1 if the
conditions (101)–(103), i.e.,

k(∆̂) ∈ K(∆̂), k(∆̂+2) ∈ K(∆̂+2), k(∆̂+2) = k(∆̂+2)m = Θ1m(θ)eimϕ, (123)(
D̂pk(∆̂)

)(
D̂pk(∆̂)

)
̸= 0, (124)

K(m)pqKpq
(m)

=
(

D̂pD̂qk(∆̂+2)m

)(
D̂pD̂qk(∆̂+2)m

)
− 2
(

k(∆̂+2)m

)2
̸= 0 (125)

are satisfied. As the inverse relation of Equations (37)–(39), the mode coefficients of these
decompositions are given in the functional form of the metric components hAB, hAp, and
hpq as Equations (70), (71), (76), (79), (80), (82), (83), (99), (100), (108), (110), (112), (113), (116),
(117), and (119)–(121). From Equations (37)–(39), the components {hAB, hAp, hpq} vanish if
all mode coefficients {h̃AB, h̃(e1)A, h̃(o1)A, h̃(e0), h̃(e2), h̃(o2)} vanish. On the contrary, from
the obtained functional forms, all mode coefficients {h̃AB, h̃(e1)A, h̃(o1)A, h̃(e0), h̃(e2), h̃(o2)}
vanish if the components {hAB, hAp, hpq} vanish. This indicates the linear independence of
the set of the harmonic functions (41). Therefore, the conditions (123)–(125) guarantee the
linear independence of the set of these harmonic functions (41).

We also note that the Green functions ∆̂−1 and [∆̂ + 2]−1 which used above do not
directly operate to the functions k(∆̂), nor k(∆̂+2)m. Therefore, the domains of these Green

functions ∆̂−1 and [∆̂ + 2]−1 may be regarded as the L2-space spanned by {Ylm|l ̸= 0}
and {Ylm|l ̸= 1}, respectively. The explicit form of these Green functions are given in
Refs. [58,59].
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3.3. Explicit Form of the Mode Functions

Here, we consider the explicit expression of the mode functions k∆̂ and k(∆̂+2) which
satisfy the conditions (123)–(125). In Appendix A, we explicitly see that the choice S = Ylm

for l ≥ 0 does not satisfy these conditions. As the result of this, in the choice S = Ylm, any
vector and tensor harmonics vanish for l = 0 modes. On the other hand, for l = 1 modes,
the vector harmonics have their vector value and the trace parts of the second-rank tensor
of each modes have their tensor values, while all traceless even- and odd-mode harmonics
identically vanish. Therefore, in the choice S = Ylm, the set of harmonics (41) does not play
the role of basis of tangent space on S2 for l = 0, 1 mode. This situation already appeared
in terms of the Green function ∆̂−1 and (∆̂ + 2)−1 in the inverse relations in Section 3.1. For
this reason, we seek an alternative choice of S which satisfy the conditions (123)–(125).

3.3.1. Explicit Form of k(∆̂)
Here, we treat the modes which belong to the kernel of the derivative operator ∆̂, i.e.,

∆̂k(∆̂) =
1√
γ

∂p

(√
γγpq∂qk(∆̂)

)
= 0. (126)

We look for the function which satisfies the conditions (123) and (124). We emphasize that
we do not impose the regularity on the function k(∆̂) on S2 itself in this selection of k(∆̂).
Since the regularity is a kind of boundary condition for perturbations, this regularity may
be imposed on the solutions when we solve the Einstein equations.

Our guiding principle is to look for the solution to Equation (126) with a sim-
ple modification from the conventional spherical harmonic functions. Although the
conditions (123) and (124) do not restrict the ϕ-dependence for k(∆̂), we look for the so-
lution to Equation (126) which is independent of ϕ as the original Y00 in the conventional
spherical harmonics is so. Then, in terms of the coordinate system where γab is given by
Equation (34), Equation (126) yields

d2

dy2 k(∆̂) = 0, (127)

where we introduced an independent variable y by

y = ln
(

1 − cos θ

1 + cos θ

)1/2
. (128)

As the solution to Equation (127), we choose

k(∆̂) = 1 + δy = 1 + δ ln
(

1 − cos θ

1 + cos θ

)1/2
, δ ∈ R. (129)

If δ ̸= 0, we see that

D̂pk(∆̂)(dxp)a = δ(dy)a =
δ

sin θ
(dθ)a ̸= 0, (130)

and (
D̂pk(∆)

)(
D̂pk(∆)

)
=

δ2

sin2 θ
̸= 0. (131)
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Thus, D̂pk(∆̂) given by Equation (130) and ϵpqD̂qk(∆̂) spans the vector space though their
norm is singular at θ = 0, π. The solution (129) to Equation (127) also yields(

D̂pD̂q −
1
2

γpq∆̂
)

k(∆̂) = D̂pD̂qk(∆̂) = δ
cos θ

sin2 θ

(
−θpθq + ϕpϕq

)
̸= 0, (132)

ϵr(pD̂q)D̂
rk(∆̂) = −2δ

cos θ

sin2 θ
θ(pϕq) ̸= 0. (133)

Together with the trace part

1
2

γpqk(∆̂) =
1
2

(
1 + δ ln

(
1 − cos θ

1 + cos θ

)1/2
)
(θpθq + ϕpϕq), (134)

the tensors (132) and (133) span the basis of the space of the second-rank tensor field though
these are singular at θ = 0, π.

3.3.2. Explicit Form of k(∆̂+2)

Here, we consider the kernel mode k(∆̂+2) for the operator ∆̂ + 2. The condition (123)
for k(∆̂+2) is given by(

∆̂ + 2
)
k(∆̂+2) =

1√
γ

∂p

(√
γγpq∂qk(∆̂+2)

)
+ 2k(∆̂+2) = 0. (135)

We look for the function which satisfies the conditions (123) and (125). We emphasize that
we do not impose the regularity on the function k(∆̂+2) on S2 itself as in the case of k(∆̂). To
obtain the solution to Equation (135) which satisfies the conditions (123) and (125), we first
consider the ϕ-dependence from the condition (123). Then, Equation (135) is given by

sin θ∂θ(sin θ∂θΘ1m(θ))− m2Θ1m(θ) + 2 sin2 θΘ1m(θ) = 0. (136)

To solve Equation (136), we introduce the independent variable

z = cos θ, dz = − sin θdθ. (137)

In terms of the independent variable z, we obtain

sin θ
d
dθ

= −(1 − z2)
d
dz

. (138)

Then, Equation (136) is given by

(1 − z2)
d2

dz2 Θ1m(θ)− 2z
d
dz

Θ1m(θ) +

(
1(1 + 1)− m2

1 − z2

)
Θ1m(θ) = 0. (139)

Suppose that we have obtained the solution to Equation (139) as

k(∆̂+2)m = Θ1m(θ)eimϕ. (140)

Here, we introduce the ladder operator L̂± [60] as

L̂± := −ie±iϕ(±i∂θ − cot θ∂ϕ

)
(141)

and examine the function defined by

L̂+k(∆̂+2,m) = −ie+iϕ(+i∂θ − cot θ∂ϕ

)
Θ1m(θ)eimϕ

= (∂θ − m cot θ)Θ1m(θ)ei(m+1)ϕ. (142)
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Evidently, the function given by Equation (142) is the eigenfunction of the operator −i∂ϕ

with the eigenvalue m + 1 as follows

−i∂ϕ L̂+k(∆̂+2,m) = (m + 1)L̂+k(∆̂+2,m). (143)

Now, we consider the variable Φ+ defined by

Φ+ := (∂θ − m cot θ)Θ1m

= −(1 − z2)−1/2
[
(1 − z2)

d
dz

Θ1,m + mzΘ1m

]
, (144)

and straightforward calculations using Equation (139) yields

(1 − z2)
d2

dz2 Φ+ − 2z
d
dz

Φ+ +

(
1(1 + 1)− (m + 1)2

1 − z2

)
Φ+ = 0. (145)

This indicates

Φ+ = Θ1,m+1(θ). (146)

Therefore, we conclude that

L̂+k(∆̂+2,m) = k(∆̂+2,m+1). (147)

On the other hand, we consider the operator L̂− defined by

L̂−k(∆̂+2,m) = −ie−iϕ(−i∂θ − cot θ∂ϕ

)
Θ1,meimϕ

= (−∂θ − m cot θ)Θ1,mei(m−1)ϕ. (148)

Evidently, the function given by Equation (148) is an eigenfunction of the operator −i∂ϕ

with the eigenvalue m − 1:

−i∂ϕ L̂−k(∆̂+2,m) = (m − 1)L̂−k(∆̂+2,m). (149)

Now, we consider

Φ− := (−∂θ − m cot θ)Θ1,m (150)

and straightforward calculations using Equation (139) yields

(1 − z2)
d2

dz2 Φ− − 2z
d
dz

Φ− +

[
1(1 + 1)− (m − 1)2

1 − z2

]
Φ− = 0. (151)

This indicates

Φ− = Θ1,m−1(θ). (152)

Therefore, we conclude that

L̂−k(∆̂+2)m = k(∆̂+2)m−1. (153)

From the above operator L̂± and

L̂±k(∆̂+2)m = k(∆̂+2)m±1, (154)
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we may concentrate only on solving the m = 0 case. Corresponding m = ±1 modes with
l = 1 can be derived from Equation (154). Since k(∆̂+2)m=0 = Θ10(θ), the equation for
Θ10(θ) is given by

(1 − z2)
d2

dz2 Θ10(θ)− 2z
d
dz

Θ10(θ) + 1(1 + 1)Θ10(θ) = 0. (155)

Here, we note that Θ10 = z ∝ Y10 should be a solution to Equation (155). To obtain the other
independent solution, we consider the solution in the form Θ10 = Ψ(z)z. Substituting this
into Equation (155), we can solve Equation (155) as

Θ10 = z + δ

(
1
2

z ln
1 + z
1 − z

− 1
)

, (156)

where we choose one of constant of integration as 1 and δ is another integration constant.
Then, we obtain

k(∆̂+2)m=0 = z + δ

(
1
2

z ln
1 + z
1 − z

− 1
)
= P1(z) + δQ1(z), (157)

where P1(z) is the Legendre polynomial and Q1(z) is the first order and the second kind
Legendre function.

Since we have the explicit form (157) of k(∆̂+2)m=0 as

k(∆̂+2)m = Θ1m(θ)eimϕ, (158)

we can derive the m = ±1 modes by applying the ladder operators L̂± defined by
Equation (141) as

k(∆̂+2)m=±1 = L̂±k(∆̂+2)m=0

=

[√
1 − z2 + δ

(
1
2

√
1 − z2 ln

1 + z
1 − z

+
z√

1 − z2

)]
e±iϕ. (159)

Equations (157) and (159) are summarized as

k(∆̂+2,m=0) = cos θ + δ

(
1
2

cos θ ln
1 + cos θ

1 − cos θ
− 1
)

, δ ∈ R, (160)

k(∆̂+2,m=±1) =

[
sin θ + δ

(
+

1
2

sin θ ln
1 + cos θ

1 − cos θ
+ cot θ

)]
e±iϕ. (161)

Here, we check the non-vanishing properties of D̂pk(∆̂+2) and D̂pD̂qk(∆̂+2). For m = 0

modes, the vector D̂pk(∆̂+2,m=0) is given by

D̂pk(∆̂+2,m=0) = −
[

1 +
1
2

δ

(
ln

1 + cos θ

1 − cos θ
+

2 cos θ

sin2 θ

)]
sin θθp. (162)

Then D̂pk(∆̂+2,m=0) and ϵpqD̂qk(∆̂+2),m=0 span the basis of the tangent space on S2.

Next, we consider the tensor D̂qD̂pk(∆̂+2,m=0) as

D̂qD̂pk(∆̂+2,m=0)

= −
[

cos θ +
1
2

δ

(
+ cos θ ln

1 + cos θ

1 − cos θ
− 4 − 2 cot2 θ

)]
θpθq

−
[

cos θ +
1
2

δ cos θ

(
+ ln

1 + cos θ

1 − cos θ
+

2 cos θ

sin2 θ

)]
ϕpϕq. (163)



Universe 2025, 11, 39 31 of 62

This is not proportional to γab. Therefore, we should have non-vanishing K(m)pq and J(m)pq
defined by Equations (85). To confirm this, we evaluate the condition (103) as(

D̂pD̂qk(∆̂+2)

)(
D̂pD̂qk(∆̂+2)

)
− 2
(

k(∆̂+2)

)2
=

2δ

sin4 θ
. (164)

This indicates that we have non-vanishing K(m)pq and J(m)pq if δ ̸= 0. However, we should
note that these tensor singular at θ = 0, π.

For m = ±1 modes, the vector D̂pk(∆̂+2,m=±1) is given by

D̂pk(∆̂+2,m=±1) =

[
cos θ + δ

(
+

1
2

cos θ ln
1 + cos θ

1 − cos θ
− 1 − 1

sin2 θ

)]
e±iϕθp

+(±i)
[

1 + δ

(
+

1
2

sin θ ln
1 + cos θ

1 − cos θ
+

cos θ

sin2 θ

)]
e±iϕϕp. (165)

Finally, we evaluate the condition (103) as

D̂qD̂pk(∆̂+2,m=±1) =

[
− sin θ + δ

(
−1

2
sin θ ln

1 + cos θ

1 − cos θ
− cos θ

sin θ
+

2 cos θ

sin3 θ

)]
e±iϕθpθq

+

[
− sin θ + δ

(
−1

2
sin θ ln

1 + cos θ

1 − cos θ
− cos θ

sin θ
− 2 cos θ

sin3 θ

)]
e±iϕϕpϕq

∓ 4iδ
sin3 θ

e±iϕθ(pϕq). (166)

This is not proportional to γpq. Therefore, we should have non-vanishing K(m)pq and J(m)pq
defined by Equations (85). This is confirmed by verifying the condition (103) as

(
D̂pD̂qk(∆̂+2)

)(
D̂pD̂qk(∆̂+2)

)
− 2
(

k(∆̂+2)

)2
= − 8δ2

sin4 θ
e±2iϕ. (167)

Then, we have seen that if δ ̸= 0, the condition (103) is satisfied, though this norm is singular
at θ = 0, π. We also note that K(m)pq is orthogonal to J(m)pq as shown in Equations (95)–(97).
Therefore, γpq, K(m)pq, and J(m)pq span the basis of the second-rank tensor field on S2.

3.4. Proposal of the Treatment of l = 0, 1-Mode Perturbations

As mentioned above, it is shown that the harmonic decomposition (37)–(39) have the
one-to-one correspondence between the original metric perturbations {hAB, hAp, hpq} and
the mode coefficients {h̃AB, h̃(e1)A, h̃(o1)A, h̃(e0), h̃(e2), h̃(o2)} for any modes l ≥ 0 through
the employment of the scalar harmonic functions

Sδ =


Ylm for l ≥ 2;

k(∆̂+2)m for l = 1;
k(∆̂) for l = 0,

(168)

where k(∆̂) is given by Equation (129), i.e.,

k(∆̂) = 1 + δ ln
(

1 − cos θ

1 + cos θ

)1/2
, δ ∈ R (169)

and k(∆̂+2)m are given by Equations (157) and (159), i.e.,

k(∆̂+2)m=0 = cos θ + δ

(
1
2

cos θ ln
1 + cos θ

1 − cos θ
− 1
)

, (170)

k(∆̂+2)m=±1 =

[
sin θ + δ

(
1
2

sin θ ln
1 + cos θ

1 − cos θ
+ cot θ

)]
e±iϕ. (171)
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These mode functions k(∆̂+2)m and k(∆̂) are parametrized by the single parameter δ. This
choice satisfies the conditions (123)–(125) but singular at θ = 0, π if δ ̸= 0. When δ = 0,
we have k(∆̂) ∝ Y00 and k(∆̂+2)m ∝ Y1m. In this decomposition, for each mode of any l ≥ 0,
the set of harmonic functions (41) is a linear-independent set in the both senses of the
second-rank tensor field and the function on S2.

Using the above harmonics functions Sδ in Equation (168), we propose the
following strategy 3:

Proposal 1. We decompose the metric perturbation hab on the background spacetime with
the metric (31)–(34) through Equations (37)–(39) with the harmonic function Sδ given by
Equation (168). Then, Equations (37)–(39) become invertible including l = 0, 1 modes. After
deriving the mode-by-mode field equations such as linearized Einstein equations by using the har-
monic functions Sδ, we choose δ = 0 as a regular boundary condition for solutions when we solve
these field equations.

Since the set of the mode functions (41) with S = Sδ have the linear-independence
including l = 0, 1 modes, we can construct gauge-invariant variables and evaluate the
field equations through the mode-by-mode analyses including l = 0, 1 modes through the
choice of these mode functions.

4. Construction of Gauge-Invariant Variables
In this section, we construct gauge-invariant variables for perturbations on a spheri-

cally symmetric background with the metric (31) through Proposal 1. To construct gauge-
invariant variables, we first discuss the gauge-transformation rule for the metric perturba-
tion hab. We use the derivation of the gauge-transformation rules for the mode coefficient
in the decomposition (37)–(39) with the harmonic function S = Sδ given by Equation (168).
In this section, we use the relations of the covariant derivatives associated with the ma-
trices gab, yab, and γab, which are summarized in Appendix B. In Section 4.1, we derive
the gauge-transformation rules for the mode coefficients of the metric perturbation in the
decomposition (37)–(39) with the harmonic function S = Sδ. In Section 4.2, we explicitly
construct gauge-invariant variables for the metric perturbations through the mode-by-
mode analyses. In Section 4.2.3, we summarize gauge-invariant and gauge-dependent
variables in the four-dimensional form.

4.1. Gauge-Transformation Rules

Here, we consider the gauge-transformation rules for the linear-order metric pertur-
bation hab following to Proposal 1. The gauge-transformation rule for linear-order metric
perturbation is given by

Y hab − Xhab = £ξ gab = 2∇(aξb). (172)

We rewrite this gauge-transformation rule in terms of 2 + 2 formulation. To do this, the
generator of gauge-transformation rules is decomposed as

ξa = ξA(dxA)a + ξp(dxp)a. (173)

Through the component-representations (36) and (173), the gauge-transformation rules (172)
are given by
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Y hAB − XhAB = ∇AξB +∇BξA = D̄AξB + D̄BξA, (174)

Y hAp − XhAp = ∇Aξp +∇pξA = D̄Aξp + D̂pξA − 2
r

D̄Arξp, (175)

Y hpq − Xhpq = ∇pξq +∇qξp = D̂pξq + D̂qξp + 2rD̄ArγpqξA. (176)

Furthermore, through the mode-decomposition (37)–(39) and

ξA =: ∑
l,m

ζASδ, (177)

ξp =: r ∑
l,m

[
ζ(e)D̂pSδ + ζ(o)ϵpqD̂qSδ

]
(178)

with the harmonic function Sδ, we can carry out the mode-by-mode analyses, since the set
of the harmonic functions (41) has the linear-independence due to the choice S = Sδ. From
Equation (174), we obtain

Y h̃AB − X h̃AB = 2D̄(AζB). (179)

From Equation (175), we obtain

Y h̃(e1)A − X h̃(e1)A =
1
r

ζA + D̄Aζ(e) −
1
r

D̄Arζ(e), (180)

Y h̃(o1)A − X h̃(o1)A = D̄Aζ(o) −
1
r

D̄Arζ(o). (181)

Finally, the gauge-transformation rules (176) yield

Y h̃(e0) − X h̃(e0) =
4
r

(
−1

2
l(l + 1)ζ(e) + D̄ArζA

)
, (182)

Y h̃(e2) − X h̃(e2) =
2
r

ζ(e), (183)

Y h̃(o2) − X h̃(o2) = −1
r

ζ(o). (184)

We note that these gauge-transformation rules (179)–(184) are not only that for l ≥ 2 modes
but also l = 0, 1 modes.

When we use the usual spherical harmonics Ylm as the scalar harmonics, i.e., δ = 0
from the starting point, we only have Equations (179) and (182) with l = 0 for l = 0 mode
perturbations and the other gauge-transformation rules (180), (181), (183), and (184) do not
appear. In this case, it is difficult to construct gauge-invariant variables for l = 0-mode
perturbations through the similar procedure to the l ≥ 2-mode case. For this reason, we
usually use the gauge-fixing procedure for l = 0 mode perturbations from the old paper
by Zerilli [19]. Of course, the construction of gauge-invariant variables might be possible
if we use the integral representations of the original metric perturbations. However, such
gauge-invariant variables do not match to the statement of Conjecture 1. For this reason,
we do not consider such integral representations here.

Furthermore, for l = 1 modes with δ = 0 from the starting point, we do not have
Equations (183) nor (184) but we have Equations (179)–(182) with non-vanishing ζ(e) and
ζ(o). For l = 1 odd-mode perturbations, it is well-known that the variable defined by

ΦKIF := ϵABD̄A

(
1
r

h̃(o1)B

)
=

1
r

∂t h̃(o1)r − ∂r

(
1
r

h̃(o1)t

)
(185)

is gauge-invariant under the gauge transformation rule (181) [61], where ϵAB = 2(∂t)[A(∂r)B]

in the coordinate system (33). However, when we reconstruct the original metric pertur-
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bations from this gauge-invariant variables for l = 1 odd-mode perturbation, we have to
integrate these gauge-invariant variables and we have to carry out delicate arguments for
the problem that the integration constants are gauge-degree of freedom or not. On the
other hand, such arguments are not necessary for the gauge-invariant variables given by
the statement of Conjecture 1. In this sense, the above gauge-invariant variables ΦKIF for
l = 1 odd-mode perturbations does not match to the statement of Conjecture 1.

Moreover, for l = 1 even-mode perturbations, it is difficult to eliminate ζ(e) and ζA

from the gauge-transformation of even-mode perturbations through the similar procedure
to the l ≥ 2-mode case as in the case of l = 0 modes. In the conventional approach, we use
the gauge-fixing procedure for l = 1 mode perturbations from the old paper by Zerilli [19]
due to this reason. Of course, the construction of gauge-invariant variables for l = 1
even-modes might be possible if we use the integral representations of the original metric
perturbations. However, such gauge-invariant variables do not match the statement of
Conjecture 1. For this reason, we do not consider such integral representation as in the case
of l = 0 mode perturbation.

These situations for l = 0, 1 mode perturbations are the essential reason for our
proposal of the introduction of the singular harmonics S = Sδ ̸=0. As shown below, we can
construct the gauge-invariant variables through the similar procedure to the l ≥ 2-mode
case if we accept the introduction of the singular harmonics S = Sδ ̸=0 at the starting point
and Proposal 1.

4.2. Gauge-Invariant and Gauge-Variant Variables

Inspecting gauge-transformation rules (179)–(184), we can define gauge-invariant variables.

4.2.1. Odd Modes

From gauge-transformation rules (181) and (184), we easily find that the following
combination is gauge-invariant:

h̃(o1)A − D̄A

(
−rh̃(o2)

)
+

1
r

D̄Ar
(
−rh̃(o2)

)
= h̃(o1)A + rD̄A h̃(o2) =: F̃A. (186)

We also note that the gauge-transformation rule (184) implies that

−r2
Y h̃(o2) + r2

X h̃(o2) = rζ(o). (187)

4.2.2. Even Modes

Now, we note that the gauge-transformation rule (183) implies that

r2

2 Y h̃(e2) −
r2

2 X h̃(e2) = rζ(e). (188)

Inspecting gauge-transformation rules (180) and (183), we define the variable ỸA as

ỸA := rh̃(e1)A − rD̄A

( r
2

h̃(e2)

)
+ D̄Ar

( r
2

h̃(e2)

)
= rh̃(e1)A − r2

2
D̄A h̃(e2). (189)

We easily check that the gauge-transformation rules for the variable ỸA is given by

Y ỸA − XỸA = ζA. (190)
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From the gauge-transformation rules (188) and (190), we easily define the gauge-
invariant variables as follows. First, from the gauge-transformation rules (179) and (190),
we find the combination

F̃AB := h̃AB − 2D̄(AỸB) (191)

is gauge-invariant. Second, from the gauge-transformation rules (182), (188), and (190), we
can define the gauge-invariant variables F as follows

F̃ := h̃(e0) −
4
r

ỸAD̄Ar +
2
r

r
2

h̃(e2)l(l + 1)

= h̃(e0) −
4
r

ỸAD̄Ar + h̃(e2)l(l + 1). (192)

4.2.3. Summary of Gauge-Invariant and Gauge-Dependent Variables

In summary, we have defined gauge-invariant variables as follows

F̃A := h̃(o1)A + rD̄A h̃(o2), (193)

F̃ := h̃(e0) −
4
r

ỸAD̄Ar + h̃(e2)l(l + 1), (194)

F̃AB := h̃AB − 2D̄(AỸB), (195)

where we defined the variable ỸA by

ỸA := rh̃(e1)A − r2

2
D̄A h̃(e2). (196)

The gauge-transformation rules for the variable ỸA is given by

Y ỸA − XỸA = ζA. (197)

We also note that the gauge-transformation rules (187) and (188), i.e.,

−r2
Y h̃(o2) + r2

X h̃(o2) = rζ(o). (198)

r2

2 Y h̃(e2) −
r2

2 X h̃(e2) = rζ(e). (199)

Therefore, it is reasonable to define the variables Ỹ(o) and Ỹ(e) as follows

Ỹ(o1) := −r2h̃(o2), (200)

Ỹ(e1) :=
r2

2
h̃(e2) (201)

so that their gauge-transformation rules are given by

Y Ỹ(o1) − XỸ(o1) = rζ(o), (202)

Y Ỹ(e1) − XỸ(e1) = rζ(e). (203)

Furthermore, we define the variable

Ya := ∑
l,m

ỸASδ(dxA)a + ∑
l,m

(
Ỹ(e1)D̂pSδ + Ỹ(o1)ϵpqD̂qSδ

)
(dxp)a. (204)
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The gauge transformation rule for the variable Ya is given by

YYa − XYa = ∑
l,m

(
Y ỸA − XỸA

)
Sδ(dxA)a

+∑
l,m

((
Y Ỹ(e) − XỸ(e)

)
D̂pSδ +

(
Y Ỹ(o) − XỸ(o)

)
ϵpqD̂qSδ

)
(dxp)a

= ∑
l,m

ζASδ(dxA)a + ∑
l,m

(
rζ(e)D̂pSδ + rζ(o)ϵpqD̂qSδ

)
(dxp)a

= ξA(dxA)a + ξp(dxp)a

= ξa, (205)

where we used Equations (177) and (178).
In terms of the gauge-invariant variables {F̃A, F̃, F̃AB} defined by Equations (193)–(195)

and gauge-dependent variables Ya defined by Equation (204), we can express the original
components {hAB, hAp, hpq}. First, we consider the component hAB as follows

hAB = ∑
l,m

(
h̃AB

)
Sδ = ∑

l,m

(
F̃AB + 2D̄(AỸB)

)
Sδ,

= FAB + 2D̄(AYB), (206)

where we defined the gauge-invariant variable FAB by

FAB := ∑
l,m

F̃ABSδ. (207)

Next, we consider the component hAp as follows

hAp = r ∑
l,m

[(
h̃(e1)A

)
D̂pSδ +

(
h̃(o1)A

)
ϵpqD̂qSδ

]
= rFAp + D̂pYA + D̄AYp −

2
r

D̄ArYp, (208)

where we defined

FAp := ∑
l,m

[
F̃AϵpqD̂qSδ

]
, D̂pFAp = 0. (209)

Finally, we consider the component hpq as follows

hpq = r2 ∑
l,m

[
h̃(e0)

1
2

γpqSδ +
(

h̃(e2)

)(
D̂pD̂q −

1
2

γpqD̂rD̂r

)
Sδ

+2
(

h̃(o2)

)
ϵr(pD̂q)D̂

rSδ

]
=

1
2

γpqr2F + 2rγpqD̄ArYA + D̂pYq + D̂qYp, (210)

where we have defined

F := ∑
l,m

F̃Sδ. (211)
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Then, we have obtained

hAB = FAB + 2D̄(AYB), (212)

hAp = rFAp + D̂pYA + D̄AYp −
2
r

D̄ArYp, (213)

hpq =
1
2

γpqr2F + 2rγpqD̄ArYA + D̂pYq + D̂qYp. (214)

Comparing with the gauge-transformation rules (174)–(176), the expressions (212)–(214)
are summarized as

hab =: Fab + £Ygab, (215)

where Fab is the gauge-invariant part in the 2 + 2 formulation. The components of Fab are
given by

FAB = FAB = ∑
l,m

F̃ABSδ, (216)

FAp = rFAp = r ∑
l,m

F̃AϵpqD̂qSδ, D̂pFAp = 0, (217)

Fpq =
1
2

γpqr2F =
1
2

γpqr2 ∑
l,m

F̃Sδ. (218)

Here, we note that the above arguments include not only l ≥ 2 modes but also l = 0, 1
modes of metric perturbations. Equations (215)–(218) represent the complete proof of the
Conjecture 1 for the perturbations on the spherically symmetric background spacetime
and are valid even in the case of δ = 0. Therefore, our general arguments on the gauge-
invariant perturbation theory reviewed in Section 2 are applicable to perturbations on
the Schwarzschild background spacetime without special treatment of l = 0, 1 modes.
Thus, we have resolved the zero-mode problem in the perturbations on the Schwarzschild
background spacetime.

We also note that we only used the forms (31) and (34) of the background metric and
did not used the specific forms of the Schwarzschild metric (33). Therefore, our construction
of the gauge-invariant and gauge-dependent part of the metric perturbation is also valid
for the metric perturbations on any spherically symmetric spacetime. Thus, if we accept
Proposal 1, we reach the following statement:

Theorem 1. If the gauge-transformation rule for a perturbative pulled-back tensor field hab to the
background spacetime M is given by Y hab − Xhab = £ξ(1)

gab with the background metric gab

with spherically symmetry, there then exist a tensor field Fab and a vector field Ya such that hab is
decomposed as hab =: Fab + £Ygab, where Fab and Ya are transformed into YFab − XFab = 0
and YYa − XYa = ξa

(1) under the gauge transformation, respectively.

5. Einstein Equations
Here, we consider the linearized Einstein equations (19) on the spherically symmetric

background spacetime with the metric (31). The gauge-invariant part of the linearized
Einstein tensor (1)G b

a [F ] is given by Equations (17) and (18). The components of the
tensor fields Habc[F ], H c

ab [F ], and H bc
a [F ] in terms of the variables FAB, FAp and F in

Equations (216)–(218) are summarized in Appendix C. Through these formulae and the
mode decomposition in Equations (216)–(218) with the harmonic functions Sδ defined by
Equations (168), the components of the tensor (1)G b

a [F ] are given by
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(1)G B
A =

1
2 ∑

l,m

[(
−D̄DD̄D +

l(l + 1)
r2 − 2

r
(D̄Dr)D̄D

)
F̃ B

A +

(
D̄DD̄A +

2
r
(D̄Dr)D̄A

)
F̃BD

+

(
D̄DD̄B +

2
r
(D̄Dr)D̄B

)
F̃AD − D̄AD̄B F̃ D

D

−
(

D̄AD̄B +
1
r
(D̄Ar)D̄B +

1
r
(D̄Br)D̄A

)
F̃
]

Sδ

+
1
2

δ B
A ∑

l,m

[(
D̄ED̄E − l(l + 1) + 1

r2 +
2
r
(D̄Er)D̄E +

1
r2 (D̄Er)(D̄Er)

)
F̃ D

D

−
(

D̄DD̄E +
4
r
(D̄Dr)D̄E +

2
r2 (D̄Er)(D̄Dr)

)
F̃ED

+

(
D̄DD̄D − l(l + 1)− 2

2r2 +
3
r
(D̄Dr)D̄D

)
F̃
]

Sδ, (219)

(1)G
q

A =
1

2r2 ∑
l,m

[(
−D̄A +

1
r
(D̄Ar)

)
F̃ D

D + D̄D F̃AD − 1
2

D̄A F̃
]

D̂qSδ

+
1
2r ∑

l,m

[(
−D̄DD̄D +

l(l + 1)
r2 − 2

r
(D̄Dr)D̄D +

3
2r2

{
(D̄Dr)(D̄Dr)− 1

})
F̃A

+

(
D̄DD̄A +

3
r
(D̄Dr)D̄A − 1

r
(D̄Ar)D̄D − 2

r2 (D̄Ar)(D̄Dr)
)

F̃D

]
ϵqtD̂tSδ, (220)

(1)G B
p =

1
2 ∑

l,m

[(
−D̄B +

1
r
(D̄Br)

)
F̃ D

D + D̄D F̃BD − 1
2

D̄B F̃
]

D̂pSδ

+
r
2 ∑

l,m

[(
−D̄DD̄D +

l(l + 1)
r2 − 2

r
(D̄Dr)D̄D +

3
2r2

{
(D̄Dr)(D̄Dr)− 1

})
F̃B

+

(
D̄DD̄B +

3
r
(D̄Dr)D̄B − 1

r
(D̄Br)D̄D − 2

r2 (D̄Br)(D̄Dr)
)

F̃D
]

ϵpqD̂qSδ, (221)

(1)G
q

p = ∑
l,m

[
1

2r2 D̄D

(
r2D̄D F̃

)
− 1

r2 D̄D

(
r2D̄E F̃ED

)
+

(
D̄ED̄E +

1
r
(D̄Er)D̄E − l(l + 1)

2r2

)
F̃ D

D

]
1
2

γ
q

p Sδ

+
1

2r2 ∑
l,m

[
−F̃ D

D

(
D̂pD̂q − 1

2
γ

q
p D̂sD̂s

)
Sδ

− D̄D

(
rF̃D

)(
ϵsqD̂pD̂s + ϵspD̂qD̂s)Sδ

]
, (222)

where we used the fact that the background Ricci curvature vanishes and the background
Einstein equations (A84) and (A85) in Appendix B.

We also decompose the components of the linearized energy-momentum tensor (1)T b
a

as follows
(1)T B

A = ∑
l,m

T̃ B
A Sδ, (223)

(1)T
q

A =
1
r ∑

l,m

{
T̃(e1)AD̂qSδ + T̃(o1)AϵqrD̂rSδ

}
, (224)

(1)T B
p = r ∑

l,m

{
T̃B
(e1)D̂pSδ + T̃B

(o1)ϵprD̂rSδ

}
, (225)



Universe 2025, 11, 39 39 of 62

(1)T
q

p = ∑
l,m

{
T̃(e0)

1
2

γ
q

p Sδ + T̃(e2)

(
D̂pD̂qSδ −

1
2

γ
q

p D̂rD̂rSδ

)
+T̃(o2)

(
ϵspD̂qD̂sSδ + ϵsqD̂pD̂sSδ

)}
. (226)

The linearized continuity Equation (25) for the energy-momentum tensor T b
a is

summarized as

D̄C T̃ B
C +

2
r
(D̄Dr)T̃ B

D − 1
r

l(l + 1)T̃B
(e1) −

1
r
(D̄Br)T̃(e0) = 0, (227)

D̄C T̃(e1)C +
3
r
(D̄Cr)T̃(e1)C +

1
2r

T̃(e0) −
1
2r

(l − 1)(l + 2)T̃(e2) = 0, (228)

D̄C T̃(o1)C +
3
r
(D̄Dr)T̃(o1)D +

1
r
(l − 1)(l + 2)T̃(o2) = 0. (229)

Through the components (219)–(222) for the linearized Einstein tensor and the
components (223)–(226) for the linearized energy-momentum tensor, we evaluate the lin-
earized Einstein equation (19). Due to the linear-independence of the set of harmonics (41),
we can carry out the mode-by-mode analyses including l = 0, 1 modes. Since the odd-mode
perturbations and the even-mode perturbations are decoupled with each other, we consider
these perturbations separately.

5.1. Odd Mode Perturbation Equations

From the linearized Einstein equation (19) through Equations (219)–(222) and
Equations (223)–(226), the odd-mode part in the linearized Einstein equations are sim-
plified as the constraint equation

D̄D(rF̃D) = −16πr2T̃(o2), (230)

and the evolution equation

−
[

D̄DD̄D − l(l + 1)
r2

]
(rF̃A)−

2
r2 (D̄Dr)(D̄Ar)(rF̃D) +

2
r
(D̄Dr)D̄A(rF̃D)

= 16πr
(

T̃(o1)A + rD̄AT̃(o2)

)
. (231)

Furthermore, we have the continuity equation (229) for the odd-mode matter perturba-
tion which is derived from the divergence of the first-order perturbation of the energy-
momentum tensor. The explicit strategy to solve these odd-mode perturbations and l = 0, 1
mode solutions will be discussed in Section 6 in this paper.

5.2. Even Mode Perturbation Equations

Here, we consider the even-mode perturbations from Equations (219)–(222) and (223)–(226).
The traceless even part of the (p, q)-component of the linearized Einstein equation (19) is given by

F̃ D
D = −16πr2T̃(e2). (232)

Using this equation, the even part of the (A, q)-component, equivalent to the (p, B)-
component, of the linearized Einstein equation (19) yields

D̄DF̃AD − 1
2

D̄A F̃ = 16π

[
rT̃(e1)A − 1

2
r2D̄AT̃(e2)

]
=: 16πS(ec)A (233)

through the definition of the traceless part F̃AB of the variable F̃AB defined by

F̃AB := F̃AB − 1
2

yAB F̃ C
C . (234)
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Using Equations (232), (233), and the component (A84) of background Einstein equation in
Appendix B, the trace part of (p, q)-component of the linearized Einstein equation (19) is
given by

D̄D T̃(e1)D +
3
r
(D̄Dr)T̃(e1)D +

1
2r

T̃(e0) −
(l − 1)(l + 2)

2r
T̃(e2) = 0. (235)

This coincides with the component (228) of the continuity equation for the linearized
energy-momentum tensor. Next, we consider the (A, B)-components of the linearized
Einstein equation (19).

Through Equations (232) and (233), the trace part of the (A, B)-component of the
linearized Einstein equation (19) is given by(

D̄DD̄D +
2
r
(D̄Dr)D̄D − (l − 1)(l + 2)

r2

)
F̃ − 4

r2 (D̄Cr)(D̄Dr)F̃CD = 16πS(F), (236)

S(F) := T̃ C
C + 4(D̄Dr)T̃D

(e1) − 2r(D̄Dr)D̄D T̃(e2) − (l(l + 1) + 2)T̃(e2). (237)

On the other hand, the traceless part of the (A, B)-component of the linearized Einstein
equation (19) is given by[

−D̄DD̄D − 2
r
(D̄Dr)D̄D +

4
r
(D̄DD̄Dr) +

l(l + 1)
r2

]
F̃AB

+
4
r
(D̄Dr)D̄(AF̃B)D − 2

r
(D̄(Ar)D̄B) F̃

= 16πS(F)AB, (238)

S(F)AB := TAB − 1
2

yABT C
C − 2

(
D̄(A(rT̃(e1)B))−

1
2

yABD̄D(rT̃(e1)D)

)
+2
(
(D̄(Ar)D̄B) −

1
2

yAB(D̄Dr)D̄D

)
(rT̃(e2))

+r
(

D̄AD̄B − 1
2

yABD̄DD̄D

)
(rT̃(e2))

+2
(
(D̄Ar)(D̄Br)− 1

2
yAB(D̄Cr)(D̄Cr)

)
T̃(e2)

+2yAB(D̄Cr)T̃(e1)C − ryAB(D̄Cr)D̄C T̃(e2),

(239)

where we used the background Einstein equation (A85) in Appendix B.
Equations (232), (233), (236), and (238) are all independent equations of the lin-

earized Einstein equation for even-mode perturbations. These equations are coupled
equations for the variables F̃ C

C , F, and F̃AB and the energy-momentum tensor for the
matter field. When we solve these equations, we have to take into account of the continuity
Equations (227) and (228) for the matter fields. We note that these equations are valid not
only for l ≥ 2 modes but also l = 0, 1 modes in our formulation.

The explicit strategy to solve these Einstein equations for even modes, and the explicit
solution for l = 0, 1 mode perturbations are discussed in the Part II paper [43].

6. Component Treatment for the Odd-Mode Perturbations of the
Einstein Equations
6.1. Strategy to Solve Odd-Mode Perturbations

Here, we consider the component treatment for the odd-mode perturbations based on
the old paper by Regge and Wheeler [17], and Zerilli [18,19]. We introduce the component
of rF̃D as
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rF̃D =: X(o)(dt)D + Y(o)(dr)D, rF̃D = − f−1X(o)(∂t)
D + f Y(o)(∂r)

D, (240)

where the background metric is given by Equations (31)–(34). In terms of the
components (240), Equation (230) is given by

−∂tX(o) + f f ′Y(o) + f 2∂rY(o) = −16πr2 f T̃(o2), (241)

where f ′ = ∂r f . The components of Equation (231) are summarized as follows

1
f

∂2
t X(o) − f ∂2

r X(o) −
2(1 − f )

r2 X(o) +
l(l + 1)

r2 X(o) −
1 − 3 f

r
∂tY(o)

= 16πr
(

T̃(o1)t + r∂tT̃(o2)

)
, (242)

∂2
t Y(o) − f ∂r( f ∂rY(o)) +

2(2 f − 1) f
r

∂rY(o) +
(l − 1)(l + 2)

r2 f Y(o) +
(1 − f )(5 f − 1)

r2 Y(o)

= 16πr
(

f T̃(o1)r + r f ∂r T̃(o2) + (1 − f )T̃(o2)

)
. (243)

In addition to these equations, the odd-mode perturbation (229) of the divergence of the
energy-momentum tensor is also relevant.

Here, we consider Equations (243). We define the dependent variable Z(o) by

Y(o) =:
r
f

Z(o) (244)

and we have obtained the famous equation which is called the Regge–Wheeler equation

∂2
t Z(o) − f ∂r( f ∂rZ(o)) +

1
r2 f [l(l + 1)− 3(1 − f )]Z(o) = 16π f

[
f T̃(o1)r + r∂r

(
f T̃(o2)

)]
. (245)

We can solve Equation (245) with appropriate boundary conditions and obtain the variable
Y(o) through Equation (244). For the l ≥ 2 case, the analytic solutions to Equation (245) are
constructed by the formulation proposed by Mano, Suzuki, and Takasugi [62–65] (MST
formulation). However, this is a partial solution to the odd-mode Einstein equations. We
cannot regard such solutions as the solution to the total Einstein equation for odd-mode
perturbations, because we have other two equations of the Einstein equation (242) and
the constraint equation (241). To obtain the solution to the total Einstein equations for
odd-mode perturbations, we have to discuss Equations (241), (242), and (229), i.e.,

− 1
f

∂tT̃(o1)t + f ∂r T̃(o1)r + f ′T̃(o1)r +
3
r

f T̃(o1)r +
1
r
(l − 1)(l + 2)T̃(o2) = 0. (246)

in addition to Equation (245).
To obtain the solution to the total Einstein equations for odd-mode perturbations, it is

convenient to introduce the Cunningham–Price–Moncrief variable Φ(o) [22] by

Φ(o) := 2r
[

r2∂r

(X(o)

r2

)
− ∂tY(o)

]
(247)

= 2r∂rX(o) − 4X(o) − 2r∂tY(o). (248)

Here, we consider the time derivative of Φ(o) and use Equations (241), (243), and the
background Einstein equation (A82) as
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∂tΦ(o) = 2
(l − 1)(l + 2)

r
f Y(o) − 32πr2 f T̃(o1)r

= 2(l − 1)(l + 2)Z(o) − 32πr2 f T̃(o1)r. (249)

The relation (249) indicates that the variable Z(o) is related to Φ(o) for l ̸= 1 modes, while
the time derivative of Φ(o) is just the matter degree of freedom T̃(o1)r for the l = 1 mode.
This relation also gives the relation with the metric perturbation Y(o) as

(l − 1)(l + 2)Y(o) =
r

2 f
∂tΦ(o) + 16πr3T̃(o1)r. (250)

On the other hand, using Equations (241) and (242), the r-derivative of Φ(o) through
Equation (248) is given by

∂rΦ(o) = −1
r

Φ(o) +
2
r f

(l − 1)(l + 2)X(o) − 32π
r2

f
T̃(o1)t. (251)

Then, we obtain the relation

(l − 1)(l + 2)X(o) =
f
2

(
r∂rΦ(o) + Φ(o)

)
+ 16πr3T̃(o1)t. (252)

From Equations (249) and (251) and the constraint (241), we obtain

∂r∂tΦ(o) − ∂t∂rΦ(o) = ∂r

[
+2

(l − 1)(l + 2)
r

f Y(o) − 32πr2 f T̃(o1)r

]
−∂t

[
−1

r
Φ(o) +

1
r

2(l − 1)(l + 2)
1
f

X(o) − 32πr2 1
f

T̃(o1)t

]
= −32πr2

[
− 1

f
∂tT̃(o1)t + f ′T̃(o1)r + f ∂r T̃(o1)r

+
3
r

f T̃(o1)r +
1
r
(l − 1)(l + 2)T̃(o2)

]
= 0. (253)

The final equality comes from the odd-mode perturbation (246) of the divergence of
the energy-momentum tensor. Thus, Equations (249) and (251) are integrable under the
constraint (241) and the continuity Equation (246).

We emphasize that the relations (250) and (252) give the relations of the metric compo-
nents (X(o),Y(o)) and the master variable Φ(o) only for l ̸= 1 mode. In the case of the l = 1
mode, these equations give the constraint of the master variable Φ(o) and the matter degree
of freedom. Furthermore, in the derivation of the relation (252), we used Equation (241)
and (242), which means that the relation (252) carries the information of Equation (242).

From Equation (249), we evaluate the second time-derivative of the master variable
Φ(o). On the other hand, from Equation (251) we also evaluate the second derivative of Φ(o)
with respect to the tortoise coordinate f ∂r. Furthermore, using Equations (248) and (252),
we obtain

∂2
t Φ(o) − f ∂r

[
f ∂rΦ(o)

]
+

1
r2 f [l(l + 1)− 3(1 − f )]Φ(o)

= 32πr f
[
∂r(rT̃(o1)t)− r∂tT̃(o1)r

]
. (254)
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This has the same form as Equation (245), but we have different source terms from
Equation (245). For the l ≥ 2 case, the analytic solution to Equation (254) is also constructed
by the MST formulation [62–65]. In the vacuum case, Equation (249) with l ̸= 1 implies
that the component Y(o) of the metric perturbation corresponds to the time-derivative of
the variable Φ(o). This indicates that Equation (254) corresponds to the time-integration
of Equation (245) in the vacuum case. However, there is no degree of freedom of the
integration constant in Equation (254). Therefore, we may say that the initial conditions for
Equation (254) are restricted more than that of Equation (245).

Here, we note that Equation (250) is derived from Equations (241) and (245). This
means that the relation (250) does not includes the information (242). On the other hand, the
relation (252) is derived from Equation (241) and (242). This means that the relation (252)
does not includes the information of Equation (245). In other words, we may consider
the relation (250) to be a result of Equation (245), while Equation (251) is a result of
Equation (242). Therefore, we obtain the two equations (250) and (252) from the three
Equations (241), (245), and (242). On the other hand, we have derived Equation (254) from
Equations (241), (245), and (242), which is independent of Equations (250) and (252). Thus,
we may regard that all information of the set of three Equations (241), (245), and (242) is
included in the set of three Equations (250), (252), and (254). In addition to these equations,
we have to take into account of the continuity equation (246) for the odd-mode perturbations
of the matter field.

However, as emphasized above, these arguments are not valid for l = 1 mode. There-
fore, we have to reconsider the derivation of equations in the case of l = 1 mode, separately.
Here, we examine the l = 1 modes. In this case, Equation (249) is still valid, though this
equation does not give the component Y(o) of the metric perturbations. In this case, the
time-derivative of the variable Φ(o) is given by

∂tΦ(o) = −32πr2 f T̃(o1)r, (255)

which indicates that ∂tΦ(o) is determined by the matter degree of freedom. Similarly,
Equation (251) is also valid even in the case of l = 1 mode, though this equation does not
give the component X(o) of the metric perturbations. In this case, we obtain

f ∂rΦ(o) = −1
r

f Φ(o) − 32πr2T̃(o1)t. (256)

This equation indicates that the ∂rΦ(o) is also determined by the matter degree of free-
dom. From Equations (255) and (256), we can confirm that the variable Φ(o) satisfies
Equation (254) with l = 1. However, we do not have to solve Equation (254) with l = 1
in this case, because we can directly integrate Equations (255) and (256). Actually, the
integrability condition ∂t∂rΦ(o) = ∂r∂tΦ(o) of Equations (255) and (256) can be checked
through the continuity equation (246) with l = 1.

Since we obtain the variable Φ(o) by the direct integration of Equations (255) and (256),
we can obtain the relation between the components X(o) and Y(o) of the metric perturba-
tions through the definition (248). In addition to the solution Φ(o), if we have a solution to

Z(o) =
f
r Y(o), independently, we obtain the components X(o) and Y(o) of the metric pertur-

bations through the above relation between X(o) and Y(o). Note that Z(o) =
f
r Y(o) can be

determined through the integration of Equation (245) with l = 1 with appropriate boundary
conditions. In this case, the continuity equation (246) for odd-mode matter perturbations is
used as a consistency check of the solutions.
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6.2. Odd-Mode Solutions

Since the construction of solutions for l ≥ 2 mode is accomplished by the MST
formulation [62–65], we discuss the l = 0, 1-mode solutions for odd-mode perturbations
along Proposal 1 and the strategy discussed in Section 6.1.

6.2.1. l = 0 Odd Mode

We choose Equation (129) as the harmonic function k(∆̂) and used the set {D̂pk(∆̂),
ϵprD̂rk(∆̂), D̂pD̂qk(∆̂), 2ϵr(pD̂q)D̂rk(∆̂)} as the basis of the vector and tensors on S2. The bases

of the odd-mode perturbations are ϵprD̂rk(∆̂) and 2ϵr(pD̂q)D̂rk(∆̂). Following Proposal 1,
we choose δ = 0 as the regularity of solutions when we solve the linearized Einstein
equations. As shown in Equations (131) and (133), ϵprD̂rk(∆̂) = 0 = 2ϵr(pD̂q)D̂rk(∆̂). Then,
we conclude that there is no non-trivial solution for odd-mode perturbations with l = 0.

6.2.2. l = 1 Odd-Mode Vacuum Solution

Following the strategy to solve the l = 1 odd-mode perturbation given in Section 6.1,
we consider the equations (245), (246) with l = 1, (248), (255), and (256). To derive the
non-vacuum solution to the linearized Einstein equations for l = 1 odd-mode perturbations,
it is instructive to consider the vacuum case in which T̃(o1)t = T̃(o1)r = T̃(o2) = 0. From
Equations (255) and (256), we obtain the solution to these equations as 4

Φ(o) =
α

r
, (257)

where α is constant of integration.
On the other hand, Y(o) is obtained as the solution to the l = 1 version of the Regge–

Wheeler equation (245) without source terms through Equation (244). Here, we consider
the case Y(o) = 0, at first. The derivations of solutions under the assumption Y(o) = 0 is an
instructive lesson for the derivation of the general solutions of the l = 1 odd-mode pertur-
bations. Through the definition (247) of the variable Φ(o) and Equation (257), we obtain

α

r
= 2r

[
r2∂r

(X(o)

r2

)]
. (258)

The solution to Equation (258) together with the assumption Y(o) = 0 is a special solution
to the linearized Einstein equations for l = 1 odd-mode perturbations as follows:

X(o) = − α

6r
+ β1r2, Y(o) = 0, (259)

where β1 is constant 5. From Equations (217) and (240), we can derive the gauge-invariant
metric perturbation FAp which corresponds to the solution (259). In the l = 1 modes, there
are m = 0,±1 modes. In this paper, we only consider the m = 0-mode perturbation, since
the generalization to m = ±1 modes is straightforward. If we choose δ = 0 in the mode
function (162), we obtain

FAp = rFAp = rF̃AϵpqD̂qk(∆̂+2,m=0), ϵpqD̂qk(∆̂+2,m=0) = sin2 θ(dϕ)p. (260)

Then, we have

2FAp(dxA)(a(dxp)b) = 2rF(Ap)(dxA)(a(dxp)b)

= 2X(o) sin2 θ(dt)(a(dϕ)b) + 2Y(o) sin2 θ(dr)(a(dϕ)b) (261)

=
(
− α

3r
+ 2β1r2

)
sin2 θ(dt)(a(dϕ)b). (262)
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Here, the term β1r2 is diverged as r → ∞. At this moment, we choose the arbitrary function
β1 = 0 to derive a special solution. Then, we have obtained

2FAp(dxA)(a(dxp)b) = − α

3r
sin2 θ(dt)(a(dϕ)b). (263)

Equation (263) is the linearized Kerr solution. Actually, the Kerr solution with the Kerr
parameter a is expressed as [66,67]

gab = −
[

1 − 2Mr
Σ

]
(dt)a(dt)b −

2aMr sin2 θ

Σ
(dt)(a(dϕ)b) +

Σ
∆
(dr)a(dr)b

+Σ(dθ)a(dθ)b +

[
r2 + a2 +

2Mr
Σ

a2 sin2 θ

]
sin2 θ(dϕ)a(dϕ)b, (264)

where

Σ := r2 + a2 cos2 θ, ∆ := r2 + a2 − 2Mr. (265)

In the metric (264), we replace a → ϵa, where ϵ is the parameter for the perturbative
expansion. Then, when the Kerr metric (264) is expressed as

gab = yab + r2γab + ϵ

(
−2aM

r
sin2 θ(dt)(a(dϕ)b)

)
+ O(ϵ2). (266)

Comparing Equations (263) and (266), the constant of integration α in Equation (263) is
identified as the angular momentum perturbation in Kerr solution by choosing

α

3
= 2aM =: 2a10M. (267)

Thus, we have seen that the solution (262) is given using the Kerr parameter a10 as

2FAp(dxA)(a(dxp)b) = 2
(
− a10M

r
+ β1r2

)
sin2 θ(dt)(a(dϕ)b). (268)

Next, we consider the physical meaning of the constant β1 in the solution (262). If we
consider the frame with the rigid rotation

t = t′, ϕ = φ + ϵωt′. (269)

In terms of (t′, φ), the background metric (31) with Equations (33) and (34) is given by

gab = − f (dt′)a(dt′)b + f−1(dr)a(dr)b + r2
[
(dθ)a(dθ)b + sin2 θ(dφ)a(dφ)b

]
+2ϵωr2 sin2 θ(dt′)(a(dφ)b) + O(ϵ2). (270)

Comparing Equation (270) and Equation (268), we can see that the arbitrary function β1

corresponds to

β1 = ω. (271)

Thus, we may interpret the integration constant β1 as non-inertia term due to the rigidly
rotating frame with the angular velocity ω.
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Finally, we consider the general solution for l = 1 odd-mode perturbations which
includes the case Y(o) ̸= 0 through Equations (244) and (245). Here, we consider the
situation Y(o) ̸= 0 and introduce the variable W(o) by the equation

Yo =: r2∂rW(o), Z(o) =
f
r

Y(o) = r f ∂rW(o). (272)

Through the solution (257) with Equation (267) and the definition (247) of the variable Φ(o),
we obtain the equation

6a10M
r

= 2r
[

r2∂r

(X(o)

r2

)
− r2∂t∂rW(o)

]
. (273)

Integrating this equation, we obtain

X(o) = − a10M
r

+ β1r2 + r2∂tW(o). (274)

Through Equations (217) and (240), we obtain

2FAp(dxA)(a(dxp)b) = 2
(
− a10M

r
+ r2β1 + r2∂tW(o)

)
sin2 θ(dt)(a(dϕ)b)

+2r2∂rW(o) sin2 θ(dr)(a(dϕ)b). (275)

Note again that the variable Z(o) = r f ∂rW(o) satisfy the Regge–Wheeler equation (245)
with l = 1.

The above interpretation of the arbitrary function β1 as the inertia force on the rigidly
rotation frame is instructive to consider the interpretation of the odd-mode vacuum
solution (275). To see this, we consider the component expression of £V gab, where Va

is constructed from gauge-invariant variables, which is discussed in Section 2. To obtain
the components of £V gab, the explicit components of the Christoffel symbol Γ c

ab for the
background metric (31) with Equations (33) and (34) are convenient, which are summa-
rized in Equations (A88) in Appendix B. Here, we assume that Va = Vϕ(dϕ)a, then the
non-vanishing components of £V gab are given by

£V gtϕ = ∂tVϕ, £V grϕ = ∂rVϕ − 2
r

Vϕ, £V gθϕ = ∂θVϕ − 2 cot θVϕ. (276)

Comparing Equations (275) and (276), we obtain

Va =
(

β1t + β0 + W(o)(t, r)
)

r2 sin2 θ(dϕ)a, (277)

£V gab = ∂t

(
β1t + β0 + W(o)(t, r)

)
r2 sin2 θ2(dt)(a(dϕ)b)

+
(

∂rW(o)(t, r)
)

r2 sin2 θ2(dr)(a(dϕ)b), (278)

where β0 is constant. This coincides with the perturbation (275) with the condition of the
vanishing Kerr parameter a10 = 0. Then, we have

2FAp(dxA)(a(dxp)b) = −2a10M
r

sin2 θ(dt)(a(dϕ)b) + £V gab, (279)

Va =
(

β1t + β0 + W(o)(t, r)
)

r2 sin2 θ(dϕ)a. (280)

Here, we note that the vector field Va and £V gab are gauge-invariant. The interpretation
of this term £V gab, which is gauge invariant in the sense of the second kind, is extensively
discussed in Section 7.
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6.3. Odd Mode Non-Vacuum l = 1 Solution

Inspecting the derivation of the vacuum solution for l = 1 modes in Section 6.2.2,
we consider the non-vacuum solution for l = 1 modes. For l = 1 modes, the linearized
Einstein equations for the master variable Φ(o) defined by Equation (247) are given by
Equations (255) and (256). As mentioned in Section 6.1, the integrability condition for
these equations is guaranteed by the continuity equation (246) with l = 1. Inspecting
Equations (257) and (267), we consider the solution in the form

Φ(o) =
6Ma1(t, r)

r
. (281)

Substituting Equation (281) into Equations (255) and (256), we obtain

∂ta1(t, r) = −16π

3M
r3 f T̃(o1)r, ∂ra1(t, r) = −16π

3M
r3 1

f
T̃(o1)t. (282)

The integrability of Equations (282) is equivalent to the integrability of Equations (255) and (256)
which is guaranteed by the continuity equation (246) with l = 1. Then, we may integrate
Equation (282) as

a1(t, r) = −16π

3M
r3 f

∫
dtT̃(o1)r + a10

= −16π

3M

∫
drr3 1

f
T̃(o1)t + a10, (283)

where a10 is the constant which corresponds to the Kerr parameter a in Equation (264) as
shown in the vacuum case.

Similar arguments to those in Section 6.2.2, which lead the results (279) and (280),
also leads

2FAp(dxA)(a(dxp)b) = 6Mr2
[∫

dr
a1(t, r)

r4

]
sin2 θ(dt)(a(dϕ)b) + £V gab, (284)

Va =
(

β1t + β0 + W(o)(t, r)
)

r2 sin2 θ(dϕ)a. (285)

Here, we note that the vector field Va and £V gab are gauge-invariant in the sense of the
second kind. The term £V gab may always appear due to the symmetry of the linearized
Einstein equation as pointed out through Equation (28). However, it is also true that we
can eliminate the term £V gab by an infinitesimal coordinate transformation (2) at any time.
The interpretation of the term £V gab will be discussed in Section 7.

7. Summary and Discussions
In summary, after reviewing our general framework of the gauge-invariant pertur-

bation theory, we discussed a resolution of the “zero-mode problem” in perturbations on
the Schwarzschild background spacetime. The “zero-mode problem” in the context of our
general framework of the gauge-invariant perturbation theory corresponds to the l = 0, 1
mode problem in perturbations of the Schwarzschild background spacetime. In the review
of our general framework of the gauge-invariant perturbation theory, we emphasize the
importance of the distinction of the first- and the second-kind gauge in general relativity. It
should be also emphasized that our general framework for the gauge-invariant perturba-
tion theory is a formulation to exclude the second-kind gauge degree of freedom, but we
do not exclude first-kind gauge degrees of freedom.

As emphasized in Section 2, Conjecture 1 is the non-trivial and an important premise
of our general framework of gauge-invariant perturbation theories. If Conjecture 1 is
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actually true, we can develop gauge-invariant perturbation theory on general background
spacetime and we can also extend this gauge-invariant perturbation theory to higher-order
perturbation theory. For this reason, the gauge-invariant treatment of the l = 0, 1 modes in
perturbations of the Schwarzschild background spacetime is important not only for the
development of the linear perturbations but also for the development of the higher-order
perturbation theory on the Schwarzschild background spacetime.

To find the gauge-invariant treatments of the l = 0, 1 mode perturbations on the
Schwarzschild background spacetime, we first reviewed 2 + 2 formulation in which the
decomposition formulae (37)–(39) with the spherical harmonic functions Ylm as the scalar
harmonic function S and explained why l = 0, 1 modes should be separately treated in
conventional perturbation theory on the Schwarzschild background spacetime. The special
treatment in the conventional formulation caused by the loss of the linear independence
of the set (41) of the tensor harmonic functions on S2, i.e., vector and/or tensor harmonic
functions vanishes in l = 0, 1 modes and does not play a role of the bases of tangent
space on S2.

To recover this situation, instead of the spherical harmonics Y00 and Y1m for l = 0, 1
modes, we introduce the mode functions k(∆̂) and k(∆̂+2)m, which belong to the kernel of

the derivative operator ∆̂ and ∆̂ + 2, respectively. We also derive the sufficient condition for
which the decomposition Formulae (37)–(39) with the harmonic function S = Sδ defined by
Equation (63) is invertible not only for l ≥ 2 modes but also l = 0, 1 modes. As a result,
we showed that the mode functions (169)–(171) with the parameter δ for l = 0, 1 modes
satisfy this sufficient condition. These mode functions realize the conventional spherical
harmonic functions Y00 and Y1m when δ = 0. However, in this case, the set of harmonic
functions (41) loses the linear independence as the bases of the tangent space on S2 as the
conventional case, nevertheless the set {Ylm} of the spherical harmonics is a complete bases
set of the L2-space of scalar functions on S2. On the other hand, when δ ̸= 0, the set of the
mode functions (41) has the linear-independence as the bases of the tangent space on S2.
However, the mode functions k(∆̂) and k(∆̂+2)m with δ ̸= 0 are singular functions.

Due to this situation, we proposed Proposal 1 as a strategy to define the gauge-
invariant variables for l = 0, 1 modes and to derive and solve the linearized Einstein
equation. Following Proposal 1, we can construct gauge-invariant and gauge-dependent
variables for linear metric perturbation through the similar manner to the case of the l ≥ 2
modes. This construction is a proof of Conjecture 1 for the perturbations on the spherically
symmetric background spacetime. Then, we reach to the statement Theorem 1. Owing to
Theorem 1, we can develop gauge-invariant perturbation theory on spherically symmetric
background spacetimes including l = 0, 1 modes. Furthermore, Theorem 1 yields that we
can develop higher-order gauge-invariant perturbation theory on any spherically symmet-
ric background spacetimes, although this development is beyond the current scope of this
paper. A brief discussion of this development to higher-order perturbations was already
given in ref. [42].

In addition to the discussion on the extension to the higher-order perturbation theory,
it is also true that we are proposing a different procedure from the conventional one as
Proposal 1. The difference is in the timing of the imposition of the boundary conditions on
the functions on S2 to solve the Einstein equations. In conventional treatments, we restrict
the function on S2 to the L2-space through the mode decomposition using the spherical
harmonics Ylm from the starting point. In Proposal 1 in this paper, we do not impose the
regular boundary condition on the functions S2 at the starting point, but we impose the
regular boundary condition δ = 0 after the construction of the gauge-invariant variables
and the derivation of the mode-by-mode Einstein equations. Physically, this different
timing of the imposition of the boundary condition should not affect the physical properties
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of the solution to the Einstein equations. Therefore, we have to confirm that the solutions
to the Einstein equation derived by Proposal 1 are physically reasonable. To check this,
we derived the linearized Einstein equations on the Schwarzschild background spacetime
following Proposal 1. We consider the mode decomposition of the general expression of the
linearized energy-momentum tensor as the source term of the linearized Einstein equations.
To solve the derived linearized Einstein equations, the linearized perturbations of the
continuity equation of the energy-momentum tensor should be taken into account. The
metric perturbations on the Schwarzschild spacetime are classified into the odd-mode and
the even-mode perturbations. In this Part I paper, we concentrate only on the odd-mode
perturbations and derive the l = 0, 1-mode solutions following Proposal 1.

For odd-mode perturbations, we examined the strategy to solve the linearized Einstein
equations for any l modes following the Proposal 1, though we take care of the structure
of equations for l = 1 mode perturbations. As is well-known, to solve the odd-mode
perturbations, Einstein equations for the l ≥ 2 odd-mode perturbations are reduced to
the Regge–Wheeler equation. Furthermore, the solutions to the Regge–Wheeler equation
for l ≥ 2 modes are constructed through the MST formulation [62–65]. Therefore, we
concentrated on the l = 0, 1 mode perturbations.

Following Proposal 1, for l = 0 odd-mode perturbations, we reached the conclusion
that there is no non-trivial solution to the linearized Einstein equation as expected. Then, we
carefully examined the solutions to the Einstein equations for l = 1 odd-mode perturbations.
We first consider the vacuum solution to the linearized Einstein equation in which the linear
perturbation of the energy-momentum tensor vanishes. Then, we obtain the linearized
Kerr parameter perturbation with the term given in the form of the Lie derivative of the
background metric gab. Through the variation of constant, we derived the general solutions
to non-vacuum linearized Einstein equations for the l = 1 odd-mode perturbations. Since
we use the constant Kerr parameter in the variation of constant, we can expect that the
obtained general solution describes the spin-up or the spin-down of the black hole due to
the effect of the linearized energy-momentum tensor.

In addition to the Kerr parameter perturbations, we obtain the term which has the
form of the Lie derivative of the background metric gab in our derived solution. The
appearance of such term is natural consequence due to the symmetry of the linearized
Einstein equations as discussed in Section 2.3. Actually, gauge-invariant variables defined
through Conjecture 1 are not unique as pointed out by Equation (26) in Section 2. It is easy
to show that new gauge-invariant variable Hab defined by Equation (26) is also a solution
to the linearized Einstein equation (19) through Equations (16) and the background Einstein
equation G b

a = 8πT b
a if the original gauge-invariant variable Fab in Equation (26) is a

solution to the linearized Einstein equations (19). This is a diffeomorphism symmetry of
the linearized Einstein equations.

The appearance of the term which has the form of the Lie derivative of the background
metric gab in the derived solution is a natural consequence in the sense of the above diffeo-
morphism symmetry of the linearized Einstein equation. In the case where the conventional
expansion through the spherical harmonics Ylm at the starting point and the gauge-fixing
method are used, the appearance of this type of solutions is well-known as the residual
gauge degree of freedom. It might be able to regard that the term of the Lie derivative
of the background metric gab in Equations (279) and (284) corresponds to these “resid-
ual gauge” solutions. On the other hand, we are using the gauge-invariant perturbation
theory in which the gauge degree of freedom of the second kind is completely excluded.
Therefore, the term which has the form of the Lie derivative is “not” the gauge degree of
freedom of the second kind. On the other hand, in our gauge-invariant perturbation theory,
we do not exclude the gauge degree of freedom of the first kind as carefully explained
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in Sections 2.1 and 2.2. The term of the Lie derivative of the background metric gab in
Equations (279) and (284) appears even if we completely excluded the gauge degree of
freedom of the second kind. Therefore, we should regard that the term of the Lie derivative
of the background metric gab in Equations (279) and (284) as the gauge degree of freedom
of the first kind which is represented in Equation (6). Actually, we can interpret the term
of the Lie derivative of the background metric gab can be eliminate by the infinitesimal
coordinate transformation (2) on the background spacetime at any time. As an example, in
Section 6.2.2, we explained that the constant β1 in the solution (268) can be regarded as the
degree of freedom of the infinitesimal coordinate transformation by Equation (269).

Now, we confirm the geometrical meaning of the gauge degree of freedom of the first
kind in the context of the perturbation theory through Figure 4. Here, we consider the
n-dimensional physical manifolds Mϵ and the background manifold M . As depicted in
Figure 4, we show that we may introduce the coordinate transformation on the physical
spacetime Mϵ, even if we completely fix the second-kind gauge as Xϵ. Actually, we
may introduce the diffeomorphism ψα, i.e., a coordinate system on Oα ⊂ Mϵ, from the
open set Oα to an open set on Rn and the diffeomorphism ψβ, i.e., a coordinate system
on Oβ ⊂ Mϵ, from the open set Oβ to an open set on the other Rn. If Oα ∩ Oβ ̸= ∅,
we can consider the coordinate transformation ψβ ◦ ψ−1

α which transforms the coordinate
system (Oα, ψα) to (Oβ, ψβ). This is the first-kind gauge on Mϵ as shown in Figure 1.
If we choose the gauge-choice of the second-kind by Xϵ as depicted in Figure 4, this
gauge-choice induce the diffeomorphisms X −1

ϵ : Oα → X −1
ϵ Oα ⊂ M and X −1

ϵ : Oβ →
X −1

ϵ Oβ ⊂ M . Then, the coordinate systems (Oα, ψα) and (Oβ, ψβ) on Mϵ induce the
coordinate systems {X −1

ϵ Oα, ψα ◦Xϵ} and {X −1
ϵ Oβ, ψβ ◦Xϵ} on M . Actually, ψα ◦Xϵ is

a diffeomorphism which maps from X −1
ϵ Oα ⊂ M to Rn and ψβ ◦Xϵ is a diffeomorphism

which maps from X −1
ϵ Oβ ⊂ M to Rn. Furthermore, the coordinate transformation is given

by (ψβ ◦ Xϵ) ◦ (ψα ◦ Xϵ)−1 = ψβ ◦ Xϵ ◦ X −1
ϵ ◦ ψ−1

α = ψβ ◦ ψ−1
α . This indicates that the

first-kind gauge transformation on the physical spacetime Mϵ coincides with that on the
background spacetime M . Thus, even if we fix the gauge choice Xϵ of the second kind, the
gauge degree of freedom of the first kind on the background spacetime M is induced by the
gauge degree of freedom of the first kind on the physical spacetime Mϵ. This induced gauge
degree of freedom of the first-kind depends entirely on the gauge choice Xϵ. Actually,
the gauge choice ψα ◦ Xϵ of the first kind does depend on the gauge choice Xϵ of the
second kind. However, the first-kind gauge transformation rule (ψβ ◦Xϵ) ◦ (ψα ◦Xϵ)−1 =

ψβ ◦ ψ−1
α is independent of the gauge choice Xϵ of the second kind.

The above geometrical arguments indicate that even if we completely exclude the
gauge-degree of freedom of the second kind, the gauge-degree of freedom of the first kind
still remains. This situation supports the existence of the term of the Lie derivative of
the background metric gab in the solution (284) of the linear metric perturbation. Actu-
ally, we may consider the point replacement s = Ψλ(r) as Equation (5) on the physical
spacetime Mph = Mϵ. If we express the point replacement Ψλ through the point identifi-
cation Xϵ to the background spacetime M , the diffeomorphism Ψλ should be regarded
as X −1

ϵ (s) = X −1
ϵ ◦ Ψλ ◦Xϵ(X −1

ϵ (r)). This point replacement X −1
ϵ ◦ Ψλ ◦Xϵ : X −1

ϵ (r)
7→ X −1

ϵ (s) on the background spacetime M completely depends on the second-kind
gauge choice Xϵ. However, if we use the coordinate systems {X −1

ϵ Oα, ψα ◦ Xϵ} and
{X −1

ϵ Oβ, ψβ ◦Xϵ} on the background spacetime M , which are induced from the coordi-
nate system on physical spacetime Mϵ, the action (5) of the diffeomorphism is given by(

ψβ ◦Xϵ

)
◦X −1

ϵ ◦ Ψλ ◦Xϵ ◦ (ψα ◦Xϵ)
−1

= ψβ ◦Xϵ ◦X −1
ϵ ◦ Ψλ ◦Xϵ ◦X −1

ϵ ◦ ψ−1
α

= ψβ ◦ Ψλ ◦ ψ−1
α . (286)
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This is just the “coordinate transformation” (5) and does not depend on the gauge choice
Xϵ of the second-kind, i.e., is the gauge-invariant in the sense of the second-kind. Therefore,
the coordinate transformation (286) may be regarded as the representation of the coordinate
transformation (5), i.e., the replacement of points r 7→ s on the physical spacetime Mϵ.

Figure 4. Consider the n-dimensional physical manifolds Mϵ and the background M . We may
introduce the coordinate transformation on the physical spacetime Mϵ, even if we completely fix the
second-kind gauge as Xϵ. Actually, we may introduce the diffeomorphism ψα from the open set Oα

(the blue region on Mϵ) to an open set on Rn and the diffeomorphism ψβ from the open set Oβ (the
yellow region on Mϵ) to an open set on the other Rn. If Oα ∩ Oβ ̸= ∅ (the shaded region on Mϵ),
we can consider the coordinate transformation ψβ ◦ ψ−1

α which transforms the coordinate system
(Oα, ψα) to (Oβ, ψβ). If we choose the gauge-choice of the second-kind by Xϵ, this gauge-choice
induce the coordinate systems {X −1

ϵ Oα, ψα ◦Xϵ} and {X −1
ϵ Oβ, ψβ ◦Xϵ} on M . Furthermore, the

coordinate transformation is given by (ψβ ◦Xϵ) ◦ (ψα ◦Xϵ)−1 = ψβ ◦ ψ−1
α .

The solution (284) is gauge-invariant in the sense of the second kind, i.e., the degree
of freedom of the point-identifications between the physical spacetime Mϵ and the back-
ground spacetime M is completely excluded. However, in this gauge-invariant solutions
in the sense of the second kind, there still exists the term £V gab. As noted in Section 2.3,
such terms may be included in the solution to the linearized Einstein equation due to the
symmetry of the linearized Einstein equation as the gauge-invariant terms in the sense of
the second-kind. Therefore, the term £V gab in Equation (284) is no longer regarded as the
gauge degree of the second kind, but we should regard this term as the gauge degree of
freedom of the first kind as discussed above. Actually, the coordinate transformation (269)
should be regarded as the “coordinate transformation” (286), because β1 is gauge-invariant
in the sense of the second-kind. Furthermore, we note that the infinitesimal “coordinate
transformation” which eliminates the term £V gab in the solution (284) should be regarded as
the “coordinate transformation” (286) due to the same reason. As explained in Section 2.1,
the coordinate transformation (5) is regarded as the first-kind gauge degree of freedom.
Then, the term £V gab in the solution (284) should be regarded as the degree of freedom of
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the first-kind gauge. As pointed out in Section 2.1, the first kind gauge is often used to
predict or to interpret the measurement results in observations and experiments. In this
sense, this term of the Lie derivative of the background metric gab in the solution (284)
should have their physical meaning. This is the reason why we emphasized the importance
of the distinction of the notions of the first-kind gauge and the second-kind gauge.

We have to emphasize that this conclusion is the consequence of our complete exclu-
sion of the second-kind gauge degree of freedom which includes not only l ≥ 2 modes
but also l = 0, 1 modes of perturbations and our Proposal 1. From the view point of the
gauge-invariant perturbation theory developed in this paper, the conventional gauge-fixing
procedure corresponds to the partial gauge-fixing. Therefore, it will be difficult to reach
the above conclusion through the conventional gauge-fixing procedure. Furthermore, in
the conventional approach, there is no distinction between the first- and the second-kind
gauge and all terms which have the form £V gab may be regarded as the “gauge-degree of
freedom” and these are “unphysical degree of freedom” because we can always eliminate
these terms through the infinitesimal coordinate transformation. If the concept of “the
complete gauge fixing” corresponds to the standing point that all terms which have the
form £V gab are “unphysical degree of freedom”, this concept of “the complete gauge-fixing”
is stronger restriction of the metric perturbation than the concept of “gauge-invariant of
the second kind” in this paper. Thus, we may say that these conceptual discussion is an
important result comes from the realization of the gauge-invariant formulation including
l = 0, 1 modes in this paper. Similar results are also obtained in even-mode perturbations
which will be shown in the Part II paper [43].

Apart from these terms of the Lie derivative of the background metric gab, in the
vacuum case, the only non-trivial solutions in l = 1 odd-mode perturbation are the Kerr
parameter perturbations. These will be related to the uniqueness of the Kerr solution in the
vacuum Einstein equations in the local sense [14], though the assertion of the uniqueness
theorem of the Kerr solution includes topological statements [68]. In addition to the relation
of the uniqueness theorem of Kerr black hole, at least, we may say that the derived vacuum
solution for l = 0, 1 odd-mode perturbations is physically reasonable. In the paper [43],
we derive the l = 0, 1 even-mode solution to the linearized Einstein equation which also
includes the terms of the Lie derivative of the background metric. In the Part III paper [44],
we show that the derived solutions in ref. [43] realize the linearized Lemaître–Tolman–
Bondi solution and the linearized non-rotating C-metric. Due to these facts, we may say
that our solutions derived through Proposal 1 are physically reasonable. In this sense, we
may say that Proposal 1 is also physically reasonable.
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Appendix A. Explicit Form of Conventional Spherical Harmonics on S2

First, we summarize the properties of the conventional spherical harmonic functions
Ylm. The spherical harmonic functions Ylm(θ, ϕ) satisfy the equations[

∆̂ + l(l + 1)
]
Ylm = 0, (A1)

∂ϕYlm = imYlm. (A2)
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To be explicit, they are expressed in terms of the Legendre functions as

Ylm(θ, ϕ) =

√
(2l + 1)(l − m)!

4π(l + m)!
Pm

l (cos θ)eimϕ. (A3)

For l = 0, 1 modes, the spherical harmonic functions Ylm = Yl,m are explicitly given by

Y00 =

√
1

4π
, (A4)

Y10 =

√
3

4π
cos θ, Y11 =

√
3

8π
sin θeiϕ, Y1−1 = −

√
3

8π
sin θe−iϕ. (A5)

Employing these spherical harmonic functions (A3) as the scalar harmonics, we construct
the set of the tensor harmonics on S2. Since the dimension of S2 is two, we have enough
number of tensor harmonic functions as bases of tangent space on S2.

On the unit sphere, any vector field vp is written in terms of two scalar functions v
and w as

vp = D̂pv + ϵpqD̂qw. (A6)

Here, D̂pv is even part and ϵpqD̂qw is the odd part, which corresponds to D̂pS and ϵpqD̂qS
in Equation (38), respectively. If we choose S = Ylm, these vectors are given by

D̂pYlm, ϵpqD̂qYlm. (A7)

For l = 0 modes, the spherical harmonic function Y00 is constant as in Equation (A4) and
corresponding vector harmonics vanish:

D̂pY00 = 0, ϵpqD̂qY00 = 0. (A8)

On the other hand, for l = 1 modes, vector harmonics has the vector values as

D̂pY10 = −
√

3
4π

sin θθp, (A9)

D̂pY11 =

√
3

8π
eiϕ(cos θθp + iϕp

)
, D̂pY1−1 =

√
3

8π
e−iϕ(− cos θθp + iϕp

)
(A10)

and

ϵpqD̂qY10 =

√
3

4π
sin θϕp, (A11)

ϵpqD̂qY11 =

√
3

8π
eiϕ(− cos θϕp + iθp

)
, ϵpqD̂qY1−1 =

√
3

8π
e−iϕ(cos θϕp + iθp

)
. (A12)

Thus, vector harmonics has its vector value for l = 1 modes, while does not for l = 0 mode.
Any smooth symmetric second-rank tensor field tpq on the unit sphere can be ex-

pressed in terms of its trace t = tp
p and two scalar fields v and w as

tpq =
1
2

tγpq +

(
D̂pD̂q − 1

2
γpq∆̂

)
v + 2ϵr(qD̂p)Drw. (A13)

These three terms correspond to the terms proportional to
1
2

γpqS,
(

D̂pD̂q −
1
2

γpq∆̂
)

S,

and 2ϵr(pD̂q)D̂rS in Equation (39). As in the case of vector harmonics above, for l = 0
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modes, the spherical harmonic function Y00 is constant as in Equation (A4) and the only
non-vanishing harmonics is its trace part

1
2

γpqY00 =
1
2

γpq

√
1

4π
(A14)

and the other traceless even and odd parts vanish. For l = 1 modes, from Equations (A5),
the trace parts are trivially given by

1
2

γpqY10 =
1
2

√
3

4π
cos θγpq, (A15)

1
2

γpqY11 =
1
2

√
3

8π
sin θeiϕγpq, (A16)

1
2

γpqY1−1 = −1
2

√
3

8π
sin θe−iϕγpq. (A17)

On the other hand, the traceless even and odd parts for
(

D̂pD̂q −
1
2

γpq∆̂
)

Y1m, and

2ϵr(pD̂q)D̂rY1m identically vanish for all m = −1, 0, 1.
As a summary of S = Ylm cases, for l = 0 mode, any vector and tensor harmonics

vanish, and these do not play roles of bases of the tangent space on S2. On the other hand,
for l = 1 modes, the vector harmonics have their vector value and play roles of bases of the
tangent space on S2. The trace parts of the second-rank tensor of each modes have their
tensor values, while all traceless even and odd mode harmonics identically vanish and
does not play roles of bases of the tangent space on S2.

Appendix B. Covariant Derivatives in 2 + 2 Formulation and
Background Curvatures

In this Appendix, we summarize the relation between the covariant derivatives ∇a

associated with the metric gab, D̄A associated with the metric yab, and D̂p associated with
the metric γab. These formulae are convenient to derive the gauge-transformation rules,
linearized Einstein equations, and so on. Here, the metrices gab, yab, and γab are given
by Equation (31). We assume that yab depends on {xA} and r = r(xA). We also assume
that γab depends only on {xp}. Under these assumptions, the Christoffel symbol Γ c

ab are
given by

Γ c
ab =

1
2

gcd(∂agdb + ∂bgda − ∂dgab), (A18)

Γ C
AB =

1
2

yCD(∂AyDB + ∂ByDA − ∂DyAB) =: Γ̄ C
AB , (A19)

Γ C
pB = 0, (A20)

Γ C
pq = −r(D̄Cr)γpq, (A21)

Γ p
AB = 0, (A22)

Γ p
qA =

1
r
(D̄Ar)γ p

q , (A23)

Γ p
qr =

1
2

γpd
(

∂qγdr + ∂rγdq − ∂dγqr

)
=: Γ̂ p

qr . (A24)

Here, we note that

D̂pD̄AtB = D̄AD̂ptB, (A25)
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and

D̂pD̄Atq = ∂pD̄Atq − Γ̂ r
qp D̄Atq = D̄AD̂ptq, (A26)

since

∂pΓ̄ C
AB = 0, ∂AΓ̂ r

pq = 0. (A27)

Then, we obtain the formulae for the covariant derivatives ∇avb and ∇atb as

∇AvB = D̄AvB, (A28)

∇Avp = D̄Avp −
1
r

D̄Arvp, (A29)

∇pvA = D̂pvA − 1
r

D̄Arvp, (A30)

∇pvq = D̂pvq + rD̄ArγpqvA, (A31)

∇AtB = D̄AtB, (A32)

∇Atp = ∂Atp +
1
r

D̄Artp, (A33)

∇ptA = D̂ptA − rD̄Arγpqtq, (A34)

∇ptq = D̂ptq +
1
r

D̄Arγ
q

p tA. (A35)

Here, we also summarize the expression of ∇aTbc for an arbitrary tensor Tbc in terms
of the covariant derivatives D̄A and D̂p which are associated with the metric yAB and γpq,
respectively, from

∇aTbc = ∂aTbc − Γ d
ba Tdc − Γ d

ca Tbd. (A36)

These are given by

∇ATBC = D̄ATBC, (A37)

∇ATBp = D̄ATBp −
1
r

D̄ArTBp, (A38)

∇ATpC = D̄ATpC − 1
r

D̄ArTpC, (A39)

∇pTBC = D̂pTBC − 1
r

D̄BrTpC − 1
r

D̄CrTBp, (A40)

∇pTqC = D̂pTqC + rD̄DrγqpTDC − 1
r

D̄CrTqp, (A41)

∇pTBq = D̂pTBq −
1
r

D̄BrTpq + rD̄DrγqpTBD, (A42)

∇ATpq = D̄ATpq −
2
r

D̄ArTpq, (A43)

∇pTqr = D̂pTqr + rD̄DrγqpTDr + rD̄DrγrpTqD. (A44)

Furthermore, the derive the linearized Einstein equation, we have to derive the
components of

∇a H bd
c = ∂aH bd

c − Γ e
ca H bd

e + Γ b
ea H ed

c + Γ d
ea H be

c . (A45)
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Then, these are summarized as

∇A H BD
C = D̄A H BD

C , (A46)

∇A H Bs
C = D̄AH Bs

C +
1
r

D̄ArH Bs
C , (A47)

∇A H qD
C = D̄A H qD

C +
1
r

D̄ArH qD
C , (A48)

∇A H qs
C = D̄AH qs

C +
2
r

D̄ArH qs
C , (A49)

∇AH BD
r = D̄A H BD

r − 1
r

D̄ArH BD
r , (A50)

∇AH Bs
r = D̄A H Bs

r , (A51)

∇AH qD
r = D̄AH qD

r , (A52)

∇AH qs
r = D̄A H qs

r +
1
r

D̄ArH qs
r , (A53)

∇p H BD
C = D̂p H BD

C − 1
r

D̄CrH BD
p − rD̄Brγtp H tD

C − rD̄DrγtpH Bt
C , (A54)

∇p H Bs
C = D̂pH Bs

C − 1
r

D̄CrH Bs
p +

1
r

D̄Erγ s
p H BE

C − rD̄BrγtpH ts
C , (A55)

∇p H qD
C = D̂p H qD

C − 1
r

D̄CrH qD
p +

1
r

D̄Erγ
q

p H ED
C − rD̄Drγtp H qt

C , (A56)

∇p H qs
C = D̂pH qs

C − 1
r

D̄CrH qs
p +

1
r

D̄Erγ
q

p H Es
C +

1
r

D̄Erγ s
p H qE

C , (A57)

∇p H BD
r = D̂p H BD

r + rD̄ErγrpH BD
E − rD̄Bγtp H tD

r − rD̄Dγtp H Bt
r , (A58)

∇p H Bs
r = D̂p H Bs

r + rD̄ErγrpH Bs
E − rD̄Brγtp H ts

r +
1
r

D̄Erγ s
p H BE

r , (A59)

∇p H qD
r = D̂pH qD

r + rD̄ErγrpH qD
E − rD̄DrγtpH qt

r +
1
r

D̄Erγ
q

p H ED
r , (A60)

∇p H qs
r = D̂p H qs

r + rD̄ErγrpH qs
E +

1
r

D̄Erγ
q

p H Es
r +

1
r

D̄Erγ s
p H qE

r . (A61)

Next, we summarize the components of the background curvatures induced by
the metric Equation (31). We derive these components through the components of the
connection (A19)–(A24) and the formula of the Riemann curvature

R d
abc = ∂bΓ d

ac − ∂aΓ d
bc + Γ e

ac Γ d
eb − Γ e

bc Γ d
ea . (A62)

To derive the components of this curvature, we use

D̄Aγpq = 0 = D̂pyAB, D̂pr = 0. (A63)

The components of the non-vanishing Riemann curvature are summarized as

R D
ABC = (2)R̄ D

ABC , (A64)

R D
pBr = −r(D̄BD̄Dr)γpr, (A65)

R s
pBC =

1
r
(D̄BD̄Cr)γ s

p , (A66)

R s
pqr = (2)R̂ s

pqr − 2(D̄Er)(D̄Er)γr[pγ s
q] . (A67)
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The components of the Ricci curvature are summarized as

RAC = (2)R̄AC − 2
r
(D̄AD̄Cr), (A68)

RAr = 0, (A69)

Rpr = (2)R̂pr −
[
r(D̄ED̄Er) + (D̄Er)(D̄Er)

]
γpr. (A70)

The Ricci scalar curvature is given by

R = gacRac =
(2)R̄ +

1
r2

(2)R̂ − 4
r
(D̄CD̄Cr)− 2

r2 (D̄Er)(D̄Er). (A71)

Next, we derive the components of the Einstein tensor

Gab := Rab −
1
2

gabR (A72)

and its components are summarized as

GAB = −2
r
(D̄AD̄Br) +

1
r2 yAB

[
−1 + 2r(D̄CD̄Cr) + (D̄Er)(D̄Er)

]
, (A73)

GAq = 0, (A74)

Gpq = γpq

[
r(D̄CD̄Cr)− 1

2
r2(2)R̄

]
, (A75)

where we used the two-dimensional Einstein tensors are identically vanish and the fact
that the metric γpq is the maximally symmetric space with positive curvature, i.e.,

(2)R̂pqrs = 2γp[rγs]q, (2)R̂pr = γpr, (2)R̂ = 2. (A76)

Here, we consider the static solution whose metric is given by

yAB = − f (dt)A(dt)B + f−1(dr)A(dr)B, (A77)

where f = f (r). Due to the Birkhoff theorem [69], the vacuum solution with the spherically
symmetric spacetime must be the Schwarzschild spacetime. We check this fact from
Equations (A73)–(A75) with the substitution (A77). Actually, we obtain

D̄Br = (dr)B, D̄Br = f
(

∂

∂r

)B
, D̄AD̄Br =

f ′

2
yAB. (A78)

Then, we have

(D̄Br)(D̄Br) = f , D̄AD̄Br =
f ′

2
δ A

B , D̄CD̄Cr = f ′. (A79)

From Equation (A73) as

yABGAB =
2
r

(
f ′ − 1 − f

r

)
= 0, GAB − 1

2
yABGAB = 0. (A80)

The solution to Equation (A80) is given by

f = 1 − 2M
r

, (A81)

f ′ =
1 − f

r
, (A82)
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where M is the constant of integration. This is the Schwarzschild metric. We also evaluate
the component Gpq = 0 through Equation (A75) using Equation (A81) as

(2)R̄ =
2
r
(D̄CD̄Cr) (A83)

As the summary of the background vacuum Einstein equations, we have

r(D̄CD̄Cr) + (D̄Er)(D̄Er) = 1, (A84)

(D̄AD̄Br) =
1
2

yAB(D̄CD̄Cr), (A85)

(2)R̄ =
2
r
(D̄CD̄Cr). (A86)

Equation (A84) is equivalent to Equation (A82). Since the two-dimensional curvature
(2)R̄DAEC has only one independent component, (2)R̄DAEC is written as

(2)R̄DAEC =
2
r
(D̄FD̄Fr)yD[EyC]A, (2)R̄DE =

1
r
(D̄FD̄Fr)yDE, (2)R̄ =

2
r
(D̄FD̄Fr). (A87)

The above formulae are expressed the covariant form of the 2 + 2 formulation. How-
ever, the explicit components of Γ c

ab are also convenient to leads the results in Section 6.2.
From Equations (A19)–(A24) and the background metric (31) with Equations (33) and (34),
non-vanishing components of Γ c

ab are summarized as

Γ t
tr =

f ′

2 f
, Γ r

tt =
1
2

f f ′, Γ r
rr = − f ′

2 f
, Γ r

θθ = −r f ,

Γ r
ϕϕ = −r f sin2 θ, Γ θ

rθ =
1
r

, Γ θ
ϕϕ = − sin θ cos θ, (A88)

Γ ϕ
rϕ =

1
r

, Γ ϕ
ϕθ = cot θ.

Appendix C. Summary of the 2 + 2 Representations of the Tensor Habc[F ],
H c

ab [F ], H bc
a [F ]

Here, we summarize the components of Habc[F ] through the expressions (216)–(218):

HABC = D̄(AFB)C − 1
2

D̄CFAB, (A89)

HpBC =
1
2
(

D̂pFBC + rD̄BFCp − rD̄CFBp − (D̄Br)FCp − (D̄Cr)FBp
)
, (A90)

HpqC =
1
2

(
2rD̂(pFq)C − 1

2
γpqr2D̄CF − r(D̄Cr)γpqF + 2r(D̄Dr)γpqFDC

)
, (A91)

HABr = rD̄(AFB)r + (D̄(Ar)FB)r −
1
2

D̂rFAB, (A92)

HpBr =
1
2

(
rD̂pFrB − rD̂rFpB +

1
2

r2γprD̄BF
)

, (A93)

Hpqr =
1
2

r2γr(qD̂p)F − 1
4

r2γpqD̂rF + r2D̄DrγpqFDr. (A94)
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Next, we summarize the components of H c
ab [F ] through the expressions (216)–(218)

as follows

H C
AB = D̄(AF C

B) − 1
2

D̄CFAB, (A95)

H C
pB =

1
2

(
D̂pF C

B + rD̄BF C
p − rD̄CFBp − (D̄Br)F C

p − (D̄Cr)FBp

)
, (A96)

H C
pq =

1
2

(
2rD̂(pF C

q) − 1
2

γpqr2D̄CF − r(D̄Cr)γpqF + 2r(D̄Dr)γpqF C
D

)
, (A97)

H r
AB =

1
r

D̄(AF r
B) +

1
r2 (D̄(Ar)F r

B) − 1
2r2 D̂rFAB, (A98)

H r
pB =

1
2r

D̂pF r
B − 1

2r
D̂rFBp +

1
4

γ r
p D̄BF, (A99)

H r
pq =

1
2

γ r
(q D̂p)F − 1

4
γpqD̂rF + (D̄Dr)γpqF r

D . (A100)

Finally, we summarize the component H bc
a [F ] through the expression (216)–(218) as

follows:

H BC
A =

1
2

(
D̄AFBC + D̄BF C

A − D̄CF B
A

)
, (A101)

H Br
A =

1
2r

D̄AFBr +
1
2r

D̄BF r
A +

1
2r2 (D̄Ar)FBr +

1
2r2 (D̄Br)F r

A − 1
2r2 D̂rF B

A , (A102)

H qC
A =

1
2r2

(
D̂qF C

A + rD̄AFqC − rD̄CF q
A − (D̄Ar)FqC − (D̄Cr)F q

A

)
, (A103)

H qr
A =

1
2r3

[
D̂qF r

A − D̂rF q
A +

1
2

rγqrD̄AF
]

, (A104)

H BC
p =

1
2

(
D̂pFBC + rD̄BF C

p − rD̄CF B
p − (D̄Br)F C

p − (D̄Cr)F B
p

)
, (A105)

H Br
p =

1
2r

D̂pFBr − 1
2r

D̂rF B
p +

1
4

γ r
p D̄BF, (A106)

H qC
p =

1
2r2

(
rD̂pFqC + rD̂qF C

p − 1
2

γ
q

p r2D̄CF − r(D̄Cr)γ q
p F + 2r(D̄Dr)γ q

p F C
D

)
, (A107)

H qr
p =

1
r2

(
1
4

γqrD̂pF +
1
4

γ r
p D̂qF − 1

4
γ

q
p D̂rF + (D̄Dr)γ q

p F r
D

)
. (A108)

Notes
1 In the derivation of the Lie derivative in § 94 of ref. [48], the coordinate transformation x′ i = xi + ξ i is performed, at first, and

the comparison inverse matrices g′ ik(x′ l) and gik(xl) at the “same coordinate value” xl is carried out. The comparison at the
“same coordinate value” xl under the coordinate transformation x′ i = xi + ξ i means the comparison the inverse metrics at the
“different points” on the same manifold as shown in Equation (3).

2 As depicted in Figure 2, the action of the diffeomorphism Φϵ := X −1
ϵ ◦ Yϵ is the replacement of Φϵ(q) = p. However, the

evaluations of the both-side of Equation (9) are carried out at the same point on the background spacetime M and Equation (11)
is also evaluated at the same point on the background spacetime M as the result, while Equation (6) represents the difference
between the tensor field at different points on the same manifold. To explain this, we consider the points “p” ∈ Mph, “q” ∈ Mph
(“p” ̸= “q”), and q ∈ M and the action of the diffeomorphisms Yϵ, and Xϵ so that “p” = Yϵ(q) and “q” = Xϵ(q). Through this
setup, Equation (9) derived as

Q(“p”) = Q(Yϵ(q))

= Y ∗
ϵ Q(q) = Y ∗

ϵ Q(X −1
ϵ (“q”)) = Y ∗

ϵ ◦ (X −1
ϵ )∗Q(“q”) = Y ∗

ϵ ◦ (X −1
ϵ )∗Q(Xϵ(q))

= Y ∗
ϵ ◦ (X −1

ϵ )∗ ◦X ∗
ϵ Q(q) =

(
X −1

ϵ ◦Yϵ

)∗
◦X ∗

ϵ Q(q)

= Φ∗
ϵX ∗

ϵ Q(q). (A109)
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Then, through Equations (8) and (10), we reach to the gauge-transformation rule (11) at the same point, which should be regarded

as (1)
Y Q(q) − (1)

XQ(q) = £ξ(1) Q0(q).
3 This statement of the proposal 1 actually indicates that at once we ignore the neighborhood of the region where the harmonic

function Sδ diverges but we apply the analytic extension of the linearized solution to these regions when we choose δ = 0.
4 From Equation (257) and the descriptions in ref. [61], readers might regard that the extension to l = 1 mode case of the

Cunningham-Price-Moncrief variable Φ(o) is the same variable as the gauge-invariant variable ΦKIF defined by Equation (185).
Actually, if we can identify h̃(o1)A with F̃A, the extension to l = 1 mode case of the Cunningham-Price-Moncrief variable Φ(o)
coincides with the definition of ΦKIF and there is the description in ref. [61] which is similar to Equation (257). However, this
identification is not appropriate, since F̃A is gauge-invariant in the sense of the second-kind but h̃(o1)A is not gauge-invariant. We
actually take δ = 0 in the singular harmonic when we solve the mode-by-mode Einstein equations. However, this does not mean
h̃(o2) = 0, nevertheless the term h̃(o2) in the metric perturbation disappear since the singular harmonic function vanishes due to
the choice δ = 0. This difference also appears when we obtain the gauge-invariant relation between the components of F̃A and
the extension to l = 1 mode case of Cunningham-Price-Moncrief variable Φ(o) by integrating the linearized Einstein equations.
In this integration, the integration constants appear in the relation between the components F̃A and Φ(o). This integration
“constants” are automatically gauge-invariant in the sense of second-kind. On the other hand, when we integrate ΨKIF to obtain
the explicit relation with h̃(o1)A, there is no guarantee that the integration “constants” are gauge-invariant, because h̃(o1)A is not
gauge-invariant.

5 Although the simple integration of Equation (258) yields the time-dependence of β1, this time-dependence is inconsistent with
Equation (241). This inconsistency is due to the fact that we just use the constraint (241) in the form ∂r

(
r2(241)

)
when we derive

Equation (249).
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